Collider Physics - Chapter 4 Searches and limits

4 - Searches and limits

1. Probability

2. Searches and limits
3. Limits
4. Maximum likelihood
5. Interpretation of results

- methods commonly used in all recent searches (e.g. LEP, LHC, gravitational waves);
- also in other lectures (e.g. "Laboratorio di Meccanica", "Physics Laboratory");
- but "repetita juvant" (maybe);
- not a well-organized presentation, beyond the scope of present lectures (\rightarrow references).

- Modern particle physics makes a large use of (relatively) new sciences : probability and her sister statistics;
- [we are scientists, not gamblers, and do NOT discuss poker and dice here];
- in classical physics the resolution function of an observable can be seen as a pdf(*);
- q.m. is probabilistic, at least in its original (Copenhagen) interpretation, since the "theory" (e.g. dб/dcos θ) is a distribution, while the "measure" produces single values;
- but its use to assess a statement [e.g. "the probability that we have discovered the Higgs boson in our data"] is really modern;
- actually the humankind thinks in terms of probability (risk, chance, luck ... mean "probability", while experience, past events, use, ... mean "statistics").
${ }^{(*)}$ pdf: acronym for probability distribution function. (or probability density function).
For [some] readers :
- these lectures avoid carefully to enter in the discussion frequentism \leftrightarrow bayesianism;
- however, a modern particle physicist must understand and use both;
- only, (try to) avoid fights.

probability: Kolmogorov axioms

Andrei Nikolayevich Kolmogorov [Андрей Николаевич Колмогоров] (1903-1987), a Russian (sovietic) mathematician, in 1933 wrote a fundamental paper on axiomatization of probability; he introduced the space S of the events (A, B, \ldots) and the event probability as a measure $\mathscr{P}(\mathrm{A})$ in S .

K. axioms are :

1. $0 \leq \mathscr{P}(\mathrm{A}) \leq 1 \forall \mathrm{~A} \in \mathrm{~S}$;
2. $\mathscr{P}(\mathrm{S})=1$;
3. $\mathrm{A} \cap \mathrm{B}=\varnothing \Rightarrow \mathscr{P}(\mathrm{A} \cup \mathrm{B})=\mathscr{P}(\mathrm{A})+\mathscr{P}(\mathrm{B})$.

Some theorems (easily demonstrated):

- $\mathcal{P}(\overline{\mathrm{A}})=1-\mathscr{P}(\mathrm{A})$;
- $\mathscr{P}(A \cup \bar{A})=1$;
- $\mathscr{P}(\varnothing)=0$;
- $\mathrm{A} \subset \mathrm{B} \Rightarrow \mathscr{P}(\mathrm{A}) \leq \mathscr{P}(\mathrm{B})$;
- $\mathscr{P}(\mathrm{A} \cup \mathrm{B})=\mathscr{P}(\mathrm{A})+\mathscr{P}(\mathrm{B})-\mathscr{P}(\mathrm{A} \cap \mathrm{B})$.

- Sometimes, the result of a measure is NOT the value of an observable x :

$$
\text { "x = } x_{\exp } \pm \Delta x ",
$$

- but, instead, a qualitative "search" :
"the phenomenon \mathcal{Y} does (not) exist",

or, alternatively:

"the phenomenon \mathcal{Y} does NOT exist in the parameter range Φ ".

- [statements with "not" apply if the effect is not found, and an "exclusion" (a "limit", when Φ is not full) is established]
- In modern experiments, the searches account for $>50 \%$ of the published papers, and almost all are negative [but the Higgs search at LHC, of course].
- Obviously, a negative result is NOT a failure: if any, it is a failure of the theory under test.
- [but a discovery is much more pleasant and rewarding]
- A rigorous procedure, well understood and "easy" to apply, is imperative.
- This method is a major success of the LEP era: it uses math, statistics, physics, common sense and communication skill.
- It MUST be in the panoply of each particle physicist, both theoreticians and experimentalists.

The examples here remain inside the SM:

- Higgs searches at LEP (negative) and LHC (positive) ;
- after the Higgs discovery, the focus has shifted toward "bSM" searches, but the method has not changed (still improving).

