Collider Physics - Chapter 3 LEP - $\mathrm{e}^{+} \mathrm{e}^{-}$physics

Paolo Bagnaia
SAPIENZA
UNIVERSITÀ DI ROMA

AA 21-22

3 - LEP - $\mathrm{e}^{+} \mathrm{e}^{-}$physics

i. Machine \& detectors

1. The LEP Collider
2. Detectors
3. The L3 detector
4. LEP events
ii. Exp. metods
5. Measure the luminosity
6. Secondary verteces
7. Efficiency and purity
8. Data analysis
iii. Physics 1: Z \& W
9. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow f \bar{f}$
10. $d \sigma\left(e^{+} e^{-} \rightarrow f \bar{f}\right) / d \Omega$
11. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$
12. Radiative corrections
13. LEP1 SM fit
14. Physics at LEP2
15. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$
16. $\mathrm{W}^{ \pm}$properties
17. Global LEP(1+2) fit
iv. Physics 2 : Higgs searches at LEP
18. Search at LEP1

19. Search at LEP2

i. Machine and detectors

\author{

1. The LEP Collider
 2. Detectors
 3. The L3 detector
 4. LEP events
 5. - 16. [...]
}

The LEP collider : $\mathrm{e}^{ \pm}$acceleration

The LEP collider : parameters

	LEP 1	LEP 2
Circumference (Km)	26.66	
$\mathrm{E}_{\text {max }} /$ beam (GeV)	50	105
max lumi $\mathfrak{L}\left(10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	~ 25	~ 100
time between collisions ($\mu \mathrm{s}$)	$22(11)$	22
bunch length (cm)	1.0	
bunch radius (hori.) $(\mu \mathrm{m})$	$200 \div 300$	
bunch radius (vert.) $(\mu \mathrm{m})$	$2.5 \div 8$	
injection energy (GeV)	22	
particles/packet $\left(10^{11}\right)$	4.5	
packet number	$4+4(8+8)$	$4+4$
years	$1989-1995$	$1996-2000$

The LEP collider: $\mathscr{L}_{\text {int }}$ vs day

- $\Delta \mathrm{E}_{\text {orbit }} \propto \mathrm{e}^{2} \mathrm{E}^{4} /\left(\mathrm{M}^{4} \mathrm{R}\right) ; \quad[\S 1]$
$>\Delta \mathrm{E}^{\mathrm{e} \pm}{ }_{\text {orbit }}(\mathrm{MeV})=8.85 \times 10^{-5} \mathrm{E}^{4}(\mathrm{GeV}) / \mathrm{R}(\mathrm{Km})$;
- $\left\langle\mathrm{R}_{\text {LEP }}\right\rangle=4.25 \times 10^{3} \mathrm{~m}(\rightarrow$ see table);
- in QED, the bremsstrahlung is not deterministic; the formula gives the average; a further (annoying) effect is the increase of emittance, i.e. the increase of the packets both in space and momentum; this effect is greater in the horizontal plane, as an effect of the magnetic bending:

$E_{\text {beam }}$ (GeV)	 $(\mathrm{GeV})$$\Delta \mathrm{E}_{\text {orbit }}$ (GeV)	
45	90	~ 0.1
90	180	~ 1.4
100	200	~ 2.1

$$
\begin{aligned}
& >\sigma_{\text {hori }}=200 \div 300 \mu \mathrm{~m} ; \\
& >\sigma_{\text {vert }}=2.5 \div 8 \mu \mathrm{~m} .
\end{aligned}
$$

[beam perp. to the page]

Assume $\mathscr{X}_{\text {max }}=2 \times 10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$:

- $\sigma_{\text {tot }}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z}, V_{\mathrm{s}}=\mathrm{m}_{\mathrm{z}}\right) \approx 40 \mathrm{nb}:$
$>\mathrm{R}_{\text {max }}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z}, V_{\mathrm{s}}=\mathrm{m}_{\mathrm{z}}\right)=\mathfrak{L} \sigma_{\text {tot }}=0.8 \mathrm{~Hz} ;$
> 6×10^{4} events / day $\rightarrow 10^{7}$ events/ year;
> [??? no !!!];
... because ...
- the luminosity normally quoted corresponds to the "peak lumi.", i.e. the first minutes after acceleration and squeezing;

$$
\begin{array}{ll}
\mathscr{L}(t)=\mathfrak{L}_{\max } \exp (-t / \tau) & \text { (stochastic effects }+ \\
& \text { optics corrections) }
\end{array}
$$

$$
\rightarrow\langle\mathfrak{Q}\rangle \approx 1 / 2 \mathfrak{L}_{\max }
$$

+ techn. stops, maintenance, mistakes, ...
> global efficiency ~ $1 / 4$
- also data @ $\sqrt{ } \mathrm{s} \neq \mathrm{m}_{\mathrm{z}}$ (e.g. to measure the lineshape), where σ much smaller.
$\Rightarrow @$ LEP 1 (manv vears): 4×10^{6} hadronic events $\times 4 \mathrm{exp}=$ $=15.5 \times 10^{6}$ hadronic events
+ the corresponding leptons.
Problem: use the formulæ of § 1 and the LEP parameters to compute $£_{\mathrm{bc}}$ and μ ($=\mathscr{P}_{\text {int }}$).
Comment on TDAQ requirements. Is LEP trigger/DAQ "easy" or "difficult" ?
[please think before answering]

SLC : Stanford Linear Collider (1989-98):

- the first example of linear $\mathrm{e}^{+} \mathrm{e}^{-}$collider;

- lower energy (only Z pole) and less intense;
- polarized beams;
- promising new technique ($\sqrt{s}>500 \mathrm{GeV} \rightarrow$ a circular $\mathrm{e}^{+} \mathrm{e}^{-}$requires a huge ring).

Detectors

A typical detector of LEP / TeVatron / LHC (ATLAS is the only remarkable exception).
Please, figure out how exp.'s measure E, \vec{p} and identify all particles.

A detector fully operational allows for both the measurement of the 4-momenta of all the particles and their identification ("part.id"). The charge is measured by the sign of the bending.

	$\overrightarrow{\mathrm{p}}_{\text {charg }}$	$\mathrm{E}_{\text {em }}$	E_{h}	$\overrightarrow{\mathrm{p}}_{\mu}$	sec. vtx. ?
$\mathrm{e}^{ \pm}$	yes	yes	\sim no	no	yes
γ	no	yes	\sim no	no	no
$\pi^{ \pm}, \mathrm{K}^{ \pm}$	yes	\leftarrow yes \rightarrow	no	yes	
n, K^{0}	no	\leftarrow yes \rightarrow	no	no	
$\mu^{ \pm}$	yes	mip	mip	yes	yes
v	no (but hermeticity)				

The v 's are "detectable" from the conservation of the 4-momentum, i.e. :

$$
\left\{\begin{array}{l}
\overrightarrow{\mathrm{p}}_{v}=-\sum_{\mathrm{all}} \overrightarrow{\mathrm{p}}_{j} ; \\
\mathrm{E}_{v}=\sqrt{\mathrm{s}}-\sum_{\mathrm{al\mid l}} \mathrm{E}_{j} ;
\end{array}\left[\oplus \mathrm{m}_{v}^{2}=\mathrm{E}_{v}^{2}-|\overrightarrow{\mathrm{p}}|_{v}^{2}=0\right] .\right.
$$

Problem : what happens if there are two v's in the final state ?
An interesting question ... and not uncommon $\left[\mathrm{Z} \square \tau, \mathrm{ZH} \square \mathrm{v}^{-} \mathrm{b} \overline{\mathrm{b}}\right]$.

ALEPH

1 Beam Plpe
2 Silicon Vertex Detector
3 Inner Tracking Chamber
4 Luminosity Monitor
5 TPC Endplate
6 Electromagnetic Calorimeter 6a Barrel
6b Endcap
7 Superconducting Coil
8 Hadron Calorimeter
8a Barrel
8b Endcap
9 Muon Chambers

Detectors : DELPHI

- 96 silicon wafers

- $70 \mathrm{~mm} \times 40 \mathrm{~mm} \times 300 \mu \mathrm{~m}$
- two layers:
- \varnothing inner layer : 120 mm
- \varnothing outer layer : 150 mm
- zenith coverage : $|\cos \theta|<0.93$.

2 read outs :

- $50 \mu \mathrm{~m}$ in $\mathrm{r} \phi$;
- $150 \div 200 \mu \mathrm{~m}$ in z

The L3 detector: TEC

The L3 detector: TEC results

The residuals are the distances (with sign) between the measurements and the fitted trajectory. Assuming "many" measurements with the same resolution, their distribution is expected to be gaussian with mean=0 and RMS=resolution.

The L3 detector: SMD + TEC

The L3 detector: BGO

- 11,000 BGO (Bismuth germanium oxide $\mathrm{Bi}_{4} \mathrm{Ge}_{3} \mathrm{O}_{12}$) scintillating crystals;
- pyramids $20 \times 20 \rightarrow 30 \times 30 \mathrm{~mm}^{2}$, length 240 mm ;
- $\mathrm{X}_{0}=11.3 \mathrm{~mm} \rightarrow 21 \mathrm{X}_{0}$.

The L3 detector: BGO results
$\pi^{\circ}, \sigma=7 \mathrm{MeV}$

the mass resolution for particles decaying into γ 's is the traditional figure of merit of the e.m. calo (also for $\mathrm{H} \rightarrow \gamma \gamma$ at LHC !!!).

The L3 detector: HadCal

- plates of depleted $U\left(U_{238}\right)+$ proportional wire chambers (370,000 wires);
- brass μ-filter (65\%Cu, 35\% Zn) + prop. tubes;
- BGO + hadcal in calo trigger (few algorithms in .OR., e.g. $\mathrm{E}_{\text {tot }}, \mathrm{E}_{\text {tot }}^{\text {BGO }}$, cluster, single γ, \ldots.

The L3 detector: HadCal results

- $Z \rightarrow q \bar{q}$ at $\sqrt{ } s=m_{z}$;
- $E_{\text {tot }}$ is known and used to calibrate the detector;
- $\mathrm{E}_{\mathrm{vis}} / V_{\mathrm{s}}=\sum_{\mathrm{i}} \mathrm{E}_{\mathrm{i}} / V_{\mathrm{s}}$ in two cases:
$>$ calo e.m. + had;
$>$ calo e.m. + had + TEC (no doublecounting);
> resolution $=10.2 \%$ with calos only;
> resolution $=8.4 \%$, when TEC is also used (avoiding double counting).

The L3 detector: μ chambers

- octants, each with three chamber types : MO
$+\mathrm{MN}+\mathrm{MI}$ (16 + $24+16$ wires);
- effective length of measurement: 2.9 m
- mechanical accuracy: $\sim 10 \mu \mathrm{~m}$;
- alignment with optical sensors.

The L3 detector: μ chambers results

Why plot $\mathrm{E}_{\text {beam }} / \mathrm{E}_{\text {measured }}$? [i.e. $\sqrt{ } \mathrm{s} /\left(2 \mathrm{E}_{\mu}\right)$]

- the sagitta $(\propto 1 / p)$ is the measured parameter;
- therefore $1 / \mathrm{p}\left(\approx 1 / \mathrm{E}_{\mu}\right)$ expected gaussian, while p is asymmetric in the tails;
- $E_{\text {beam }} / E_{\mu}=\sqrt{ } /\left(2 p_{\mu}\right)$;
- $\sigma\left(m_{z}\right) / m_{z}=\sigma\left[E_{\text {beam }} / E_{\mu}\right] / \sqrt{ } 2$ [show it !!!]

For Z events, error from the machine, i.e. $\sigma\left(m_{z}\right)=\sigma(\sqrt{ } s)=$ few MeV .
This method is used to check \vec{p}_{μ}, which is used in other channels (e.g. Higgs search).

And why ($1 / \mathrm{E}-1 / \mathrm{p}$), or $\left(1 / \mathrm{E}_{\mathrm{T}}-1 / \mathrm{p}_{\mathrm{T}}\right)$?
Similar, but more elaborated.
E (and E_{T}) comes from a calorimeter, so it is \sim gaussian, while p (and p_{T}) comes from a spectrometer, so $1 / \mathrm{p}$ is \sim gaussian.
Plot ($E-p$) if $\sigma(E) \gg \sigma(p)$, but $(1 / E-1 / p)$ if $\sigma(\mathrm{p}) \gg \sigma(\mathrm{E})$.

The L3 detector: trigger / DAQ

The L3 detector: trigger requirements

- crossing @ 44/88 KHz \leftrightarrow physics ≤ 1 Hz , i.e. " μ " $\approx 10^{-4} \div 10^{-5}$;
- event trigger (no selection on process type, unlike LHC);
- 3 levels of trigger;
- $1^{\text {st }}$ level: simplified readout (e.g. faster ADC less precise), logical OR among:
\Rightarrow TEC (e.g. 2 opposite tracks);
$>\mu$ (at least one candidate);
> ...
> energy (see next slides);
- $2^{\text {nd }}$ level: same data as $1^{\text {st }}|v|$, but combine different detectors (e.g. a track + corresponding calo deposit);
- $3^{\text {rd }}$ level: final data.
- fake triggers sources $\left(\sim 10 \div 20 \mathrm{~Hz}\right.$ at $1^{\text {st }}$ level) :
> electronic noise;
> beam halo + "beam-gas" interactions, brem photons, ...;
> cosmics, ...;
- $1^{\text {st }}$ level is cabled + home-made processors [home : THIS building];
- $2^{\text {nd }}$ level: (quasi-)commercial processor;
- $3^{\text {rd }}$ level: standard computer (vaxstation at the time, today would use pc server + LINUX).
\rightarrow inefficiency $\leq 10^{-3}$ for $\mathrm{Z} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \mu^{+} \mu^{-}$, hadrons;
\rightarrow dead time $\approx 5 \%$.

