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LHC papers
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ATLAS < April 2021

• ∼ 1000 papers;

• > 100 papers/year;

• [arbitrarily] divided into 8 subjects;

• bSM searches > ⅓;

• in the future [probably]:
 slower rate (dominated by stat +

sys.);
 more bSM.

[NB too boring to repeat it for CMS,
but must be very similar]

St. Model
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B phys
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LHC processes
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NB. Spp̄S and Tevatron
are p̄p, LHC is pp.
However, no difference
within the accuracy of
this plot.

• few examples only;
• only show the results;
• no unfair comparison

ATLAS ↔ CMS;
• analyses in progress,

no attempt to follow
the frequent updates.



physics bSM @ LHC
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LHC results: jet spectrum1/8
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pT (GeV/c)

pp and p̄p
45 GeV < √s < 7 TeV

(ISR, Spp̄S, Fermilab, LHC)

PDG 
2016

"Simple" explanation:

Inclusive differential jet cross sections,
in the central rapidity region, plotted as
a function of the jet transverse
momentum.

Results earlier than from the Tevatron
Run 2 used transverse energy rather
than transverse momentum and
pseudo-rapidity η rather than rapidity
y, but pT and y are used for all results
shown here for simplicity. The error
bars plotted are in most cases the
experimental stat. and syst. errors
added in quadrature.

The CDF and D0 measurements use jet
sizes of 0.7 (JetClu for CDF Run 1, and
Midpoint and kT for CDF Run 2, a cone
algorithm for D0 in Run 1 and the
Midpoint algorithm in Run 2). The
ATLAS results are plotted for the antikT
algorithm for R=0.4, while the CMS
results also use antikT, but with R=0.5.
NLO QCD predictions in general
provide a good description of the
Tevatron and LHC data; the Tevatron
jet data in fact are crucial components
of global PDF fits, and the LHC data are
starting to be used as well.

Comparisons with the older cross
sections are more difficult due to the
nature of the jet algorithms used.

limits on 
physics bSM
[see]



LHC results: 𝛂𝛂s running2/8
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PDG 2020, an update
of the plot shown in
PP-§6, with many
more points.



LHC results: σtt̄ vs √s3/8
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• technically a difficult analysis (secondary
verteces + leptons + multijets + ɆT);

• agreement ATLAS ↔ CMS and QCD ↔ data;

• [as seen in PP-§3] p̄p larger at small √s, but
pp similar when √s increases, due to gluon
dominance in PDF at small x;

• another perfect agreement, textbook-like.

high-x

low-x

low-x



LHC results: nice SM rare processes (1)4/8
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only diagram at tree level for some very smart analyses; interested readers are kindly invited to look at
the Prague 2020 material, e.g. the talk of Bogdan Malaescu.
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LHC results: nice SM rare processes (2)5/8
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LHC results: small-σ processes6/8
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• the "heavy flavor/boson" sector:
 tt̄ (QCD);
 single top (ew) [example below];

 WW, WZ, ZZ (ew);
 H (ew);

• shown vs √s;
• notice:
 LHC "sees" well at the pb level;
 H is not very different from ZW /

WW / ZZ channels, neither as
mass, nor as σ, nor as √s
dependence;

• SM (qpm + pQCD + ew) works well.
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LHC results: SM processes (ATLAS)7/8
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LHC results: SM processes (CMS)8/8
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LHC fits: Rosetta stone of the SM fit1/4
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J. Haller et al., arXiv: 1803.01853 [hep-ph] : "Comparison of
the fit results and the input measurements with the indirect determinations
in units of the total uncertainties. Analog results for the indirect
determinations illustrate the impact of their uncertainties on the total
uncertainties. The indirect determination of an observable corresponds to a
fit without using the constraint from the corresponding input measurement."