In the next slides :

- $\mathfrak{L}_{\text {int }}$: int. luminosity (sometimes only \mathfrak{L});
- σ_{s} : cross section of signal (searched for);
- σ_{b} : cross section of backgrounds (known);
- ε_{s} : efficiency for signal ($0 \div 1$, larger is better);
- ε_{b} : ditto for backgrounds ($0 \div 1$, smaller is better);
- s : \# expected signal events [s = $\mathscr{L}_{\text {int }} \varepsilon_{s} \sigma_{s}$];
- b : ditto for backgrounds $\left[\mathrm{b}=\mathscr{L}_{\mathrm{int}} \varepsilon_{\mathrm{b}} \sigma_{\mathrm{b}}\right]$;
- n : \# expected events [$\mathrm{n}=\mathrm{s}+\mathrm{b}$, or $\mathrm{n}=\mathrm{b}$];
- N : \# found events (N fluctuates around n with Poisson (\rightarrow Gauss) statistics;
- \mathcal{P} : probability, according to a given pdf;
- CL: "confidence level", a limit (<1) in the cumulative probability;
- Λ : likelihood function for signal+bckgd (Λ_{s}) or bckgd-only (Λ_{b}) hypotheses;
- μ : parameter defining the signal level [$n=b+\mu s$], used for limit definition;
- p : "p-value", probability to get the same result or another less probable, in the hypothesis of bckgd-only;
- $\mathrm{E}[\mathrm{x}]$: expected value of the quantity "x".
- A theory (SM, SUSY, ...) predicts a phenomenon (a particle, a dynamic effect), e.g. $e^{+}, \bar{p}, \Omega^{-}, W \pm / Z, H$;
- [in some cases the phenomenon depends on unknown parameter(s), e.g. the Higgs boson mass]
- a new device (e.g. an accelerator) is potentially able to observe the phenomenon [fully or in a range of the parameters space still unexplored];
- therefore, two possibilities:
A. observation: the theory is "verified" (à la Popper) [and the free parameter(s) are measured];
B. non-observation: the theory is "falsified" (à la Popper) [or some subspace in the parameter space, e.g. an interval in one dimension, is excluded \rightarrow a "limit" is established];
* different approach, nowadays less common ("model independent"): look for unknown effects, without theoretical guidance, e.g. $\mathbb{C P}$ violation, J/ ψ.

- the key point: usually $b \gg s$, but $f_{b}(x)$ and $f_{s}(x)$ are very different \rightarrow cuts in the event variables (x : mass, angle, ...), such that to enhance s wrt b;
- when n is large ($n \gg \sqrt{n}$), statistical fluctuations (s.f.) do NOT modify the result;
- usually (not only for impatience) n is small and its s.f. are important;
- small variations in the selection $(\rightarrow$ small change in b and s) may produce large differences in the result N [look at the example in two variables: e.g., if $b=0.001$ after the cuts, when N changes $0 \rightarrow 1, N=0$ or $N=1$ is totally different];
- a "neutral" analysis is impossible; \underline{a} posteriori, it is easy to justify a little change in the selection (e.g. cuts), which strongly affects the results;
- therefore, the only correct procedure consists in defining the selection a priori (e.g. by optimizing the expected visibility on a mc event sample); then, the selection is "blindly" applied to the actual event sample $(\rightarrow \quad$ "blind analysis").

which is the "right" cut?

searches and limits: flowchart

mc signal (theory for many values of the parameters $\theta_{k}, \sigma, d \sigma / d \cos \theta$, final state particles, ...)

detector mC (response, resolution, failures, ...)

analysis : optimization of cuts/selection to maximize signal visibility (e.g. s/Vb) (*)

[in the "good ole times", life was simpler: if the background is negligible, the first observations led to the discovery, as for $\mathrm{e}^{+}, \overline{\mathrm{p}}, \Omega^{-}, \mathrm{W}^{ \pm}$and Z]

- in most cases, the background (reducible or irreducible) is calculable;
- a discovery is defined as an observation that is incompatible with a +ve statistical fluctuation respect to the expected background alone;
- a limit is established if the observation is incompatible with a -ve fluctuation respect to the expected (signal + background);
- both statements are based on a "reductio ad absurdum"; since all values of N in $[0, \infty]$ are possible, it is compulsory to predefine a CL to "cut" the pdf;
- the CL for discovery and exclusion can be different : usually for the discovery stricter criteria are required;
- a priori the expected signal s can be compared with the fluctuation of the background (in approximation of large number of events, $s \leftrightarrow \sqrt{ } b): n_{\sigma}=s / \sqrt{b}$ is a figure of merit of the experiment;
- a posteriori the observed number (N) is compared with the expected background (b) or with the sum (s + b).