The L3 detector: energy trigger

- Roma : 1989-2000;
- CAMAC ${ }^{(*)}$ processor, built by "Sezione INFN" (this building, ground floor);
- fast digitization of calo signals;
- decision algorithm based on a digital programmable processor, realized with logic and arithmetic units;
- ~200 CAMAC modules;
- decision in $\sim 22 \mu \mathrm{~s} \rightarrow$
${ }^{(*)}$ CAMAC was an electronic standard, widely used in the '70s - '90s, now almost completely replaced by VME and other systems.

14/14. The L3 detector: energy trigger scheme

LEP events

The $\mathrm{e}^{+} \mathrm{e}^{-}$initial state
produces very clean events (parton system = CM system = laboratory, no spectators).

In these four LEP events the beams are perpendicular to the page.

The recognition of the events is really simple, also for non-experts.

Great machines for high precision physics ...

LEP events: $\mu^{+} \mu^{-}$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$

+ signals in SMD
+ track in TEC (\rightarrow momentum and charge)
+ mip in calos
+ signals in μ chambers (\rightarrow momentum and charge)
$=$ identified and measured $\mu^{ \pm}$.

LEP events : $\mathrm{e}^{+} \mathrm{e}^{-} \gamma$

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma
$$

+ signals in SMD
+ track in TEC (\rightarrow momentum and charge)
+ e.m. shower in e.m. calo
+ (almost) nothing in had calo
+ absolutely nothing in μ chambers
= identified and measured $\mathrm{e}^{ \pm}$.
+ no signal in SMD
+ no signal in TEC
+ e.m. shower in e.m. calo
+ (almost) nothing in had calo
+ absolutely nothing in μ chambers
$=$ identified and measured γ.

LEP events : $\tau^{+} \tau^{-}$

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \tau^{+} \tau^{-}
$$

$\tau^{ \pm}$id. does depend on decay:

- 1/3/5 had tracks;
- [or identified single $\ell^{ \pm}$;]
$+\mathbb{Z}$ (i.e. a $v_{\tau} / \bar{v}_{\tau}$)
(the evidence comes from the combination of the two decays in the opposite emispheres).

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{qq} \mathrm{g}$

a (anti-)quark or a gluon gives a hadronic jet:

+ many collimated tracks
+ large splashes in e.m. and had calos
+ (possibly) low momentum associated $\mathrm{e}^{ \pm} / \mu^{ \pm}$

LEP events : bБ, $\mathrm{b} \rightarrow \mathrm{e}^{-}$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{b}$ Б
a heavy flavor quark is a quark (i.e. a jet) with:

+ displaced secondary verteces (SMD)
+ high momentum leptons from quark semileptonic decays
[not all h.f. have one or both characteristics \rightarrow h.f. id. efficiency not complete (see next)]

ii. Exp. methods

1. - 4. [...]
1. Measure the luminosity
2. Secondary verteces
3. Efficiency and purity
4. Data analysis
5. - 16. [...]

[in a few slides:

$$
\begin{aligned}
& \text { LEP measures } \mathfrak{S}_{\text {int }} \text { from a process }(\ldots): \\
& \left.\mathscr{L}_{\text {int }}=\mathrm{N}_{\text {lumi }} /\left(\varepsilon_{\text {umi }} \sigma_{\text {lumi }}+\varepsilon_{\text {b-lumi }} \sigma_{\text {b-lumi }}\right)\right]
\end{aligned}
$$

- the chosen "lumi" process is $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$ (Bhabha scattering) at small θ;
- we assume that, when $\theta \rightarrow 0^{\circ}$, the Bhabha scattering is dominated by the γ^{*} exchange in the t-channel, while both (a) the γ^{*} / Z exchange in the s-channel; (b) the $Z^{(*)}$ exchange in the t-channel are negligible;
- therefore, the LEP experiments have e.m. calorimeters at small θ, to both
identify and measure $e^{ \pm}$("luminometers", ring-shaped \downarrow);
- it is essential that the "ring" reaches very small θ, to minimize \square stat (d $\sigma_{\text {Rutherford }} / d \cos \theta \propto \theta^{-4}$);
- their position and efficiency must be known (= measured) very reliably, in order to minimize systematics;
- typically at LEP, $25 \leq \theta_{\text {lumi }} \leq 60 \mathrm{mrad}$:

$$
\sigma_{\mathrm{lumi}}(\theta \rightarrow 0) \approx \frac{16 \pi \alpha_{\mathrm{em}}^{2}}{\mathrm{~s}}\left(1 / \theta_{\min }^{2}-1 / \theta_{\max }^{2}\right) ;
$$

$\Delta \mathscr{L} / \mathscr{L} \approx \Delta \sigma_{\text {lumi }} / \sigma_{\text {lumi }} \approx 2 \Delta \theta_{\min } / \theta_{\text {min }}$.

An exercise for dummies:
[notice: e.m. only, small θ only]

$$
\frac{\mathrm{d} \sigma_{\text {Bhabha }}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)}{\mathrm{d} \cos \theta}=\frac{2 \pi \alpha^{2}}{\mathrm{~s}}\left(\frac{3+\cos ^{2} \theta}{1-\cos ^{2} \theta}\right)^{2} ;
$$

$$
\text { only } 1^{\text {st }} \text { order in } \theta \rightarrow \cos \theta \approx 1-\frac{1}{2} \theta^{2} ;
$$

$$
\cos ^{2} \theta \approx 1-\theta^{2} ; \quad\left|\frac{d \cos \theta}{d \theta}\right| \approx \theta
$$

$$
\sigma_{\text {Bhabha }}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} ; \text {small } \theta\right) \equiv " \sigma " ;
$$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \theta} \approx \frac{\mathrm{~d} \sigma}{\mathrm{~d} \cos \theta} \times \theta \approx \frac{2 \pi \alpha^{2} \theta}{\mathrm{~s}}\left(\frac{3+\left[1-\theta^{2}\right]}{1-\left[1-\theta^{2}\right]}\right)^{2}=
$$

$$
=\frac{2 \pi \alpha^{2} \theta}{\mathrm{~s}}\left(\frac{4-\theta^{2}}{\theta^{2}}\right)^{2} \approx \frac{2 \pi \alpha^{2} \theta}{\mathrm{~s}}\left(\frac{16}{\theta^{4}}\right)=\frac{32 \pi \alpha^{2}}{\mathrm{~s} \theta^{3}}
$$

$[\leftarrow$ see plot].

$$
\sigma_{\text {observed }}=\int_{\theta_{\min }}^{\theta_{\max }} \frac{32 \pi \alpha^{2}}{\mathrm{~s} \theta^{3}} \mathrm{~d} \theta=\frac{16 \pi \alpha^{2}}{\mathrm{~s}}\left(\frac{1}{\theta_{\min }^{2}}-\frac{1}{\theta_{\max }^{2}}\right) .
$$

- at the end of LEP, using sophisticated silicon calos, the final results on luminosity was :

$$
\begin{array}{rlrl}
\Delta \mathscr{L}_{\text {int }} / \mathscr{L}_{\text {int }} & =[\text { see box }] & & \text { (statistical); } \\
& \oplus[0.03 \div 0.1 \%] & & \text { (syst. exp : } \Delta \theta, \\
& & \text { alignment, ...); } \\
& \oplus[0.11 \%] & & \text { (theory, higher orders } \\
& & \text { like e } \left.{ }^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma_{\text {unseen }}\right) ;
\end{array}
$$

- some of the LEP measurements, as number of v 's, asymmetries, do NOT depend on $\Delta \mathscr{L}_{\text {int }}$: because can be expressed as ratios " $\sigma_{1} / \sigma_{2}\left[=N_{1} / N_{2}\right]$ ";
- [the luminosity data are an important fraction of all LEP1 data].
fake Bhaba's from beam pipe shape

Therefore the statistical error on the luminosity is negligible, but for the hadronic cross section at $V_{s}=m_{\mathbb{Z}}$, where it is $\sim \sqrt{3 / 10}$ of the statistical error on the hadron data [but for this process the stat. error is irrelevant wrt systematics].
how to detect and identify c / b / τ 's with a
heavy quark
(e.g. b) decay

the detector

typical event: case 1

typical event: case 2
it needs a great accuracy in the "impact parameter" measurement.

Analysis method (B meson as an example, similar for other b-particles, c-mesons/baryons, $\tau^{ \pm}$] :

- [B conservation $\rightarrow 2$ B in the event $\rightarrow 2$ sec. vtxs];
- B ref. sys: $\tau\left(B^{ \pm, 0}\right) \approx 1.5 \times 10^{-12} \mathrm{~s} \rightarrow \ell^{*}=c \tau_{\mathrm{B}} \approx 500 \mu \mathrm{~m}$;
- $\beta_{B} \approx 1 \rightarrow \ell\left(=\ell_{B}\right)=e^{*} \beta_{B} \gamma_{B} \approx c \tau_{B} \gamma_{B} \approx$ few mm; $\ell_{T}(=\ell \tan \theta)$ is invariant wrt a \mathbb{L}-transform along \vec{p}_{B}
$\rightarrow \ell_{T}=e^{*}{ }_{T}=e^{*} \sin \theta^{*} \approx 100 \div 500 \mu \mathrm{~m}$
(θ^{*} is the angle B / π in the B ref. sys., NOT small);
- ℓ_{T} can be approximated by ℓ_{T}, the impact parameter
 (extrapolation of a track) \leftrightarrow (primary vtx):
$\theta \sim \mathrm{m}_{\mathrm{B}} / \mathrm{E}_{\mathrm{B}} \approx 1 / \gamma_{\mathrm{B}}=\mathrm{small} \rightarrow \sin \theta \approx \tan \theta \rightarrow \ell_{\top}^{\prime} \approx \ell_{T} ;$
- [call both ℓ_{T}^{\prime} and e_{T} "impact parameter e_{T} "];
$>$ need a detector with an accuracy $\ll 100 \mu \mathrm{~m}$ in ℓ_{T} (i.e. in the extrapolation of the line of flight of a charged particle after $20 \div 30 \mathrm{~mm}$ from the last meas;
i.e. a very precise microvertex detector may identify and reconstruct b, c, τ decays.
a real B^{0} decay in Delphi (only one B vtx shown]

efficiency and purity

- No selection method is fully "pure" and "efficient", i.e. in a selected sample of events of type "i", there are some events " j " $(\mathrm{j} \neq \mathrm{i})$, while some events " i " have been rejected;
- if $\mathrm{N}_{\mathrm{i}}{ }^{\text {sel }}$ is the number of events of the sample, define :
$>$ efficiency : $\varepsilon_{i}=N_{i}$ sel,true $/ N_{i}^{\text {true,all }}<1$ [ideally $=1$];
> purity : $\mathrm{p}_{\mathrm{i}}=\mathrm{N}_{\mathrm{i}}^{\text {sel, true }} / \mathrm{N}_{\mathrm{i}}^{\text {sel, all }}<1$ [ideally $=1$];
$>$ [contamination: $\mathrm{k}_{\mathrm{i}}=\mathrm{N}_{\mathrm{i}}$ sel,false $/ \mathrm{N}_{\mathrm{i}}^{\text {sel, all }}=1-\mathrm{p}_{\mathrm{i}}$];
- in general, ε_{i} and p_{i} are anti-correlated (see below);
- an algorithm (e.g. a cut in a kin. variable) produces $\varepsilon_{i}+p_{i}$;
- the "optimal" choice depends on the analysis and on $\mathscr{L}_{\text {int }}$.