Example. In an exp., expect 100 background events and 44 signal after some cuts; use the "large number" approximation $(\Delta n=\sqrt{ } n)$:

$$
\begin{aligned}
& b=100, \Delta b=\sqrt{ } b=10 \\
& n=s+b=144, \Delta n=12
\end{aligned}
$$

The pre-chosen confidence level is " 3σ ".

The discovery corresponds to an observation of $N>(100+3 \times 10)=130$ events.
A limit is established if

$$
N<(144-3 \times 12)=108 \text { events. }
$$

There is no decision if $108<N<130$.
The values $N<70$ and $N>180$ are "impossible".

limits: problem

Problem (based on previous example) :
You want an experimentum crucis.
Compute the factor, wrt to previous luminosity, which allows to avoid the "nodecision" region. Assume the selection be the same.

- In general, the searches look for processes with VERY limited statistics (want to discover asap);
- therefore the limit ("n large", more precisely $n \gg \sqrt{ }$) cannot be used (neither its consequences, like the Gauss pdf);
- searches are clearly in the "Poisson regime": large sample and small probability, such that the expected number of events (n, s) be not large;
- use the Poisson distribution :

$$
\mathscr{P}(N \mid m)=\frac{e^{-m} m^{N}}{N!} ; \quad\langle N\rangle=m ; \quad \sigma_{N}=\sqrt{m} ;
$$

- therefore, in a search, two cases :

1. the signal does exist :

$$
\mathscr{P}(N \mid b+s)=\frac{e^{-(b+s)}(b+s)^{N}}{N!} ; \quad \begin{aligned}
& \langle N\rangle=b+s ; \\
& \sigma_{N}=\sqrt{b+s} ;
\end{aligned}
$$

[s may be known or unknown]
2. the signal does NOT exist :

$$
\mathscr{P}(N \mid b)=\frac{e^{-b} b^{N}}{N!} ;\langle N\rangle=b ; \sigma_{N}=\sqrt{b} ;
$$

- the strategy is : use $\mathrm{N}\left(=\mathrm{N}^{\mathrm{exp}}\right)$ to distinguish between case [1.] and [2.];
- since \mathscr{P} is >0 for any N in both cases, the procedure is to define a CL a priori, and accept the hypothesis [1.] or [2.] only if it falls in the predefined interval;
- modern (LHC) evolution : define a parameter, usually called " μ " :

$$
\mathscr{P}(N \mid b+\mu s)=\frac{e^{-(b+\mu s)}(b+\mu s)^{N}}{N!} ; \quad \begin{aligned}
& \langle N\rangle=b+\mu s ; \\
& \sigma_{N}=\sqrt{b+\mu s} ;
\end{aligned}
$$

clearly, $\mu=0$ is bckgd only, while $\mu=1$ means discovery; sometimes results are presented as limits on " μ " [e.g. exclude μ $=0$ means "discovery"].

- the "rule" on the CL usually accepted by experiments is:
> DISCOVERY : $\mathscr{P}(\mathrm{b}$ only $) \leq 2.86 \times 10^{-7}$, [called also " $5 \sigma^{(1)}$];
> EXCLUSION : $\mathscr{P}(\mathrm{s}+\mathrm{b}) \leq 5 \times 10^{-2}$; [called also "95\% CL"];
- a priori, the integrated luminosity $\mathscr{L}_{\text {int }}$ for discovery / exclusion can be computed :
$>\mathfrak{e}_{\text {disc }}: \mathscr{S}_{\text {int }} \min$, such that 50% of the experiments ${ }^{(2)}$ (i.e. an experiment in 50% of the times) had \mathscr{P} (b only) $\leq \mathscr{P}_{\text {disc }}$;
$>\mathfrak{\varrho}_{\text {excl }}: \mathfrak{L}_{\text {int }} \min$, such that 50% of the experiments ${ }^{(2)}$ (i.e. an experiment in 50% of the times) had $\mathscr{P}(\mathrm{s}+\mathrm{b}) \leq \mathscr{P}_{\text {excl }}$;