Example [no " ${ }_{i}$ " in the plots]:

- two cases of p_{i} vs ε_{i}, when the cut varies.
- exp. A "is better" than B.
- " \star " shows a possible choice for $\left(p_{i}, \varepsilon_{i}\right)$ in A.
$\mathrm{N}_{\mathrm{i}}^{\text {sel, true }}$ and $\mathrm{N}_{\mathrm{i}}^{\text {true, all }}$ are NOT directly measurable. Few methods to determine the relation $\varepsilon / \mathrm{p}, \mathrm{e} . \mathrm{g}$. :
> Montecarlo (commonly used) :
- 3 steps: "physics" [\rightarrow 4-mom.] + detector [\rightarrow pseudo-meas.] + analysis [exactly the same as in real data];
- pros : large statistics, flexible, easy;
- cons : (some) systematics cannot be studied;
> test-beam:
- intrinsic purity + large statistics;
- pros : less systematics;
- cons : not flexible, difficult, expensive;
> "data themselves"
[e.g. μ from $Z \square \mu$ to study $b \square \quad X]$:
- "tag and probe" [$\mathrm{p} \approx 1$ even if ε small] to force purity;
- ok for systematics;
- difficult reproduction of the required case [in the example isolated μ 's 45 GeV instead of low- $\mathrm{p}_{\mathrm{T}} \mu$ in a jet].
\therefore Combination of the above, iterations, new ideas (i.e. you ())...

efficiency and purity: example

An example of the computation of ε vs p (secondary vtxs with impact parameter):

- use a mc (not shown) to define the distribution of impact parameter b in events with sec. vtxs;
$>$ a cut on $\mathrm{b} \rightarrow \varepsilon=\varepsilon\left(\mathrm{b}_{\mathrm{cut}}\right)$;
- use a process without secondaries ($Z \rightarrow \mu^{+} \mu^{-}$) to define the distribution of the variable b;
$>$ a cut on $\mathrm{b} \rightarrow \mathrm{p}=\mathrm{p}\left(\mathrm{b}_{\text {cut }}\right)$;
- $\varepsilon=\varepsilon\left(\mathrm{b}_{\text {cut }}\right) \oplus \mathrm{p}=\mathrm{p}\left(\mathrm{b}_{\text {cut }}\right)$ are parametric equations;
- repeat with more info \rightarrow "3D" \rightarrow better curve.

- The background ["bckgd"] may be conceptually divided into two categories :
> irreducible bckgd(*): other processes with the same final state [e.g. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{ZH}$, $\mathrm{Z} \square{ }^{+} \mu^{-}, \mathrm{H} \rightarrow \mathrm{b} \overline{\text { (signal) }} \leftrightarrow \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z}_{1} \mathrm{Z}_{2}$, $\mathrm{Z}_{1} \square^{+} \mu^{-}, \mathrm{Z}_{2} \rightarrow \mathrm{~b} \overline{\mathrm{~b}}$ (bckgd)];
> reducible bckgd :
- badly-measured events,
- detector mistakes,
- physics processes which appear identical in the detector, because part of the event is undetected, e.g.

$$
\left\{\begin{array}{l}
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \mathrm{Z} \rightarrow \mathrm{~V}^{-} \\
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)_{\text {beam-pipe }} ;
\end{array}\right.
$$

- the meaning of the distinction is that r.b. can be disposed with a better detector, or a more accurate selection (maybe with a loss in ε_{s}), while i.b. is intrinsic, and can
only be subtracted statistically, by comparing [$\mathrm{N}^{\exp } \leftrightarrow$ (expected bckgd)] and [$\mathrm{N}^{\exp } \leftrightarrow$ (expected signal+bckgd)] ;
(*) Similar to the "resonances" of the strong interactions, where a mass distribution exhibits peaks, interpreted as short-lived particles. However, it is impossible to assign single events to the resonating peak or to the non-resonant bckgd.

data analysis: general scheme

very simplified - just for the lectures

- At LEP, as in any other experiment, a number of events $\mathrm{Nexp}^{\text {ex }}$ has to be translated to a cross section σ_{s} ("signal");
- [also $\mathbf{d N}{ }^{\exp } / \mathrm{d} \Omega \rightarrow \mathrm{d} \sigma_{\mathrm{s}} / \mathrm{d} \Omega$; $]$
- straightforward: $\sigma_{\mathrm{s}}=\mathbf{N}^{\exp } / \mathscr{L}_{\text {int }} ;$
- but (at least) two problems :
> the selection algorithm loses trueand gains spurious-events:

$$
N^{\exp }=N_{\text {true }}-N_{\text {lost }}+N_{\text {sp. }} ;
$$

> the determination of $\mathscr{L}_{\text {int }}$ the luminosity.

- the experiment must measure/compute:
$>\mathrm{N}^{\exp }$: number of selected events;
$>\sigma_{b} \quad$: cross-section of bckgd;
$>\varepsilon_{\mathrm{s}, \mathrm{b}} \quad$: efficiency (signal and bckgd);
$>\Delta \mathrm{N}^{\exp }=\sqrt{ } \mathrm{N}^{\exp }$ (statistical error);
$>\Delta \varepsilon_{\mathrm{s}, \mathrm{b}}=$ "systematics";
$>\mathfrak{L}_{\text {int }}=$ int. luminosity $\left(+\Delta \mathscr{L}_{\text {int }}\right)$.
- then (next slides) :

$$
\begin{aligned}
>N_{\exp } & =\mathscr{L}_{\text {int }}\left(\varepsilon_{s} \sigma_{s}+\varepsilon_{b} \sigma_{b}\right) \rightarrow \\
\sigma_{s} & =\left(N^{\exp } / \mathscr{L}_{\text {int }}-\varepsilon_{b} \sigma_{b}\right) / \varepsilon_{s} ; \\
d \sigma_{s} / d \ldots & =[\ldots] ;
\end{aligned}
$$

- the luminosity $\mathscr{L}_{\text {int }}$ is equal for signal and bckgd and must be measured;
- LEP measures $\mathfrak{L}_{\text {int }}$ from a process ("lumi process"), with a calculable cross section, triggered and acquired at the same time as other data (\rightarrow so DAQ inefficiencies cancel out) :

$$
\mathscr{L}_{\text {int }}=N_{\text {lumi }} /\left(\varepsilon_{\text {lumi }} \sigma_{\text {lumi }}+\varepsilon_{\text {b-lumi }} \sigma_{\text {b-lumi }}\right)
$$

- therefore three new errors :
(statistics) $\quad \Delta \mathrm{N}_{\text {lumi }}=\sqrt{ } \mathrm{N}_{\text {lumi, }}$,
(sistematics) $\quad \Delta \varepsilon_{\text {lumi,b-lumi, }} \square{ }_{\text {b-lumi, }}$ ("theory") $\Delta \sigma_{\text {lumi }}$ theory.

NB. In an ideal experiment,

$N_{\text {lost }}=N_{\text {sp. }}=0 \rightarrow \varepsilon_{s}=1, \varepsilon_{b}=0$.

An example: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$:

- studies for efficiency and purity with MC simulation [see later].
- signal: true events $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$; the yield depends on $m_{z}, \Gamma_{z}, \Gamma_{\mu}$ (unknown);
- bckgd: events from other sources, with similar final state (because really the
same or similar in the detector), e.g. :
$>\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \tau^{+} \tau^{-} \rightarrow$
$\rightarrow\left(\mu^{+} \bar{v}_{\tau} v_{\mu}\right)\left(\mu^{-} \nu_{\tau} \bar{v}_{\mu}\right)$
$\rightarrow\left(\mu^{+} \mu^{-}\right)(+$not-visible);
$>\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} \mu^{-} \rightarrow$
$\rightarrow\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)^{\text {beam chamber }}\left(\mu^{+} \mu^{-}\right)^{\text {detected; }}$
$\rightarrow\left(\mu^{+} \mu^{-}\right)(+$not-detected);

- In 1989, when LEP started, the SM was completely formulated and computed;
- the only missing pieces (at that time) were the top quark and the Higgs boson (both now discovered);
- the values of $m_{\text {top }}$ and $m_{\text {Higgs }}$ are such that they (in lowest order) have no role at LEP V_{s} [but for H we did NOT know];
- twelve years of LEP physics gave NO major surprise, but general agreement with SM predictions;
- tons of measurements, a superb unprecedented work of precision physics : the number of light v 's and the predictions of $m_{\text {top }}$ and $m_{\text {Higgs }}$ via higher orders are [imho] the LEP masterpieces.

data analysis: comparison theory \leftrightarrow data

Therefore, a measurement means:

- select a pure (as much as possible) sample of events N_{i};
- measure the statistical significance of the experiment ($\rightarrow \mathfrak{L}_{\text {int }}$);
- measure/compute the associated efficiency and purity ($\rightarrow \varepsilon, \mathrm{p}$);
- compute $\sigma_{\mathrm{i}} \equiv \sigma_{\mathrm{i}}{ }^{\text {exp }}=$ [previous slide] [or $\left.d \sigma_{\mathrm{i}}{ }^{\mathrm{exp}} / d k=(\ldots)\right]$;
\rightarrow finally theory \leftrightarrow experiment:
- compute $\sigma_{i}^{\text {theo }}$ from theory;
- compare $\sigma_{i}^{\text {theo }} \leftrightarrow \sigma_{i}{ }^{\text {exp }}$.
["limits" require a different method, see § limits].

SM predictions :

- $\sigma(f \bar{f}), \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)$, d $\sigma / d \cos \theta$... ("Born");
- radiative corrections;
- approximations;

experiment(s) (LEP, L3 as an example) :
- cross sections $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \mu^{+} \mu^{-}, \tau^{+} \tau^{-}\right.$, hadrons, $\left.\square^{-}\right)$;
- differential cross sections $d \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\right.$...) / $\mathrm{d} \cos \theta$;
- "lineshape" (i.e. $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\right.$...) as a function of $\sqrt{ }$ s [also $d \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \ldots\right) / \mathrm{d} \cos \theta$ vs $\sqrt{ } \mathrm{s}$].

$$
\text { data analysis and interpretations : global fit (4 exp. data) } \leftrightarrow(\mathrm{SM}) \text { : }
$$

- Z mass, full and partial width $\left(m_{z}, \Gamma_{Z}, \Gamma_{f}\right)$;
- number of v 's from $\Gamma_{\text {invisible }}$ and from $\gamma_{\text {single }}$;
- asymmetries $\mathrm{A}_{\text {forward-backward }}$ for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \mu^{+} \mu^{-}, \tau^{+} \tau^{-}$, hadrons;
- global fit data \leftrightarrow SM (\rightarrow consistency);
- global fit data \leftrightarrow SM (\rightarrow predictions of $\mathrm{m}_{\text {top }}$, $\mathrm{m}_{\text {Higgs }}$ from radiative corrections).

iii. Physics 1: Z \& W

1. -8 . [...]
2. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \mathrm{ff}$ 10. $d \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow f \bar{f}\right) / d \Omega$
3. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$
4. Radiative corrections
5. LEP1 SM fit
6. Physics at LEP2
7. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}$
8. $\underline{W}^{ \pm}$properties
9. Global LEP(1+2) fit
10. [...]

- Many possibility from e+e- initial state;
- similar couplings wrt already considered processes [PP §3, §4, §6, §7];
- at low energy, QED only (exchange of γ^{*} in the s-channel);
- at $\sqrt{s} \approx \mathrm{~m}_{\mathrm{z}}$:
$>\sigma_{\text {res }}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \overline{\mathrm{f}}\right) \propto \Gamma_{\mathrm{f}} /\left[\left(\mathrm{s}-\mathrm{m}_{\mathrm{z}}{ }^{2}\right)^{2}+\mathrm{m}_{\mathrm{z}}{ }^{2} \Gamma_{\mathrm{z}}^{2}\right] ;$
> for each fermion pair, two (four for $\mathrm{e}^{+} \mathrm{e}^{-}$) diagrams + interferences);
> at higher energy, new phenomena ($\mathrm{W}^{ \pm}$, exchange, IVB pairs in the final state, ...).

In the SM, at lowest order, for $f \neq e^{ \pm}, 2 m_{f} \ll m_{z}$:

- $\sigma_{\text {Born }}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow f \overline{\mathrm{f}}\right)=\sigma_{\mathrm{zs}}+\sigma_{\gamma s}+J_{f}$;
-

$\sigma_{z s}=\frac{s \Gamma_{z}^{2}}{\left(s-m_{z}^{2}\right)^{2}+m_{z}^{2} \Gamma_{z}^{2}} \times \frac{12 \pi \Gamma_{e} \Gamma_{f}}{m_{z}^{2} \Gamma_{z}^{2}} ;$

- $\sigma_{\gamma s}=\frac{4 \pi \alpha^{2}(s)}{3 s} c_{f} Q_{f}^{2} ;\left[c_{f}=1\right.$ (leptons), 3 (quark) $] ;$
$J_{f}=-\frac{\left(s-m_{z}^{2}\right) m_{z}^{2}}{\left(s-m_{z}^{2}\right)^{2}+m_{Z}^{2} \Gamma_{z}^{2}} \frac{2 \sqrt{2} \alpha(s)}{3} c_{f} Q_{f} G_{F} g_{v}^{e} g_{v}^{f} ;$
- $\Gamma_{z}=\Gamma_{\text {tot }}=\sum_{\mathrm{f}} \Gamma(\mathrm{Z} \rightarrow \mathrm{f} \overline{\mathrm{f}}) ;$
- $\Gamma_{f} \equiv \Gamma(Z \rightarrow f \bar{f})=\frac{G_{f} m_{2}^{3} c_{f}}{6 \sqrt{2} \pi}\left[\mathrm{~g}_{v}^{f 2}+\mathrm{g}_{\mathrm{A}}^{\mathrm{f} 2}\right]$;
- for $\sqrt{\mathrm{s}} \approx \mathrm{m}_{\mathrm{z}} \rightarrow$ interference and $\gamma *$ negligible;
- $\sigma_{\text {Born }}\left(e^{+} e^{-} \rightarrow f \bar{f}, \sqrt{s}=m_{z}\right)=\frac{12 \pi \Gamma_{e} \Gamma_{f}}{m_{z}^{2} \Gamma_{z}^{2}}$.
- the partial widths Γ_{f} (e.g. Γ_{μ}) are also easily computed in lowest order :

$$
\Gamma_{f}=\frac{\mathrm{G}_{\mathrm{f}} \mathrm{~m}_{\mathrm{z}}^{3} \mathrm{c}_{\mathrm{f}}}{6 \sqrt{2} \pi}\left[\mathrm{~g}_{\mathrm{v}}^{\mathrm{f}}+\mathrm{g}_{\mathrm{A}}^{\mathrm{f} 2}\right] \rightarrow\left(\mathrm{f}=\mu^{ \pm}\right) \rightarrow \Gamma_{\mu} \approx \frac{1}{4} \frac{\mathrm{G}_{\mathrm{F}} \mathrm{~m}_{\mathrm{z}}^{3}}{6 \sqrt{2} \pi} \approx 83 \mathrm{MeV} ;
$$