NB : this rule corresponds to the median ["an experiment, in 50\% of the times..."],
and is slightly different from the average ["an experiment, with exactly the expected number of events ..."].
(1) this probability corresponds to 5σ for a gaussian pdf only; but the experimentalists use (always) the cut in probability and (sometimes) call it " 5σ ";
${ }^{(2)}$ for combined studies an "experiment" at LEP [LHC] results from the data of all 4 [2] collaborations; in this case $\mathfrak{L}_{\text {int }} \rightarrow 4$ [2] $\times \mathfrak{K}_{\text {int }}$.
"A parameter is said to be excluded at $x \times \%$ confidence level [say 95\%] if the parameter itself would yield more evidence than that observed in the data at least 95% of the time in a [pseudo-] set of repeated experiments, all equivalent to the one under consideration."

> The values of $\mathscr{L}_{\text {disc }}$ and $\mathscr{L}_{\text {excl }}$ come from the previous equations; compute $\mathfrak{L}_{\text {disc }}$ ($\mathfrak{L}_{\text {excl }}$ is similar) :

$$
\begin{aligned}
& " *=e^{-b} \times \sum_{i=N}^{\infty} \frac{(b)^{i}}{i!} \leq \mathscr{P}(5 \sigma)=2.86 \times 10^{-7} ; \\
& " *=e^{-(b+s)} \times \sum_{i=N}^{\infty} \frac{(b+s)^{i}}{i!} \geq 0.5 ; \\
& b=\mathscr{S}_{\text {disc }} \varepsilon_{B} \sigma_{B} ; \quad s=\mathscr{L}_{\text {disc }} \varepsilon_{s} \sigma_{s} .
\end{aligned}
$$

$>$ assume increasing luminosity $\left(\mathfrak{L}_{\text {int }}=\right.$ $\left.\mathfrak{L}_{\text {disc }}\left[\mathfrak{L}_{\text {excl }}\right]\right)$ and constant $\varepsilon_{s}, \varepsilon_{b}, \sigma_{s}, \sigma_{b}$;
> assume to start with small $\mathscr{L}_{\text {int }}$: the two distributions overlap a lot, no N satisfies the system (i.e. the green tail above the median is too large);
> when $\mathscr{L}_{\text {int }}$ increases, the two distributions are more and more distinct (overlap $\propto 1 / \sqrt{ } \mathfrak{L}_{\text {int }}$);
> for a given value of $\mathscr{L}_{\text {int }}$, it exists a number of events N , such that the cuts at $\underline{2.86 \times 10^{-7}}$ (0.5) in the bckgd (signal) cumulative coincide; this value of $\mathscr{L}_{\text {int }}$ correspond to $\mathfrak{L}_{\text {disc }}$;
> this is the luminosity when, if the signal exists, 50% of the experiments have (at least) 5σ incompatibility with the hypothesis of bckgd only.
 back to our example:

- $b=100, s=44, b+s=144$
- show the Poisson distributions for bckgd only and for bckgd+signal
[notice: log-scale and normalization, x axis $=N_{\text {events }} y$-axis $\left.=\mathscr{P}_{\mathrm{b}, \mathrm{s}} / \mathscr{P}_{\mathrm{b}, \mathrm{s}}{ }^{\max }\right]$
Q in the average case, ok for the 5σ rule ?
A no !!! because $b+s(=144)$ is at 4.4σ from $b(=100) \rightarrow \mathscr{K}_{\text {int }}$ is not sufficient.

In a real data-taking run:

- at the beginning $\mathscr{L}_{\text {int }}$ is small, e.g. $b=10$, $s=4.4, b+s=14.4$ (plot n. .);
- then our previous $\mathscr{L}_{\text {int }}$ (plot n. 2);
- finally a further increase of 10 in $\mathscr{L}_{\text {int }}$ ($b=1000, s=440, b+s=1440$, plot n. 3) ;
- in case (3), the 5σ rule is more than satisfied: ok! (but long \& expensive).

limits : ex. m_{H} (a posteriori, b>0)

maximum likelihood: definition

- A random variable x follows a pdf $f\left(x \mid \theta_{k}\right)$;
- the pdf f is a function of some parameters $\theta_{\mathrm{k}}(\mathrm{k}=1, \ldots, \mathrm{M})$, sometimes unknown;
- assume a repeated measurement (N times) of x :

$$
\mathrm{x}_{\mathrm{j}}(\mathrm{j}=1, \ldots, \mathrm{~N}) ;
$$

- define the likelihood Λ and its logarithm $\ln (\Lambda)$ [see box].