- for the other Γ 's it is found [lowest order values, NOT "the best"] :

f	Q_{f}	$\mathrm{g}_{\mathrm{A}}^{\mathrm{f}}$	$\mathrm{g}_{\mathrm{V}}^{\mathrm{f}}$	$\Gamma_{\mathrm{f}}(\mathrm{MeV})$	$\Gamma_{\mathrm{f}} / \Gamma_{\mu}$	$\mathrm{R}_{\mathrm{f}}(\%)$
$v_{\mathrm{e}} \nu_{\mu} \nu_{\tau}$	0	$+1 / 2$	$+1 / 2$	166	1.99	6.8
$\mathrm{e}^{-} \mu^{-} \tau^{-}$	-1	$-1 / 2$	-.038	83	$[1]$	3.4
u c $[\mathrm{t}]$	$2 / 3$	$+1 / 2$	+.192	286	3.42	11.8
d s b	$-1 / 3$	$-1 / 2$	-.346	368	4.41	15.2

In Born approx. [B = "Born"] :
$>\Gamma_{Z}^{B}=2423 \mathrm{MeV}, \Gamma_{\text {hadr. }}^{B}=1675 \mathrm{MeV}, \Gamma_{\text {invis. }}^{B}=\Gamma_{v}^{B}=498 \mathrm{MeV}$;
$>R_{\text {hadr. }}^{B}=69.1 \%, R_{\text {lept } \pm}^{B}=10.2 \%, R_{\text {invis. }}^{B}=R_{v^{\prime} s}^{B}=20.5 \%$,
$>R_{\text {hadr. }}^{\mathrm{B}} / \mathrm{R}_{\text {vis. }}^{\mathrm{B}}=87.0 \%$.
$>\Gamma_{\mathrm{Z}} \approx 2.4 \mathrm{GeV}, \quad \Gamma_{v} \approx 0.5 \mathrm{GeV}$,
remember!

$>v: \ell^{ \pm}: u: d \approx 2: 1: 3.4: 4.4$, hadr $: \ell^{ \pm}: v \approx 70: 10: 20$.
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{Z} \rightarrow f \bar{f}$: predictions

Z / Z and γ^{*} / γ^{*} are +ve by definition, $\left|\gamma^{*} / Z\right|$ is plotted ($<0 @ V_{s}<m_{z},>0 @ V_{s}>m_{z}$).
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \mathrm{ff}$: home-made predictions

m_{Z}	$=91.1876 \mathrm{GeV}$
Γ_{Z}	$=2.4952 \mathrm{GeV}$
Γ_{e}	$=0.083984 \mathrm{GeV}$
Γ_{μ}	$=0.083984 \mathrm{GeV}$
$1 / \alpha_{\mathrm{em}}$	$=128.877 \quad$ + previous
q_{μ}	$=-1$
c_{μ}	$=1$
$\mathrm{~g}_{\mathrm{v}}^{\mathrm{e}}$	$=-0.03783$
$\mathrm{~g}_{\mathrm{v}}^{\mu}$	$=-0.03783$
G_{F}	$=1.1664 \times 10^{-5} \mathrm{GeV}^{-2}$
$(\hbar \mathrm{c})^{2}$	$=3.8938 \times 10^{5} \mathrm{GeV}^{2} \mathrm{nb}$

just $R^{\text {® }}$

Example : $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons (i.e. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$) in L3 1994 (an old paper, chosen because well written). Selection: $\quad \mathrm{E}_{\mathrm{VIS}}=\sum_{\text {seen }}\left|\vec{p}_{\mathrm{j}}\right| ;$

- $0.5<\mathrm{E}_{\text {vis }} / \mathrm{V}_{\mathrm{s}}<2.0$;
- $\left|E_{\square}\right| / E_{\text {vis }}<0.6$; $\overrightarrow{\mathrm{P}}=\sum_{\text {seen }} \overrightarrow{\mathrm{p}}_{\mathrm{j}} ;$
- $\mathrm{E}_{\perp} / \mathrm{E}_{\mathrm{vis}}<0.6$;

$$
\left|E_{\|}\right|=\left|P_{Z}\right| ; \quad E_{\perp}=P_{T} .
$$

- $\mathrm{N}_{\text {clusters }}>13$ (barrel), > 17 (endcap) [next]

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow f \bar{f}$: hadrons (2)

Example : $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons (i.e. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$) in L3 1994 - pag. 2

[$\mathrm{N}_{\text {clusters }}>13$ (barrel), >17 (endcap)]
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \mathrm{ff}: \mu^{+} \mu^{-}$

Problem. Two variables (x, y) are normally (=Gauss) distributed with mean $\left(m_{x}, m_{y}\right)$ and standard deviation $\sigma_{x}=\sigma_{y}=\sigma$. Find the distribution of the distance from the center

$$
r=\sqrt{\left(x-m_{x}\right)^{2}+\left(y-m_{y}\right)^{2}} .
$$

Solution:

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
x-m_{x}=r \cos \theta \\
y-m_{y}=r \sin \theta
\end{array} ; \quad f_{\text {Gauss }}(t \mid \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{t^{2}}{2 \sigma^{2}}\right] ; \quad[t=x, y]\right. \\
f(x, y)=f(x \mid \sigma) \times f(y \mid \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp \left[-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right]
\end{array}\right.
$$

$$
J\left(\frac{x, y}{r, \theta}\right)=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\
\frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right|=r
$$

m_{x} and m_{y} are translations wrt centre; they do NOT influence the result.
$f(r, \theta)=f(x, y) \times\left|J\left(\frac{x, y}{r, \theta}\right)\right|=\frac{r}{2 \pi \sigma^{2}} \exp \left[-\frac{r^{2}}{2 \sigma^{2}}\right] ; \quad f(r)=\int_{0}^{2 \pi} d \theta \quad f(r, \theta)=2 \pi f(r, \theta)=\frac{r}{\sigma^{2}} \exp \left[-\frac{r^{2}}{2 \sigma^{2}}\right]$.

next question:
the case $\sigma_{x} \neq \sigma_{y}$
[easy, needs only one smart trick]
$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathrm{Z} \rightarrow f \bar{f}$: lineshape

Differential cross-section in lowest (Born) order:

$$
\begin{aligned}
& \chi=\frac{G_{F}}{2 \sqrt{2} \pi \alpha(s)} \times \frac{\mathrm{sm}_{z}^{2}}{\sqrt{\left(m_{z}^{2}-s\right)^{2}+m_{Z}^{2} \Gamma_{Z}^{2}}} ; \quad \tan \delta_{R}=\frac{m_{Z} \Gamma_{Z}}{m_{Z}^{2}-s} \quad\left[\rightarrow \cos \delta_{R}\left(\sqrt{s}=m_{z}\right)=0\right] ; \\
& A_{f}^{\mathrm{FB}}(\sqrt{\mathrm{~s}}) \equiv \frac{\sigma(\cos \theta>0, \sqrt{s})-\sigma(\cos \theta<0, \sqrt{s})}{\sigma(\cos \theta>0, \sqrt{s})+\sigma(\cos \theta<0,)} \text {; } \\
& A_{f}^{F B}\left(\sqrt{s}=m_{z}, Z_{s-\text { channel }} \text { only }\right)= \\
& =3 \frac{g_{V}^{e} g_{A}^{e}}{\left(g_{V}^{e}\right)^{2}+\left(g_{A}^{e}\right)^{2}} \times \frac{g_{V}^{f} g_{A}^{f}}{\left(g_{V}^{f}\right)^{2}+\left(g_{A}^{f}\right)^{2}} ; \\
& A_{f}^{F B} \text { is the "forward-backward } \\
& \text { asymmetry" for } \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow f \bar{f} \text {. }
\end{aligned}
$$

$$
A_{f}^{\mathrm{FB}}(\sqrt{s}) \equiv \frac{\sigma(\cos \theta>0, \sqrt{s})-\sigma(\cos \theta<0, \sqrt{s})}{\sigma(\cos \theta>0, \sqrt{s})+\sigma(\cos \theta<0, \sqrt{s})} \xrightarrow{\sqrt{s} \rightarrow m_{z}} \longrightarrow 3 \frac{\mathrm{~g}_{\mathrm{v}}^{e} \mathrm{~g}_{\mathrm{A}}^{\mathrm{e}}}{\left(\mathrm{~g}_{\mathrm{V}}^{\mathrm{e}}\right)^{2}+\left(\mathrm{g}_{A}^{e}\right)^{2}} \times \frac{\mathrm{g}_{v}^{f} \mathrm{~g}_{\mathrm{A}}^{f}}{\left(\mathrm{~g}_{\mathrm{V}}^{f}\right)^{2}+\left(\mathrm{g}_{\mathrm{A}}^{f}\right)^{2}} .
$$

$$
\begin{aligned}
& \text { mediators : } \gamma, \mathrm{Z}\left[=Z_{A}+Z_{V}\right] ; \\
& \text { P-cons : } \square, \gamma Z_{V}, Z Z\left[=Z_{A}^{2}+Z_{V}^{2}\right] ; \\
& \text { P-viol. : } \gamma Z_{A}, Z_{A} Z_{V} \text {. }
\end{aligned}
$$

- standard SM computation for $Z_{s} \oplus \gamma_{s}$ only (average on initial and sum on final polarization), then sum on φ :
- notice : the term $\propto(\cos \theta)$ is antisymmetric; it does NOT contribute to $\sigma_{\text {tot }}$ ($\int \cos \theta d \cos \theta=0$), but only to the (\mathbb{P} violating) forward-backward asymmetry;
- the \mathbb{P}-violation clearly comes from the interference between the vector $\left(\gamma+Z_{v}\right)$ and axial $\left(Z_{A}\right)$ terms.
- at the pole $\left(\sqrt{s}^{s}=m_{z}\right)$, only few terms :
$>\cos \delta_{\mathrm{R}}=0 ;$
$>$ the asymmetry, i.e. the term $\propto \cos \theta$, is $\propto g_{v}^{e}$ (very small) for all fermions;
$>$ for the $\mu^{+} \mu^{-}$case [easily measurable], it is even smaller ($\propto g_{v}^{e} g_{v}^{\mu}$).

$d \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow f f \bar{f}\right) / \mathrm{d} \Omega$: problem

Problem. Compute $d \sigma / d \cos \theta$ and $A^{F B}$ in lowest order from the formulæ. This is a case where the "tree approx." fails. Explain where and why.

If no success, look to Grünewald, op. cit., pag. 230-232 [simplified explanation: higher orders and selection criteria are important, expecially for peak +2 (\rightarrow init. state brem). Necessary also for naïve understanding].

- Bhabha scattering is more difficult, due to the presence of another Feynman diagram: the γ^{*} / Z exchange in the t-channel;
- 4 Feynman diagrams $\rightarrow 10$ terms :
> Z s-channel (Z_{s});
$>\gamma^{*}$ s-channel $\left(\gamma_{s}\right)$;
$>\mathrm{Z}$ t-channel $\left(\mathrm{Z}_{\mathrm{t}}\right)$;
$>\gamma^{*}$ t-channel $\left(\gamma_{\mathrm{t}}\right)$;
> 6 interferences;
- qualitatively :
$>\mathbf{Z}_{\mathbf{t}}$ negligible;
$>@ V_{\mathrm{s}} \approx \mathrm{m}_{\mathrm{z}}$ and $\theta \gg 0^{\circ}, \mathbf{Z}_{\mathrm{s}}$ dominates.
$>@ \theta \approx 0^{\circ}, \boldsymbol{\gamma}_{\mathrm{t}}$ dominates for all \sqrt{s};
$>@ V_{\mathrm{s}} \ll \mathrm{m}_{\mathrm{z}}$ and $\theta \gg 0^{\circ}, \boldsymbol{\gamma}_{\mathrm{s}}$ and $\boldsymbol{\gamma}_{\mathrm{t}}$ are both important, while $\mathbf{Z}_{\mathbf{s}}$ is negligible.

- s, t, interference s / t vs $\sqrt{ } \mathrm{s}$, with a θ cut ($|\cos \theta|<0.72$, i.e. $44^{\circ}<\theta<136^{\circ}$);
- data @ $|\cos \theta|>0.72$ available, but not used here [used for lumi];

- notice : the cut on $\cos \theta$ is NOT instrumental, but used OFFLINE to enhance Z_{s} over γ_{t}, to increase signal/ bckgd and decrease stat error.
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$: results

+ many others ...

what?