Example : observe N decays with (unknown) lifetime τ, measuring the lives $\mathrm{t}_{\mathrm{j}}, \mathrm{j}=1, \ldots, \mathrm{~N}$.
Example : observe N decays
with (unknown) lifetime τ,
measuring the lives $t_{j}, j=1, \ldots, N$.

$$
\begin{aligned}
& \Lambda=\prod_{j=1}^{N} f\left(x_{j} \mid \theta_{k}\right) ; \\
& \ln (\Lambda)=\sum_{j=1}^{N} \ln \left[f\left(x_{j} \mid \theta_{k}\right)\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda=\prod_{j=1}^{N} f\left(t_{j} \mid \tau\right)=\prod_{j=1}^{N} \frac{1}{\tau} e^{-t_{j} / \tau}=\frac{1}{\tau^{N}} e^{-\sum t_{j} / \tau} ; \\
& \ln (\Lambda)=\sum_{j=1}^{N} \ln \left[\frac{1}{\tau} e^{-t_{j} / \tau}\right]=-N \ln (\tau)-\frac{1}{\tau} \sum_{j=1}^{N} t_{j} .
\end{aligned}
$$

then look for the value τ^{*},

$$
\begin{aligned}
& \frac{\partial \ln (\Lambda)}{\partial \tau}=0=-\frac{N}{\tau^{*}}+\frac{1}{\tau^{*}} \sum_{j=1}^{N} t_{j} \Rightarrow \\
& \tau^{*}=\frac{1}{N} \sum_{j=1}^{N} t_{j}=\langle t\rangle .
\end{aligned}
$$

maximum likelihood: parameter estimate

the m.l. method has the following important asymptotic properties [no proof, see the references]:

- consistent ${ }^{(1)}$;
- no-bias ${ }^{(2)}$;
- result θ^{*} distributed around $\theta_{\text {true }}$, with a variance given by the Cramér-Frechet-Rao limit [see];
- "invariant" for a change of parameters, [i.e. the m.l. estimate of a quantity, function of the parameters, is given by the function of the estimates, e.g. $\left(\theta^{2}\right)^{*}$ $\left.=\left(\theta^{*}\right)^{2}\right]$;
- such values are also no-bias;
- popular wisdom : "the m.l. method is like a Rolls-Royce: expensive, but the best".
an (in)famous example, not discussed here, is the uniform distribution.

NB. "asymptotically" means : the considered property is valid in the limit $N_{\text {meas }} \rightarrow \infty$; if N is finite, the property is NOT valid anymore; sometimes the physicists show some "lack of rigor" (say).

A famous problem.

We observe a limited region of space (\square), with N decays (D) of particles, coming from a point P, possibly external. In all events we measure $\vec{p}, m, \ell, \ell^{\text {min }}, \ell^{\text {max }}$ (minimum and maximum observable lengths), different in

Solution

Get $\mathrm{t}(=\mathrm{ml} /|\overrightarrow{\mathrm{p}}|), \mathrm{t}^{\min , \max }\left(=\mathrm{m} \ell^{\min , \max } /|\overrightarrow{\mathrm{p}}|\right)$. However, $\mathrm{t}^{\text {min }}$ and $\mathrm{t}^{\text {max }}$ (and the pdf), are different for each event [see figure].

Then:
every event. Find τ.