> higher orders (both SM and bSM);
> dependent on full SM, QCD included;
> conventionally, classified into QED, weak, QCD, bSM (if any);
> ... or initial and final state;
> also particles not kinematically allowed at lower $\sqrt{ }$ s (e.g. top, Higgs);

computable?

> in principle yes, if all parameters known;
> in practice, successive approximations ("order n");

necessary?

$>$ yes, because required by the measurement accuracy ($\sim 10^{-3}$);

useful?

> yes, because they give an indirect access to higher energy, by making lower energy observables (like m_{z}) dependent on higher energy parameters (like $m_{\text {top }}$ or m_{H});
> i.e., they "raise" the accessible $\sqrt{ }$ s;
$>+$ more accurate and powerful test of the theory;
> [much work, theses, papers, ...];
how to use the bSM part (e.g. SUSY), both tree-level and higher orders ?
> first, do not include it, and look for discrepancies;
> if disagreement (ε üわれ $\kappa \alpha$!!!), include physics bSM and look for agreement;
$>$ if not \rightarrow put a limit on physics bSM.

One of the simplest r.c. is the QED brem of a (real) γ from one of the initial state $\mathrm{e}^{ \pm}$: ISR (Initial State Rad.);

- the kinematics is :

$$
\begin{aligned}
& \mathrm{e}^{+} \mathrm{e}^{-}(\sqrt{\mathrm{s}}, \quad 0, \quad 0 \\
& \gamma\left(\quad \mathrm{E}_{\gamma}, \quad \mathrm{E}_{\gamma} \cos \alpha_{\gamma}, \mathrm{E}_{\gamma} \sin \alpha_{\gamma}\right) ; \\
& \mathrm{f} \bar{f}\left(\sqrt{\mathrm{~s}}-\mathrm{E}_{\gamma},-\mathrm{E}_{\gamma} \cos \alpha_{\gamma},-\mathrm{E}_{\gamma} \sin \alpha_{\gamma}\right) ; \\
& \mathrm{s}^{\prime} \equiv \mathrm{m}_{\mathrm{ff}}^{2}=\left(\sqrt{\mathrm{s}}-\mathrm{E}_{\gamma}\right)^{2}-\mathrm{E}_{\gamma}^{2}=\mathrm{s}\left(1-2 \mathrm{E}_{\gamma} / \sqrt{\mathrm{s}}\right) ; \\
& \mathrm{z} \equiv \mathrm{~s}^{\prime} / \mathrm{s}=1-2 \mathrm{E}_{\gamma} / \sqrt{\mathrm{s}} ; \quad\left[\mathrm{s}^{\prime}<\mathrm{s} \rightarrow \mathrm{z}<1\right]
\end{aligned}
$$

\rightarrow computing E_{γ} does NOT require α :

$$
E_{\gamma}=\frac{\sqrt{s}}{2} \frac{s-s^{\prime}}{s}=\frac{s-s^{\prime}}{2 \sqrt{s}}=\frac{s-m_{f \overline{f f}}^{2}}{2 \sqrt{s}}
$$

- LEP $1\left(V_{s}<m_{z}+\right.$ few GeV$)$:
$>{ }^{\prime} \mathrm{s}^{\prime} \approx \mathrm{m}_{z^{\prime}}\left(\right.$ but $\left.\Gamma_{z}\right) \rightarrow$ large $\Delta \mathrm{E}_{\gamma} / \mathrm{E}_{\gamma} ;$
$>\alpha_{\gamma}$ small (brem. dynamics), γ 's mostly in the beam pipe;
\Rightarrow condition: $2 \mathrm{~m}_{\mathrm{f}} \leq \sqrt{ } \mathrm{s}^{\prime} \leq \sqrt{ } \mathrm{s}$;
- LEP $2\left(\sqrt{ } s>m_{z}\right)$:
$>V^{\prime}{ }^{\prime} \approx \mathrm{m}_{\mathrm{z}}$ (because of resonance), known as "return to the $\mathbf{Z}^{\prime \prime}$;
$>$ photon is really monochromatic ($\Gamma_{z} \ll \mathrm{E}_{\gamma}$) and very energetic;
$>\alpha_{\gamma}$ small (brem. dynamics), γ 's mostly in the beam pipe, Z's with high longitudinal momentum, event very unbalanced;
> events easily removed in the analysis, but it decreases the effective event yield.

radiative corrections: ISR results

Theoretical treatment :
> assume factorization (ISR) $\leftrightarrow(Z$ formation);
> the Z formation at $\sqrt{ } s^{\prime}$ is equivalent to the standard process at $\sqrt{ } \mathrm{s}$, without ISR :

$$
\begin{aligned}
& \sigma_{I S R}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow f \bar{f} \gamma ; \sqrt{s}\right)= \\
& \quad=\int_{4 m_{f}^{2} / \mathrm{s}}^{1} \mathrm{dz}\binom{\mathrm{R}\left(\mathrm{z}, \mathrm{~s}, \alpha_{\gamma}\right) \times}{\times \sigma_{\text {Born }}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow f \bar{f} ; \sqrt{\mathrm{zs}}\right)} ;
\end{aligned}
$$

$>\mathrm{R}\left(\mathrm{z}, \mathrm{s}, \alpha_{\gamma}\right)=$ radiator, i.e. probability (function of $\sqrt{ } s, z, \alpha_{\gamma}$) for γ brem;
$>$ R calculable in QED at a given order.
At LEP 2 , cut on $\mathrm{z}\left(\approx \mathrm{E}_{\mathrm{vis}} / \sqrt{ } \mathrm{s}\right)$, tipically $\left.\mathrm{z}<0.85\right)$.

radiative corrections: results for m_{2}

The value of m_{z} is measured at $\pm 2 \mathrm{MeV}$, so a very precise computation is required; these values are for the discussion, the used ones contains many more effects:

- $\sigma_{0}^{f} \quad \equiv \sigma_{\text {Born }}\left(e^{+} e^{-} \rightarrow f f \bar{f} ; V_{s}=m_{z}\right)=$

$$
=12 \square{ }_{\mathrm{e}} \Gamma_{\mathrm{f}} /\left(\mathrm{m}_{\mathrm{z}}^{2} \Gamma_{\mathrm{z}}^{2}\right) ;
$$

- $\left.\sqrt{s}\right|_{\text {Born }} ^{\max } \approx m_{z}\left(1+\gamma^{2}\right)^{1 / 4} \approx m_{z}\left(1+1 / 4 \gamma^{2}\right) \approx$ $\approx \mathrm{m}_{\mathrm{z}}+17 \mathrm{MeV}$; [slightly larger]
- $\left.\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow f \bar{f}\right)\right|_{\mathrm{Born}} ^{\max } \approx \sigma_{0}^{f}\left(1+\frac{1}{4} \gamma^{2}\right) \approx$ $\approx \sigma_{0}^{f}(1+.00019)$ [slightly larger] ;
- $\left.\sqrt{\mathrm{s}}\right|_{\text {ISR }} ^{\max } \approx \mathrm{m}_{\mathrm{z}}\left(1-1 / 4 \gamma^{2}\right)+\Gamma_{z} / 8$

$$
\approx \mathrm{m}_{\mathrm{z}}+89 \mathrm{MeV} ;
$$ [slightly larger];

- $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{f}\right)\left|\left.\right|_{\text {ISR }} ^{\max } \approx \sigma_{0}^{f} \gamma^{\beta}\left(1+\delta_{\text {sup }}\right) \approx\right.$ $\approx 0.75 \sigma_{0}{ }^{f}$
- similar method for Γ_{z} :
$>\Gamma_{\mathrm{z}}$ s-dependent: $\Gamma_{\mathrm{z}} \rightarrow \mathrm{s} \Gamma_{\mathrm{z}} / \mathrm{m}_{\mathrm{z}}{ }^{2} ;$
> (references);
$\gamma \equiv \Gamma_{z} / m_{z} \approx 0.027 ;$
$\beta \equiv 2 \alpha\left[2 \ln \left(m_{z} / m_{e}\right)-1\right] / \pi \approx 0.108$;
$\delta_{\text {sup }} \equiv$ [soft- and virtual- γ 's, calculable].

notice also that the lineshape is dependent on the type of the fermion (e.g., for $\mathrm{e}^{+} \mathrm{e}^{-} \square \mathrm{v}^{-}$no γ in final state).

radiative corrections: parameter Δr

[an example : radiative corrections for $W^{ \pm}$ and Z mass]

- in the $\mathrm{SM}, \mathrm{m}_{\mathrm{w}}$ and m_{z} are related by:

$$
\mathrm{m}_{\mathrm{w}}^{2} \sin ^{2} \theta_{\mathrm{w}}=\frac{\pi \alpha}{\sqrt{2} \mathrm{G}_{\mathrm{F}}} ; \sin ^{2} \theta_{\mathrm{w}}=1-\frac{\mathrm{m}_{\mathrm{w}}^{2}}{\mathrm{~m}_{\mathrm{z}}^{2}} ;
$$

- radiative corrections modify the formulæ;
- define the parameters Δr (radiative correction parameter), \square (QED rad. corr.), Δr_{w} (weak rad. corr.) :
$m_{w}^{2} \sin ^{2} \theta_{w} \equiv \frac{\pi \alpha}{\sqrt{2} G_{F}} \times \frac{1}{1-\Delta r} \rightarrow$

$$
\Delta r=1-\frac{\pi \alpha}{\sqrt{2} G_{F}} \times \frac{m_{z}^{2}}{m_{w}^{2}\left(m_{z}^{2}-m_{w}^{2}\right)}
$$

$$
\frac{1}{1-\Delta r} \equiv \frac{1}{1-\Delta \alpha} \times \frac{1}{1-\Delta r_{w}}
$$

- \square is reabsorbed in $\alpha_{(s)}$, running coupling constant [the ${ }_{(s)}$ means "function of $\sqrt{ }$ "] :

$$
{ }_{(s)}=\left(\alpha_{(s)}-\alpha_{(s=0)}\right) / \alpha_{(s)} ;
$$

- from QED :
$\square_{\left(m_{z}^{2}\right)} \approx 0.07 \rightarrow \alpha_{\left(m_{z}^{2}\right)} \approx[128.89 \pm 0.09]^{-1}$; [error from $\int \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\right.$ hadr. $) @ V_{\mathrm{s}} \ll \mathrm{m}_{\mathrm{z}}$]
- the equation with $m_{w}+m_{z}$ becomes :

$$
m_{w}^{2}\left(1-\frac{m_{w}^{2}}{m_{z}^{2}}\right)=\frac{\pi \alpha_{\left(s-m_{z}^{2}\right)}}{\sqrt{2} G_{F}} \times \frac{1}{1-\Delta r_{w}} ;
$$

- [to select top and Higgs terms] expand Δr_{w} into parts, dependent on $m_{t}\left(\propto m_{t}^{2}\right)$ and $m_{H}\left(\propto \ln m_{H}\right)$, and the rest $\left(\Delta \bar{r}_{w}\right)$:
$\Delta r_{w}=\Delta \bar{r}_{w} \bar{m}_{m_{t}=\hat{m}}^{\text {calc. }}+\left.\frac{\partial \Delta r_{w}}{\partial m_{t}}\right|_{m_{t}=\hat{m}} \delta m_{t}+\frac{\partial \Delta r_{w}}{\partial m_{H}} \delta m_{H} ;$

$$
[\hat{m}=175 \mathrm{GeV}]
$$

- assume we are in the "post-top, preHiggs" era [i.e. 1995-2011] :
- numerically, the dependence is :
$\left.\Delta r_{w} \approx \Delta \bar{r}_{w}\right|_{\text {calc. }}+$

$$
\begin{aligned}
& -0.0019\left(\frac{\mathrm{~m}_{\mathrm{t}}}{175 \mathrm{GeV}}\right)\left(\frac{\delta \mathrm{m}_{\mathrm{t}}}{5 \mathrm{GeV}}\right)+ \\
& +0.0050\left(\frac{\delta \mathrm{~m}_{H}}{\mathrm{~m}_{H}}\right)
\end{aligned}
$$

[the two terms have opposite sign and very different size]

- the meas. of $m_{w}, m_{z}, m_{t}+$ the calculation of higher orders of SM allow for a "measurement" of m_{H} á la Hollik;
- in reality, many observables \rightarrow global fit.
single channel
[e.g. ete- \rightarrow hadrons
$@ \sqrt{s}=95 \mathrm{GeV}$]