$$
\begin{aligned}
& \int_{t_{i}^{\min }}^{\operatorname{tin}_{\text {max }}} f(t) d t=1 \rightarrow f(t)=\left\{\begin{array}{cl}
0 & , t<t^{\text {min }} \\
\frac{e^{-t / \tau} / \tau}{e^{-t^{\min } / \tau}-e^{-t^{\text {max }} / \tau}}, t^{\min } \leq t \leq t^{\text {max }} \\
0 & , t>t^{\text {max }}
\end{array}\right. \\
& \ln \Lambda=\sum_{\mathrm{i}}\left[-\ln \tau-\frac{\mathrm{t}_{\mathrm{i}}}{\tau}-\ln \left(\mathrm{e}^{-\mathrm{t}_{\mathrm{i}}^{\min } / \tau}-\mathrm{e}^{-\mathrm{t}_{\mathrm{i}}^{\max } / \tau}\right)\right] ; \\
& \frac{\partial \ln \Lambda}{\partial \tau}=0=-\frac{N}{\tau}+\frac{1}{\tau^{2}} \sum_{i}\left(\mathrm{t}_{\mathrm{i}}-\frac{\mathrm{t}_{\mathrm{i}}^{\min } \mathrm{e}^{-\mathrm{t}_{\mathrm{m}}^{\min } / \tau}-\mathrm{t}_{\mathrm{i}}^{\max } \mathrm{e}^{-\mathrm{t}_{\mathrm{i}}^{\max } / \tau}}{\mathrm{e}^{-\mathrm{t}_{\mathrm{m}}^{\min } / \tau}-\mathrm{e}^{-\mathrm{t}_{\mathrm{max}} / \tau}}\right) ; \\
& \mathrm{t}_{\mathrm{i}}^{\max }=\infty \rightarrow \mathrm{N} \tau=\sum_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}}^{\text {min }}\right) \rightarrow \tau=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}}^{\min }\right) \text {. } \\
& \text { otherwise, if } \mathrm{t}_{\mathrm{i}}^{\max }<\infty \rightarrow \text { numerical solution. }
\end{aligned}
$$

Our problem: use the full LEP statistics for the search of the Higgs boson. Define:

- "channel c", c=1,..., C : (one experiment) \times (one $\sqrt{ }$ s) \times (one final state) [e.g. (L3) $\left.\left(V_{\mathrm{s}}=204 \mathrm{GeV}\right)-\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{HZ} \rightarrow \mathrm{b} Б \mu^{+} \mu^{-}\right)\right]$ (actually C > 100);
- "m = m_{H}, test mass" : the mass under study ("the hypothesis"), which must be accepted/rejected (a grid in mass, with interval ~mass resolution);
- for each $c(h a n n e l)$ and each m_{H} (in principle) a different analysis \rightarrow sets of $\left\{\sigma_{S}, \sigma_{B}, \varepsilon_{S}, \varepsilon_{B}, \mathfrak{L}\right\}_{c, m}\left[s_{c, m}=\mathscr{L} \varepsilon_{S} \sigma_{S}, b_{c, m}=\right.$ $\mathfrak{L} \varepsilon_{\mathrm{B}} \sigma_{\mathrm{B}}, \mathrm{b}_{\mathrm{c}, \mathrm{m}}+\mathrm{s}_{\mathrm{c}, \mathrm{m}}=\mathrm{n}_{\mathrm{c}, \mathrm{m}}$, all $\left.\mathrm{f}\left(\mathrm{m}_{\mathrm{H}}\right)\right]$;
- for each c and each $m_{H} \rightarrow$ a set of N_{c} candidates (= events surviving the cuts);
- call $\overrightarrow{\mathrm{x}}_{\mathrm{jc}}$ the variables (e.g. 4-momenta of particles) of "jc" [event j, channel c];
- [actually "jc" is a candidate for a range of m_{H};
- the mc samples (both signal and bckgd) allow to define $f_{c, m}^{S}(\vec{x})$ and $f^{B}{ }_{c, m}(\vec{x})$, the pdf for signal and bckgd of all the variables, after cuts and fits;
- other variables (e.g. reconstructed masses, secondary vertex probability, ...) are properly computed for each "jc";
- for each m_{H}, define the total number of candidates $\mathrm{M}_{\mathrm{m}} \equiv \sum_{\mathrm{c}} \mathrm{N}_{\mathrm{c}, \mathrm{m}}$;
- notice that, generally speaking, all variables are correlated [e.g. $\mathrm{m}_{\mathrm{j}}=\mathrm{m}_{\mathrm{jm}}=$ $m_{j}\left(m_{H}\right)$, because efficiency, cuts and fits do depend on m_{H}].

Then, start the statistical analysis...