The LEP game

- in the SM , the observables [e.g. σ 's, $d \sigma / d \cos \theta$'s, asymmetries, ...] are (functions of few) parameters like $\mathrm{m}_{\mathrm{z}}, \Gamma_{\mathrm{z}}, \Gamma_{\mathrm{f}}, \theta_{\mathrm{w}} \ldots$;
- in an experiment: \mathbf{N} observables $\mathbf{t}_{\mathbf{i}}(\mathrm{i}=1, \ldots$, N) and \mathbf{M} SM parameters $\boldsymbol{\lambda}_{\mathrm{k}}(\mathrm{k}=1, \ldots, \mathrm{M})$;
- [at LEP $1, \mathrm{~N}=\mathrm{few} \times 100, \mathrm{M} \leq 10$, see later);
- [M is fixed, but the choice is free, e.g. one among m_{z}, m_{w} and θ_{w} is redundant]
- the dependence of t_{i} from λ_{k} is known: $t_{i}=t_{i}\left(\lambda_{k}\right) \pm \Delta t_{i}\left(\Delta t_{i}=\right.$ the theoretical error $) ;$
- the N observables are measured : $\mathbf{m}_{\mathbf{i}} \pm \Delta \mathbf{m}_{\mathbf{i}}$ ($\Delta \mathrm{m}_{\mathrm{i}}=$ the convolution of stat. and sys.);
- a (difficult) numerical program computes the "best" λ_{k} 's which fit the observations;
- then the same values of λ_{k} are used for all the computations (shown as the "SM fits").
- [since $N \gg M$, the dependence of any λ_{k} on the single ith meas. is very small.]
- [also test the agreement $S M \leftrightarrow$ data.]
[simplified example with χ^{2} :
$\chi^{2}=\sum_{i} \frac{\left[t_{i}\left(\lambda_{k}\right)-m_{i}\right]^{2}}{\Delta t_{i}^{2}+\Delta m_{i}^{2}} ; i=1, \ldots, N ; k=1, \ldots, M ;$
$\frac{\partial \chi^{2}}{\partial \lambda_{k}}=0$ (M equations) $\xrightarrow{\substack{\text { solve the } \\ \text { system }}}$ all λ_{k} 's
+ errors, correlations, ...]

$$
\begin{gathered}
\sigma_{\text {Born }}\left(e^{+} e^{-} \rightarrow f \bar{f}, \sqrt{s}=m_{z}\right)= \\
=\frac{12 \pi \Gamma_{e} \Gamma_{f}}{m_{z}^{2} \Gamma_{z}^{2}} .
\end{gathered}
$$

- in LEP jargon, "lineshape" means $\sigma(\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{Z} \rightarrow \mathrm{f} \overline{\mathrm{f}})$ vs $\sqrt{s}^{(*)}$ for a given fermion pair of type f;
- the lineshape shows the characteristic "bell shape", due to the resonance;
- both the height and the width of the bell depend on the e.w. parameters;
- the strategy is
a) first, measure mass, full and partial widths of the Z ;
b) then, fit:
> number of light v's (= fermion families);
> electro-weak couplings.

[^0]
LEP1 SM fit: $\mathrm{m}_{z}, \Gamma_{z}$

	a)	"without lepton
two fits:	universality", 9	b)
	"with I. u.", 5	
parameters : larger	parameters, smaller	
errors, more general;	errors, assume lepton universality.	

LEP1 SM fit : m_{z}

LEP1 SM fit: $\Delta m_{z}, \square_{z}$

- Neutrinos are the lightest component of the fermion families [in SM no theor. explanation, just matter of fact];
- assuming this case also for (hypothetical) further families, i.e. additional v's lightest member of a family;
- the decay $Z \rightarrow \square^{-}$is important ($\sim 20 \%$), but not observable (but "single γ ", not treated here);
- but it contributes to Γ_{z} (observable);
- indirect detection: measure Γ_{z}, subtract the contribution of observable decays (" $\Gamma_{\text {visible }} "$), get " $\Gamma_{\text {invisible }}$ " and compute n_{v} (more precisely the number of light v, i.e. $m_{v}<m_{z} / 2$):

$$
\begin{aligned}
& \Gamma_{\text {inv }} \equiv \Gamma_{z}-\sum_{\mathrm{j}=\mathrm{q}, \ell^{ \pm}} \Gamma_{\mathrm{j}}=\Gamma_{\mathrm{z}}-\Gamma_{\text {hadr }}-3 \Gamma_{\ell^{ \pm}} ; \\
& \mathrm{n}_{v}=\frac{\Gamma_{\mathrm{inv}}}{\Gamma_{v}^{\mathrm{SM}}}=\left(\frac{\Gamma_{\mathrm{inv}}^{\mathrm{exp}}}{\Gamma_{z}^{\text {exp }}}\right)\left(\frac{\Gamma_{z}^{S M}}{\Gamma_{v}^{S M}}\right) .
\end{aligned}
$$

- [the last step to decrease stat and syst errors]
- it turns out :

$$
\mathrm{n}_{v}=2.9840 \pm 0.0082
$$

i.e. $n_{v}=3$, no other families
[probably the best, most known, most quoted LEP result, see fig on pag. 2].

NB strictly speaking, $\mathrm{n}_{v}=$ width of invisible decays normalized to Γ_{v}; i.e. it could get contributions from other invisible decays (physics bSM, e.g. neutralino); in such cases, " n_{v} " not an integer.

$$
\begin{aligned}
& \sigma_{\text {Born }}\left(e^{+} e^{-} \rightarrow f \bar{f}, \sqrt{s}=m_{z}\right)=\frac{12 \pi \Gamma_{e} \Gamma_{f}}{m_{z}^{2} \Gamma_{z}^{2}} ; \\
& \Gamma_{v}^{\text {SM }}=\frac{\mathrm{G}_{\mathrm{F}} \mathrm{~m}_{\mathrm{z}}^{3} \mathrm{c}_{f}}{12 \sqrt{2} \pi} ; \quad \quad \Gamma_{\mathrm{z}}=\sum_{\mathrm{i}} \Gamma_{\mathrm{i}} .
\end{aligned}
$$

LEP1 SM fit : g_{A} vs g_{v} for leptons

Example of global fit result : g_{A} vs $\mathrm{g}_{\mathrm{V}}-0.032$ for leptons:

- 68\% (i.e. 1 б) contours;
- computed after top and before Higgs discovery;
- the " \rightarrow " shows $\pm 1 \sigma$ in $\alpha_{e m}, m_{t} \ldots$
- ... and $114,300,1000 \mathrm{GeV}$ for m_{H}.
- the red dot shows the SM Born point, with the QED corr. only (i.e. $\alpha_{\mathrm{em}}\left(\mathrm{m}_{\mathrm{z}}\right) \approx 1 / 128 \rightarrow$ weak rad. corr. are important.

Notice :

- good compatibility among leptons (\rightarrow universality);
- preference for light Higgs (...wow)

LEP1 SM fit : $\sin ^{2} \theta$ vs Γ_{ℓ}

A "1 ${ }^{\text {st }}$ order" dictionary of some processes:

- processes 2,3 have been already studied;
- 1), 4, 5, (6) will be introduced soon.

(2)

5

2 is a "2-fermion final state";

4, 5, 6 are "4-fermion f.s.", because W/Z/H \rightarrow ff.

In 1994-2000 LEP gradually changed $\sqrt{ } \mathrm{s}: \mathrm{m}_{\mathrm{z}} \rightarrow \mathbf{2 0 0} \mathrm{GeV}$:

- σ 's vs $\sqrt{ }$ s, produced (BarbaraM. et al.) before the start of LEP2;
- notice:
> the main processes were all well-known before the startup;
> no "surprise" happened;
> " $\Sigma q \bar{q} " \rightarrow$ " $\Sigma q \bar{q}(I S R)$ " \rightarrow cut on $\mathrm{s}^{\prime} / \mathrm{s}$ in the analysis;
> [surprisingly] in 1996 they did NOT put the Higgs production in the plot;
- the color bands show the $\sqrt{ }$ s range actually used by LEP2;
- why ? [physics + availability of radio-frequencies].

Some important characteristics of the LEP2 physics:

- larger luminosity ($\times 4$, because [$\mathfrak{L} \propto \gamma_{\text {beam }}$ $\left.\propto V_{\mathrm{s}}\right]+$ [machine improvements]);
- much smaller cross sections ($\times 10^{-3}$, because [no Z resonance] $\left.+\left[\sigma_{\text {ee }} \propto 1 / s\right]\right)$ \rightarrow few events;
- as a consequence, no "production factory" of interesting states, studied independently of the production (ex. b / c / τ a LEP 1); exception: $\mathrm{W}^{ \pm}$;
- errors dominated by the $1 / \sqrt{ } \mathrm{N}$ statistics; error on \mathscr{L} (uminosity) less important;
- no equivalent to m_{z} measurement, so no $\mathrm{E}_{\text {beam }}$ calibration at MeV level necessary;
- not dominated by single Z formation, so many competing processes;
what is that? (guess

This plot is a summary of the results. Notice:

- LEP1 was dominated by the Z pole;
- on the contrary, LEP2 is "democratic";
- many final states :
> " 2 photons", e.g. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{q} \overline{\mathrm{q}} ;$
$>{ }^{2}$ fermions"(1), e.g. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z}^{*} / \gamma^{*} \rightarrow \mathrm{q} \overline{\mathrm{q}} ;$
$>$ "4 fermions", e.g. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{q} \overline{\mathrm{q}} ;$
$>\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \square$;
> Higgs searches (special case of 4 fermions).
- only $\mathrm{W}^{+} \mathrm{W}^{-}$and Higgs in these lectures.
(1) "2 fermions" physics is dominated by the return to the Z effect (see \S radiative-corrections").

Introduce the process: " 2γ physics":

- it is so called because the initial state of the hard collision is given by two γ 's;
- the two $\mathrm{e}^{ \pm}$of the initial state retain much of the energy, and in most cases escape undetected in the beam chamber;
- classify events in "untagged", "single tag" and "double tag", depending on whether $0,1,2$ and $\mathrm{e}^{ \pm}$are detected;
- lot of nice kinematics [try it];
- events studied using two variables:
$>V_{\mathrm{s}}=\mathrm{m}_{\mathrm{ini}}\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)$;
$>\mathrm{W}=\mathrm{m}\left(\gamma^{*} \gamma^{*}\right)=\mathrm{m}$ (hadrons);
- both prediction and detection require a cut ($\mathrm{W}_{\text {cut }}$, here $\mathrm{W}_{\text {cut }}=5 \mathrm{GeV}$) on W, i.e. define $\left.\sigma_{\square}=\sigma_{\square}(W) W_{\text {cut }}\right)$:
$>\sigma_{\square} \sim \log \left(\sqrt{ }\right.$ s) for fixed $W_{\text {cut }}$ (\sim constant);
$>\mathrm{d} \sigma_{\square} / \mathrm{dW} \sim \mathrm{e}^{-\mathrm{W}}$ [very steep].

$$
\text { Why study "2 } \gamma \text { physics" ? Two main goals: }
$$

1. intrinsic interest:

- any process deserves a study;
- rich "factory" of hadron resonances;
- other low-energy processes;

2. σ_{\square} is large:

- LEP1: subtract from high precision meas.;
- LEP2: other processes typically tiny σ 's \rightarrow an important background, especially if large \mathbb{Z} required (this is why the discussion is here).

6/6
 Physics at LEP2: mc for 4-fermion processes

Four-fermion final states

- the process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow f \overline{f f} f \bar{f}$ is given in lowest order by the q.m. superposition of many diagrams with intermediate particles (+ interference) (e.g. the final state [e $\vee \mathrm{q}$ \bar{q} '] with 20 graphs, see box);
- in q.m. it is impossible to assign a given ($e^{-} \bar{v} u \bar{d}$) event to the resonant production of two W's (e.g. (7) or to a diagram without real W's (e.g. 1);
- however, diagrams with s-channel W's, when $\mathrm{m}(\mathrm{ff}) \approx \mathrm{m}_{\mathrm{w}}$, resonate and prevail;
- the mc calculations are divided between (a) no factorization, i.e. the full q.m. behavior and (b) factorization, i.e. only resonant diagrams;
- [as predictable] method (a) is heavy, slow and difficult to manage, while (b) is simpler and almost correct.

graph 10
graph 14

graph 18

graph 3

graph 11

graph 12

graph 15

graph 19

graph 16

graph 20
- the process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow f \overline{f f f} \bar{f}$ dominates the 4 fermions sample;
- in lowest order, there are three Feynman diagrams;
- all the vertices of the e.w. theory: ffW, ffZ, ffy, ZWW, γ WW;
- the overall (finite) cross section results from delicate cancellations among the 6 terms (3 \mid module| ${ }^{2}+3$ interferences) [next slide];
- therefore, almost any possible discrepancy wrt SM, (e.g. an anomaly in the couplings) would result in evident deviations from the predictions.

$\mathbf{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{W}^{+} \mathbf{W}^{-}:$cross section in SM

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{W}^{+} \mathbf{W}^{-}:$effect of $\Gamma_{\mathrm{W}}+$ ISR on σ

$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}\right)$vs $\sqrt{ } \mathrm{s}$

Notice :

- kin. threshold at $V_{s}=2 m_{w}$;
- $\Gamma_{W}(+$ production of virtual W's);
- ISR (i.e. init. state $\left.\gamma^{\prime} \mathrm{s}\right)$.
 $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{W}^{+} \mathbf{W}^{-}:$cross section vs \sqrt{s}

Technically clever and simple :

- compute $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}\right)=\sigma\left(\mathrm{m}_{\mathrm{w}}\right)$;
- compute the "best" V_{s}, by combining
$>$ sensitivity $\left(\square / \partial \mathrm{m}_{\mathrm{w}}=\mathrm{max}\right) \rightarrow \sqrt{\mathrm{s}} \approx$ threshold;

$$
>(\square \text { stat } \downarrow) \rightarrow(\sigma \uparrow) \rightarrow\left(V_{\mathrm{s}} \uparrow\right) ;
$$

$>$ take into account $\Delta_{\text {theory }}$ and syst.;

- measure.