- The likelihood function [PDG] is the product of the pdf for each event, calculated for the observed values;
- for searches, it is the Poisson probability for observing N events times the pdf of each single event [see box];
- since there are two hypotheses (b only and $b+s$), there are two pdf's and therefore two likelihoods;
- both are functions of the parameter(s) of the phenomenon under study (e.g. m_{H});
- the likelihood ratio \mathbf{Q} is a powerful (the most powerful) test between two hypotheses, mutually exclusive;
- the term "-2 ln ..." is there only for convenience [both for computing and because $-2 \ln (\Lambda) \rightarrow \chi^{2}$ for n large];
- in the box [see previous slide]:
> " $c=1, \ldots$ " " refers to different channels;
> $\mathrm{f}^{\mathrm{s}, \mathrm{b}}$ are the pdf (usually from mc) of the kinematical variables \vec{x} for event j_{c} :

$$
\begin{aligned}
& \text { given } f_{c}^{s}(\vec{x}), f_{c}^{b}(\vec{x}), f_{c}^{b+s}(\vec{x})=\frac{s_{c} f^{s}\left(\vec{x}_{c}\right)+b_{c} f^{b}\left(\vec{x}_{c}\right)}{s_{c}+b_{c}}: \\
& \Lambda_{s}=\Lambda_{s}\left(m_{H}\right)=\prod_{c=1}^{c}\left\{\begin{array}{l}
\mathscr{P}_{\text {poisson }}^{\mathcal{P}}\left(N_{c} \mid b_{c}+s_{c}\right) \times \\
\prod_{j_{c}=1}^{N_{c}}\left[f_{c}^{b+s}\left(\vec{x}_{j_{c}}\right)\right]
\end{array}\right\} ; \\
& \Lambda_{b}=\Lambda_{b}\left(m_{H}\right)=\prod_{c=1}^{c}\left\{\begin{array}{l}
\mathscr{P}_{\text {poisson }}\left(N_{c} \mid b_{c}\right) \times \\
\prod_{j_{c}=1}^{N_{c}}\left[f_{c}^{b}\left(\vec{x}_{j_{c}}\right)\right]
\end{array}\right\} ; \\
& -2 \ln Q=-2 \ln \left(\frac{\Lambda_{S}}{\Lambda_{B}}\right)=2\left(\ln \Lambda_{B}-\ln \Lambda_{s}\right) .
\end{aligned}
$$

maximum likelihood: m_{H} at LEP - formulæ

... and therefore \rightarrow
[once again, remember that everything is an implicit function of the test mass m_{H}].

$$
\begin{aligned}
\Lambda_{S} & =\prod_{c=1}^{c}\left\{\frac{e^{-\left(s_{c}+b_{c}\right)}\left(s_{c}+b_{c}\right)^{N_{c}}}{N_{c}!} \times \prod_{j=1}^{N_{c}}\left[\frac{s_{c} f^{S}\left(\vec{x}_{j c}\right)+b_{c} f^{B}\left(\vec{x}_{j c}\right)}{s_{c}+b_{c}}\right]\right\}= \\
& =\prod_{c=1}^{c}\left\{\frac{e^{-\left(s_{c}+b_{c}\right)}}{N_{c}!} \times \prod_{j=1}^{N_{c}}\left[s_{c} f^{S}\left(\vec{x}_{j c}\right)+b_{c} f^{B}\left(\vec{x}_{j c}\right)\right]\right\} ; \\
\Lambda_{B} & =\prod_{c=1}^{c}\left\{\frac{e^{-b_{c}} \times b_{c}^{N_{c}}}{N_{c}!} \times \prod_{j=1}^{N_{c}} f^{B}\left(\vec{x}_{j c}\right)\right\}= \\
& =\prod_{c=1}^{c}\left\{\frac{e^{-b_{c}}}{N_{c}!} \times \prod_{j=1}^{N_{c}} b_{c} f^{B}\left(\vec{x}_{j c}\right)\right\} ; \\
-2 \ln Q & =-2 \ln \left(\frac{\Lambda_{S}}{\Lambda_{B}}\right)=-2 \ln \left(\frac{\prod_{c=1}^{c}\left\{\frac{e^{-\left(s_{c}+b_{c}\right)}}{N_{c}!} \times \prod_{j=1}^{N_{c}}\left[S_{c} f^{S}\left(\vec{x}_{j c}\right)+b_{c} f^{B}\left(\vec{x}_{j c}\right)\right]\right\}}{\prod_{c=1}^{c}\left\{\frac{e^{-b_{c}}}{N_{c}!} \times \prod_{j=1}^{N_{c}} b_{c} f^{B}\left(\vec{x}_{j c}\right)\right\}}\right)= \\
& =2 \sum_{c=1}^{c} S_{c}-2 \sum_{c=1}^{c}\left[\sum_{j=1}^{N_{c}} \ln \left(1+\frac{s_{c} f^{S}\left(\vec{x}_{j c}\right)}{b_{c} f^{B}\left(\vec{x}_{j c}\right)}\right)\right] \cdot
\end{aligned}
$$