- selection of WW events NOT difficult: little competition in 4-body final states (mainly $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} 9 \mathrm{~g} g$, with 2 QCD brem);
- kinematical constraints (e.g. 4-mom conservation) help in the analysis :
> selection criterion (rejection of bad measurements or event from other processes);
> resolution improvement [see next];
- discuss an example : likelihood fit to $\mathrm{m}_{\mathrm{w}}, \Gamma_{\mathrm{w}}$;
- compare analysis/fit on real data wrt same procedure on "pseudo-events" (physics + detector mc);
- Γ_{w} strongly (anti-)correlated with experimental resolution ["pessimistic" detector $\mathrm{mc} \rightarrow$ resolution too large \rightarrow deconvolution $\rightarrow \Gamma_{\mathrm{w}}$ too small !!!];
- systematics from:
> ISR/FSR parameterization;
> reconstruction algorithms (expecially jets, ex. color reconnection, BoseEinstein correlations);
> many other sources...
- consistency checks : in this case $\mathrm{m}_{\mathrm{z}}, \Gamma_{\mathrm{z}}$ from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ ZZ (with smaller stat).

Energy-momentum conservation:

- n parameters $=4 * \mathrm{n}_{\text {body }}=16$;
- N meas. [e.g. E, $\overrightarrow{\mathrm{p}}$ for jets / $\mathrm{e}^{ \pm} \mathrm{s}$];
- K equations [$=4$ mom + masses $^{(*)}$];
- C (=N+K-n) constraints;
- E.g. : $e^{+} e^{-} \rightarrow W^{+} W^{-} \rightarrow f_{1} f_{2} f_{3} f_{4}:$
$>\mathrm{q}_{1} \overline{\mathrm{q}}_{2} \mathrm{q}_{3} \overline{\mathrm{q}}_{4}: \mathrm{N}=16, \mathrm{~K}=4+1 \rightarrow \underline{\mathbf{C}=5}$;
$\Rightarrow \ell^{ \pm} v q_{1} \bar{q}_{2}: N=12, K=4+2 \rightarrow \mathbf{C = 2} ;$
$>\ell^{+} v \ell^{-} \bar{v}: N=8, K=4+$? $\rightarrow \underline{\mathbf{C} \leq \mathbf{0}}$;
- If $C>0$, a kinematical fit is possible (a simplified sketch in $x_{1}, x_{2}, n=2, C=1$)
[the red arrow " \rightarrow " represents a statistical estimate (χ^{2}, likelihood) and a computation method (e.g. Lagrange multipliers)].
${ }^{(*)} \mathrm{m}_{\mathrm{W}_{+}}=\mathrm{m}_{\mathrm{W}_{-}}$and $\mathrm{m}_{\mathrm{v}} \approx 0$.

- the effects of kinematical fits :
- "C" (=constraints) from bubble chamber jargon;
- higher C, more constraints, more improvement;
- "measurement" $=m_{w}, \Gamma_{w}$ in MC with best agreement.
$W^{ \pm}$properties: m_{w}, Γ_{w} results

$$
\begin{array}{lll}
m_{w}=80.412 & \pm 0.029 & \pm 0.031 \mathrm{GeV} \\
\Gamma_{\mathrm{w}}=2.150 & \pm 0.068 & \pm 0.060 \mathrm{GeV}
\end{array}
$$

[NB : no higher orders in this page !!!]

- in the SM the $\mathrm{W}^{ \pm}$boson decays through CC interactions (V-A);
- therefore the coupling is the same for all ff' pairs, providing :
$>\mathrm{m}\left(f \bar{f}^{\prime}\right)<\mathrm{m}_{\mathrm{w}}$ (\rightarrow no t decays);
> $q \bar{q}$ mixing (à la CKM) must be used;
- ASSUMING (just for the discussion) a diagonal CKM matrix, W^{+}decays into $\mathrm{e}^{+} \mathrm{v}$, $\mu^{+} v, \tau^{+} v, u \bar{d}, c \bar{s}$, (tb̄ forbidden);
- [if W^{-}, then corresponding antiparticles];
- $\left(m_{f} \ll m_{w}\right.$ and CKM \approx diagonal $) \rightarrow$ same $B R$ for all channels (but color factor);
- the V-A theory gives in lowest order: $\Gamma\left(\mathrm{W} \rightarrow f f^{\prime}\right)=\mathrm{G}_{\mathrm{F}} \mathrm{m}_{\mathrm{W}}^{3} /(6 \sqrt{ } 2 \pi) \approx 226 \mathrm{MeV}$;
- (3 leptons +2 quarks $\times 3$ colors $=9$) :

$$
\begin{aligned}
\Gamma_{\mathrm{W}} & =\Sigma \Gamma_{\mathrm{i}}\left(\mathrm{~W} \rightarrow f f^{\prime}\right) \approx 9 \times 226 \mathrm{MeV}= \\
& =2.05 \mathrm{GeV} ;
\end{aligned}
$$

$$
\mathrm{BR}\left(\mathrm{~W} \rightarrow \ell^{ \pm} v\right) \approx 1 / 9 \approx 0.11
$$

$$
\mathrm{BR}\left(\mathrm{~W}^{+} \rightarrow \mathrm{ud}\right) \approx \mathrm{BR}\left(\mathrm{~W}^{+} \rightarrow \mathrm{c} \overline{\mathrm{~s}}\right) \approx 1 / 3 \approx 0.33 ;
$$

- if the correct quark mixing is used, the CKM matrix element $V_{\text {qq' }}$ must be considered:

$$
\begin{aligned}
& \Gamma\left(\mathrm{W} \rightarrow \mathrm{q} \bar{q}^{\prime}\right)=\left|\mathrm{V}_{\mathrm{q} q^{\prime}}\right|^{2} \mathrm{G}_{\mathrm{F}} \mathrm{~m}_{\mathrm{W}}^{3} /(6 \sqrt{ } 2 \pi) ; \\
& \Gamma_{\mathrm{W}}=\Sigma \Gamma_{\mathrm{i}}\left(\mathrm{~W} \rightarrow f f^{\prime}\right)=\text { unchanged; } \\
& \mathrm{BR}\left(\mathrm{~W} \rightarrow \mathrm{q} \bar{q}^{\prime}\right) \approx\left|\mathrm{V}_{\mathrm{q}}{ }^{\prime}\right|^{2} / 3 .
\end{aligned}
$$

$\mathbf{W}^{ \pm}$properties: $\mathbf{W}^{ \pm}$decay results

W Leptonic Branching Ratios

	$\begin{aligned} & 10.78 \pm 0.29 \\ & 10.55 \pm 0.34 \\ & 10.78 \pm 0.32 \\ & 10.71 \pm 0.27 \end{aligned}$	
-	10.71 ± 0.16	ALEPH
-	$\begin{aligned} & 10.87 \pm 0.26 \\ & 10.65 \pm 0.27 \\ & 10.03 \pm 0.31 \\ & 10.78 \pm 0.26 \end{aligned}$	DELPHI L3
-	10.63 ± 0.15	OPAL
$\stackrel{\square}{\square-}$	$\begin{aligned} & 11.25 \pm 0.38 \\ & 11.46 \pm 0.43 \\ & 11.89 \pm 0.45 \\ & 11.14 \pm 0.31 \end{aligned}$	LEP
\bullet	$\begin{array}{r} 11.38 \pm 0.21 \\ \chi^{2} / \text { /ndf }=6.3 / 9 \end{array}$	
,	$\begin{array}{r} 10.86 \pm 0.09 \\ x^{2} / \text { /ndf }=15.4 / 11 \end{array}$	
$\begin{array}{lll} 10 & 11 & 12 \end{array}$		
$\mathrm{Br}(\mathrm{W} \rightarrow \mathrm{lv})[\%$		

In the $\mathrm{SM}, \mathrm{m}_{\mathrm{w}}$ and Γ_{w} are correlated:

- are the previous measurements consistent?
> yes, see the plot;
- can do better ? i.e. check the SM with all the LEP measurement ?
> yes;
- even better ? i.e. add also the other SM non-LEP measurement, i.e. v's and low-energy?
> yes, see next slide;
- is the fit producing a value for the (still) unknown parameters, e.g. m_{H} ?
$>$ yes.

global LEP(1+2) fit

global LEP(1+2) fit : m_{H} prediction

iv. Physics 2 : Higgs

1. - 16. [...]

18. Higgs search at LEP1

19. Higgs search at LEP2

- The Higgs boson has been (very likely) discovered at LHC, definitely not at LEP.
- Why remember an old and not-so-nice story, like the LEP search of the Higgs ?
- Because it is very instructive - almost all searches are unsuccessful \rightarrow in practice limits and exclusions are much more frequent than discoveries;
- [in the past, fluctuations/mistakes have been rare, but not null]

- go \rightarrow § searches, then come back;
- Higgs properties are treated in § LHC [+ RQM + EWI];
- here only an incomplete discussion for Higgs production in $\mathrm{e}^{+} \mathrm{e}^{-}$at LEP1 \& LEP2 energies.

Higgs search @ LEP1

- In the SM the Higgs boson is at the origin of fermion masses;
- at least one H , neutral, spin-0;
- only $1 \mathrm{H} \rightarrow$ "minimal SM" (MSM, the case discussed in these lectures);
- m_{H} free parameter of SM (but $\mathrm{m}_{\mathrm{H}}<1 \mathrm{TeV}$);
- in the MSM, if m_{H} is given, the dynamics is completely determined and calculable (couplings, cross sections, BR's, angular distributions, ...);
- properties :
> charge: 0 ; spin: $0 ; \mathrm{J}^{\mathrm{P}}=0^{+}$;
$>$ coupling with fermions f :

$$
\begin{aligned}
& \Gamma(H \rightarrow f \bar{f})=\frac{c_{f}}{4 \pi \sqrt{2}} G_{F} m_{H} m_{f}^{2} \beta_{f}^{3} ; \\
& \beta_{f}=\sqrt{1-4 m_{f}^{2} / m_{H}^{2}} ; \quad c_{f}=\left\{\begin{array}{l}
1 \text { [leptons] } \\
3 \text { [quarks] }
\end{array}\right.
\end{aligned}
$$

$>$ [notice: $\Gamma_{f} \propto m_{f}^{2}$);
$>$ therefore, H decays mainly in the fermion pair of highest mass kinematically allowed;
$>$ therefore, if $m_{H}>2 m_{b}$ (i.e. $>10 \mathrm{GeV}$), mainly $\mathrm{H} \rightarrow \mathrm{b}$.

- $Z \nrightarrow \mathrm{HH}$ (spin-statistics, like $\rho^{0} \nrightarrow \pi^{0} \pi^{0}$);
- in lowest order only:
$>\mathrm{Z} \nrightarrow \mathrm{H} \gamma \quad(\mathrm{Z}, \mathrm{H}$ neutral !!!) [or $\mathrm{H} \nrightarrow \mathrm{Z} \gamma$];
$>\mathrm{H} \nrightarrow \gamma \gamma$) (H neutral !!!)
however, ($\mathrm{H} \rightarrow \square$) essential for the discovery (see § LHC).
$>\mathrm{H} \nrightarrow \mathrm{gg}$ (no strong interactions);
$>$ but $\mathrm{H} \rightarrow \mathrm{Z} \gamma, \square$, gg through higher order processes.
more complete discussion in § LHC, more complete
e.g. discussion of $\mathrm{H} \rightarrow \mathrm{Z}$,

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \mathrm{HZ}^{*}$

[Bjorken process]

- LEP $1\left(\sqrt{s} \approx m_{z}\right): e^{+} e^{-} \rightarrow Z \rightarrow H Z^{*} \rightarrow(f \bar{f})(f \bar{f})$; i.e. the Higgs production is one of the possible Z decays :
$\frac{1}{\Gamma(Z \rightarrow f \bar{f})} \frac{d \Gamma(Z \rightarrow H f \bar{f})}{d x}=$

$$
=\frac{G_{F} m_{z}^{2}}{24 \sqrt{2} \pi^{2}} \frac{\left(12-12 x+x^{2}+8 y^{2}\right) \sqrt{x^{2}-4 y^{2}}}{\left(x-y^{2}\right)^{2}}
$$

$x=\frac{2 E_{H}}{m_{z}}=\frac{m_{z}^{2}+m_{H}^{2}-m_{Z^{*}}^{2}}{m_{z}^{2}} ; \quad y=\frac{m_{H}}{m_{z}} ; \quad 2 y<x<1-y^{2}$.

- best observable when

$$
\begin{aligned}
& Z^{*} \rightarrow \ell^{+} \ell^{-}(\text {no bckgd }) \\
& H \rightarrow b \text { b } \quad\left(B R \geq 80 \%, \text { if } m_{H}>2 m_{b}\right)
\end{aligned}
$$

- $\mathrm{BR}\left(\mathrm{Z} \rightarrow \mathrm{He}^{+} \mathrm{l}^{-}\right) \approx 10^{-4}$ @ $\mathrm{m}_{\mathrm{H}}=8 \mathrm{GeV}$

$$
\approx 10^{-7} @ \mathrm{~m}_{\mathrm{H}}=70 \mathrm{GeV}
$$

- kinematical constraint :

$$
V_{\mathrm{s}} \approx \mathrm{~m}_{\mathrm{Z}}>\mathrm{m}_{\mathrm{Z}^{*}}+\mathrm{m}_{\mathrm{H}} \rightarrow \mathrm{~m}_{\mathrm{H}}<\mathrm{m}_{\mathrm{Z}}
$$

- kinematics not difficult, e.g. $Z^{*} \rightarrow \mu^{+} \mu^{-}$, $m\left(Z^{*}\right)=m_{\mu \mu}, E\left(Z^{*}\right)=E_{\mu \mu}$,
$\mathrm{m}_{\mathrm{H}}^{2}=\mathrm{s}+\mathrm{m}_{\mu \mu}^{2}-2 \sqrt{\mathrm{~s}} \mathrm{E}_{\mu \mu}$.

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \mathrm{HZ}{ }^{*}
$$

[Bjorken process]

kinematics not difficult, e.g. $Z^{*} \rightarrow \mu^{+} \mu^{-}$,
$m\left(Z^{*}\right)=m_{\mu \mu}, E\left(Z^{*}\right)=E_{\mu \mu}$,
$\mathrm{m}_{\mathrm{H}}^{2}=\mathrm{s}+\mathrm{m}_{\mu \mu}^{2}-2 \sqrt{\mathrm{~s}} \mathrm{E}_{\mu \mu}$.
i.e. the meas. of m_{H} does NOT
require the meas. of the H decay.

Higgs search @ LEP1: decay predictions

PJ Franzini et al., CERN 89-08, vol 2, pag. 65'.

The main decay product of H is the $f \bar{f}$ of largest mass compatible with m_{H} : e.g. S means $\mathrm{H} \rightarrow \mathrm{s} \overline{\mathrm{s}}$.

When a new threshold opens up, there is a "step" in $c \tau(\sim 1 / \Gamma)$, rounded by phase space (clearly not done in the calculation).

For $V_{s} \approx m_{Z}($ real $Z)$ and $m_{H} \ll m_{Z}$, the Bjorken process ($\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z} \rightarrow \mathrm{HZ}{ }^{*}$) has a sizeable cross section, but at larger m_{H} it essentially disappears \rightarrow go to larger $\sqrt{ }$ s.

The predictions at $V_{s} \gg m_{z}$ come from a similar process $\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z}^{*} \rightarrow \mathrm{HZ}\right.$, virtual Z*), known as "higgs-strahlung" [next slides].

- this plot summarizes the limits of the four experiments :

$$
\begin{aligned}
& \mathrm{A}: 63.1 \mathrm{GeV} \\
& \mathrm{D}: 55.4 \quad \text { " } \\
& \mathrm{L}: 60.2 \\
& \mathrm{O}: 59.1
\end{aligned}
$$

- the candidate @ $\mathrm{m}_{\mathrm{H}}=67 \mathrm{GeV}$ (OPAL) reduces the limit by few $\times 100 \mathrm{MeV}$;
- a test case for the method, discussed in § limits; notice :
> the combined limit is "better" than any single exp.;
> the "worst" observed limit does not come necessarily from the "worst" exp.;
> ... because it is a random variable;
conclusion: move to higher $\sqrt{ }$ s, i.e. Bjorken process \rightarrow higgs-strahlung.

LEP 1, $V_{s} \approx m_{z}$:
~3.7 M [Z \rightarrow hadrons] / exp in 1989-94;
$\mathrm{m}_{\mathrm{H}}>65.2 \mathrm{GeV}$ @ 95\% CL

Higgs search @ LEP2

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z}^{*} \rightarrow \mathrm{HZ}
$$

[higgs-strahlung]

- LEP 2 : process of "higgs-strahlung" (= radiative emission of a Higgs boson from a Z^{*});
- i.e. the higgs production is a 4fermion final state, mediated by a virtual $Z^{*}\left[\right.$ like $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \rightarrow 4 \mathrm{f}$];
- kinematical constraint :

$$
V_{s}=m_{Z^{*}}>m_{\mathrm{Z}}+\mathrm{m}_{\mathrm{H}}
$$

- [no \mathscr{H} here, because of possible future colliders, see later].

$$
\begin{aligned}
& \sigma_{0}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z}^{*} \rightarrow \mathrm{ZH}\right)= \\
& =\frac{G_{F}^{2} m_{z}^{4}}{24 \pi s}\left[\left(g_{v}^{\ell}\right)^{2}+\left(g_{A}^{\ell}\right)^{2}\right] \sqrt{\lambda} \frac{\lambda+12 m_{z}^{2} / s}{\left(1-m_{z}^{2} / s\right)^{2}} ; \\
& {\left[\lambda \quad=\left(1-m_{H}^{2} / s-m_{Z}^{2} / s\right)^{2}-4 m_{H}^{2} m_{Z}^{2} / s^{2} ;\right]} \\
& \frac{1}{\sigma_{0}} \frac{d \sigma_{0}}{d \cos \theta}=\frac{\lambda^{2} \sin ^{2} \theta+8 m_{z}^{2} / s}{4 \lambda^{2} / 3+16 m_{z}^{2} / s} \xrightarrow{s \gg m_{z}} \frac{3}{4} \sin ^{2} \theta .
\end{aligned}
$$

An old study by PB et al in 1995, before the start of LEP2.

Notice the shape of $\mathfrak{L}_{\text {disc }}$ and $\mathfrak{L}_{\text {excl }}$.

Conclusion:
Energy is very very much better than luminosity !!!

- $-2 \operatorname{lnQ}=-2 \ln \left(\Lambda_{\mathrm{s}} / \Lambda_{\mathrm{b}}\right)$;
- $-2 \operatorname{lnQ}\left(m_{H}=115\right)=-7$;
- if interpreted as a discovery
$\Rightarrow \mathrm{m}_{\mathrm{H}}=115_{-0.9}^{+1.3} \mathrm{GeV}$;
$>1-\mathrm{CL}_{\mathrm{b}}=4.2 \times 10^{-3} ;$
> i.e. "2.9 σ ";

- if interpreted as a limit :
$>\mathrm{m}_{\mathrm{H}}>113.5 \mathrm{GeV}$ @ 95\%CL.

RECOMMENDATION

Given the consistency for the combined results with the hypothesis of the production of a SM Higgs boson with a mass of 115 GeV , and an observed excess in the combined data set of 2.9σ, a further run with $200 \mathrm{pb}^{-1}$ per experiment at 208 GeV would enable the four experiments to establish a $5 \boldsymbol{\sigma}$ discovery.

The four experiments consider the search for the SM Higgs boson to be of the highest importance, and CERN should not miss such a unique opportunity for a discovery.

Therefore, we request to run LEP in 2001 to collect $\mathcal{O}_{\left(200 \mathrm{pb}^{-1}\right)}$ at $\sqrt{\boldsymbol{s}} \geqq 208 \mathrm{GeV}$.

ALEPH, DELPHI, L3, OPAL The LEP Higgs Working Group

LEP shuts down after eleven years of forefront research

These are the measurements taken of LEP's final beam. The accelerator was switched off for the last time at 8:00 am on 2 November. (Click on photo for enlargement)

After extended consultation with the appropriate scientific committees, CERN 's Director-General Luciano Maiani announced today that the LEP accelerator had been switched off for the last time. LEP was scheduled to close at the end of September 2000 but tantalising signs of possible new physics led to LEP's run being extended until 2 November. At the end of this extra period, the four LEP experiments had produced a number of collisions compatible with the production of Higgs particles with a mass of around 115 GeV . These events were also compatible with other known processes. The new data was not sufficiently conclusive to justify running LEP in 2001, which would have inevitable impact on LHC construction and CERN's scientific programme. The CERN Management decided that the best

- if intepreted as a discovery:

$\begin{array}{ll}\text { • if interpreted as a limit: } & -10 \\ >\mathrm{m}_{\mathrm{H}}>114.1 \mathrm{GeV} @ 95 \% \mathrm{CL} . & -15\end{array}$
${ }^{(1)}$: median; $\quad{ }^{(2)}: \mathrm{m}=115 \mathrm{GeV}$ (+ bkg) $\quad m_{H}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

????

- method "gedankenexperiment" [i.e. produce via mc many experiments, with the same quality and $\mathfrak{L}_{\text {int }}$ of the present one]:
- $m_{H}^{\text {test }}=115.6 \mathrm{GeV}$;
- $\int f_{b, s} d(-2 \ln Q)=1$;
- " " = $1-\mathrm{CL}_{b}=3.5 \%$;
- " $"=\mathrm{CL}_{\mathrm{s}+\mathrm{b}}=43 \%$.

Comments/questions (imho):

- if this result had been presented in November 2000, there would have been no problem: no one would have claimed the need for further studies.
- (just for history, now irrelevant) why was the first analysis wrong ? well, ... ?
- why to show it to students ? because it is very instructive, normal classes see only the standard (discovery vs limits).
- the "LEPC result" is difficult to explain (NOT only to students) : stat. fluctuations, mistakes, systematics out-of-control, ...
- the CERN management (L. Maiani) took the right decision at a high risk;
- the real threat was a delay of LHC, a huge human and economic price;
- instead, the final results are relatively simple to explain: a honest fluctuation at 3.5% does not deserve a discussion;
- the Higgs boson search crossed the ocean, but the TeVatron did not really enter in the game;
- and finally LHC ... [you know].

Other more personal comments:

- unlike theoretical physics, statistics (and human behavior) require risk evaluation;
- experimental physics lies in the middle;
- you should understand and judge the decisions of the experiments and the management (often they did NOT agree);
- ... while the landscape was changing (November '00, July '01, post-LEP, now);
- you might conclude that the "right decision" is a function of role and time (???);
- ... and that searches are risky, not for gutless people.

the Higgs boson @ LEP : $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Hz}\right)$

AFTER the LHC discovery:

Q: could LEP see a 126 GeV Higgs ?
plot the cross section:

- $\sigma=0.2 \div 1.8 \mathrm{pb}$;
- strongly m_{H} dependent;
- $\mathscr{L}_{\text {int }} \approx 200 \mathrm{pb}^{-1} /$ year;
- i.e. $n=40 \div 200$ events $/ \mathrm{y}$, shared among many decay channels (some undetectable).
A: the plot is very clear: you should be able to judge yourself!

```
warning:
- tree level,
- \(\Gamma_{H}=\Gamma_{Z}=0\);
but ok for discussion.
```


the Higgs boson @ LEP : higgs-strahlung

Plot $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z}^{*} \rightarrow \mathrm{HZ}\right)$ vs the "kinetic" energy, i.e. ($T=V_{s}-m_{H}-m_{z}$), in the approx. $\Gamma_{\mathrm{Z}}=\Gamma_{\mathrm{H}}=0$:

- $\mathrm{T} \leq 0 \rightarrow \sigma=0$ (obvious);
- the \times 's show $\sqrt{s}=209 \mathrm{GeV}$;
- $\sigma_{\max }(T)$ at $T \approx 15 \div 20 \mathrm{GeV}$, slightly increasing with $\mathrm{m}_{\boldsymbol{H}}$;
- $\sigma_{\max }\left(m_{H}\right)$ decreases a lot when m_{H} increases;
- for $\sqrt{ } \mathrm{s} \gg \mathrm{m}_{\mathrm{H}}+\mathrm{m}_{\mathrm{Z}}, \sigma \propto \mathrm{s}^{-1}$ (obvious);
- for $\mathrm{m}_{\mathrm{H}}>110 \mathrm{GeV}$, other processes (not shown), other than higgsstrahlung;
- if $\mathrm{m}_{\mathrm{H}}=126 \mathrm{GeV}$ (LHC), H not produced at LEP 2.

A/3 the Higgs boson @ LEP : the future in $\mathrm{e}^{+} \mathrm{e}^{-}$

In the post-LEP (and post-H-discovery) era, the interest has shifted to a possible higher energy $\mathrm{e}^{+} \mathrm{e}^{-}$collider (circular or linear).
In this case:

- consider also other processes (e.g. the so called "WW-fusion" $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{H} \overline{\mathrm{e}}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}}$ [see];
- compute the cross-section for $\mathrm{m}_{\mathrm{H}}=126 \mathrm{GeV}$, as
 a function of \sqrt{s}^{s} [see];
- study the physics of (say) ~ 1 million H :
> measure Γ_{H} à la J / ψ;
> measure all H couplings;
- [obviously no \mathscr{H} here].

Future Circular Collider Study, CERN 2018

References

1. LEP predictions from SM : Yellow report CERN 89-08.
2. L3 results @ LEP1 : Phys. Rep. 236 (1993) 1.
3. L3 results 1994 : Eur.Phys.Journ. C16 (2000) 1.
4. M.W.Grünewald, Phys. Rep. 322 (1999) 125.
5. Z pole results : Phys.Rep. 427 (2006) 257.
6. WW results : Phys.Rep. 532 (2013) 119.
7. Higgs @ LEP : Ann. Rev. Nucl. Part. Sci. 2002.52:65.

End of chapter 3

[^0]: ${ }^{(*)}$ warning : NOT "d $\sigma / \mathrm{d} \sqrt{ }$ s", which is meaningless.