interpretation of results: discovery plot

- the likelihood is expected to be larger when the correct pdf is used;
- then the result of the test can be easily guessed (and translated into χ^{2}):
$-2 \ln \mathrm{Q}=-2 \ln \left(\Lambda_{\mathrm{s}} / \Lambda_{\mathrm{b}}\right) \approx \chi_{\mathrm{s}}{ }^{2}-\chi_{\mathrm{b}}{ }^{2}$

	b true	$(\mathrm{s}+\mathrm{b})$ true
Λ_{b}	+ , large	+ , small
Λ_{s}	,+ small	+ , large
$\Lambda_{\mathrm{s}} / \Lambda_{\mathrm{b}}$	$\ll 1$	$\gg 1$
$\ln \left(\Lambda_{\mathrm{s}} / \Lambda_{\mathrm{b}}\right)$	- - large	+ + large
$-2 \ln \mathrm{Q}$	+ +, large	-, large

the plot is a little cartoon of an ideal situation (e.g. Higgs search at LEP2), that never happened :

- the cross-section decreases when m_{H} increases \rightarrow for large m_{H} no discovery.

interpretation of results: parameter μ

- put: $\sigma^{\exp }=\sigma^{b}+\mu \sigma^{s}$
$\left[\sigma^{b, s}\right.$ include $\left.\varepsilon^{b, s} \rightarrow \mathrm{n}=\mathrm{b}+\mu \mathrm{s}\right] ;$
- plot : horizontal : m_{H}.

$$
\text { vertical } \quad: \mu\left[=\left(\sigma^{\exp }-\sigma^{b}\right) / \sigma^{s}\right] ;
$$

> the lines show, with a given $\mathscr{L}_{\text {int }}$ and analysis, the expected limit (--), and the actual observed limit (-), i.e. the μ value excluded at 95\% CL;
> the band shows the fluctuations at $\pm 1 \sigma$ ($\approx 68 \%$) of the "bckgd only" hypothesis; the band \downarrow is the same for $\pm 2 \sigma$ ($\approx 95 \%$).

- the case $\mu \neq 0,1$ has no well-defined physical meaning (= a theory identical to the SM, but with a scaled cross section);
- if the lines are at $\mu>1$, the distance respect to $\mu=1$ reflects the $\mathscr{L}_{\text {int }}$ necessary to get the limit in the SM.

interpretation of results: p-value

$$
p \equiv \int_{x_{\text {obs }}}^{\infty} f\left(x \mid H_{0}\right) d x
$$

- the "p-value" is the probability to get the same result or another less probable, in the hypothesis of bckgd only.
- $\mathrm{x}=$ "statistics" (e.g. likelihood ratio);
- $\mathrm{H}_{0}=$ "null hypothesis" (i.e. bckgd only);
i.e.
p small $\rightarrow \mathrm{H}_{0}$ NOT probable
\rightarrow discovery !!!

- vertical : p-value;
- horizontal : m_{H}.
- the band $(>)$ shows the fluctuations at $1 \sigma(2 \sigma)$.

NB the discovery corresponds to the red line below 5σ (or 2.86×10^{-7}), not shown in this fake plot.

References

1. classic textbook : Eadie et al., Statistical methods in experimental physics;
2. modern textbook : Cowan, Statistical data analysis;
3. simple, for experimentalists : Cranmer, Practical Statistics for the LHC, [arXiv:1503.07622v1]; (also CERN Academic Training, Feb 2-5, 2009);
4. bayesian : G.D'Agostini, YR CERN-99-03.
5. statistical procedure for Higgs @ LEP2 : A.L.Read, J. Phys. G: Nucl. Part. Phys. 28 (2002) 2693;
6. mass limits : R.Cousins, Am.J.Phys., 63 (5), 398 (1995).
7. [PDG explains everything, but very concise]
bells are related to dramatic events even outside particle physics

End of chapter 4