I.e. (see the example for MW) :
• Oexp : exp. measurement;
• Ofit : result of the complete e.w. fit *;
• Oindirect : e.w. fit, with all meas, BUT the plotted one;
• σexp : error on Oexp (stat ⊕ sys ⊕ theo);
• σtot : σexp ⊕ σindirect.
Then, for all quantities:
• blue strip : (Oindirect − Oindirect ) / σtot ± σindirect/σtot;
• orange strip : (Oindirect − Ofit) / σtot± σfit/σtot;
• points : (Oindirect − Oexp) / σtot ± σexp/σtot.
____________________

"⊕" = "in quadrature";

* the e.w. fit gets (using higher orders) mH, mz, couplings,
fermion masses; then all e.w. quantities can be computed.

= 0 ± σindirect/σtot

roughly speaking:
• blue width : error of indirect fit;
• orange displacement  : how 

much a point  moves its fit;
• orange width : error of full fit;
• points : uncorrelated wrt blue;
• points / err : pull.
[a lot of info, main result:

SM = ok → all within errors ]



• in the past the main 
interest was:
 predict unseen particles 

(top, Higgs) via rad. 
corrections;

 [possible deviations 
from SM];

• now the fit is much over-
constrained: look for bad 
pulls → physics bSM;

• however, good agreement 
(see figs.), textbook-like.

Paolo Bagnaia - CP - 5b 15

LHC fits: results2/4 LHC fits: results
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LHC fits: mw vs mt
3/4

The LHC version of an old plot: mw vs mt
for few values of mH;
• supposed to be very sensitive to physics

bSM (and to exp. mistakes !);
• watch the blue and green ellipses ...

• ... and fear (hope ?) they move apart;
• it would show that mH is inconsistent

with the other masses → the 125 GeV
particle is NOT the SM Higgs.

any 
hope 

?

keep improving !!!
[especially mw !!!]

LHC fits: mw vs mt
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LHC fits: fits vs discoveries4/4

The prediction from SM fits and the
direct observation vs year for:
• mH, the Higgs mass (indirect data

from LEP, Fermilab, LHC, direct
observation at Fermilab+LHC));

• mt, the top quark mass (ditto for
i.d., d.o. at LHC).

Why show these plots ?
• irrelevant for physics, which is independent 

of discovery time and method;
• NOT for parochial  feuds ("who really made 

the discovery ?");
• … but to give confidence on the quality and

reliability of the fits;
• … which however require a lot of tech. skill 

(... and are less convincing...)

LHC fits: fits vs discoveries



the MSM Higgs
• [the symbol mH means that in the slide the

value of the mass of the Higgs is unknown
and may vary:
 for didactic reasons,
 [because the analysis is still in progress,]
 because of a possible larger H sector

• [at least] one H boson in SM;

• just one Higgs in "minimal standard model"
MSM [MSM assumed in the following];

• [> 1 in theories bSM, e.g. in SUSY: h, H, A, H±]

• charge : 0; spin : 0; JP = 0+ [other H may have
different q.n.];

• in MSM directly coupled with all massive
particles, i.e. all but γ, g, ν's (if massless);

• it behaves like a normal particle (with exotic
couplings): it is produced, it decays, etc etc..

1/8
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ƒ (q,q̄,ℓ±)

H
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H(MSM): potential VH
2/8
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H(MSM): function V(φ)3/8
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mH

• the horizontal shape of VHiggs (e.g. φmin, υ) does
NOT depend on mH;

• the vertical shape is ∝ mH
2 (shown mH = 100 / 125 GeV);

• the parabola at φmin represents a particle of mass
mH = the Higgs boson !
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H(MSM): all SM couplings4/8
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H(MSM): mass limits5/8
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mH
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• in the SM the Higgs mass is a free
parameter; however its value is
limited by the consistency of the
theory [more on next page];

• the vacuum stability limits mH vs
the scale Λ of hypothetical new
physics (green line);

• the non-violation of the unitarity
puts a limit mH ≤ 1 TeV (approx.);

• if the SM has to be consistent,
the triviality puts another limit on
mH, as a function of Λ (red line);

• all together, if Λ=mPlanck, then
130 < mH < 180 GeV [approx.];

• the blue line corresponds to
mH = 125 GeV [quite puzzling].



H(MSM): vacuum and triviality6/8
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Vacuum stability (green line) roughly means
the following:
 the parameter "λ" is a constant at tree

level only;
when higher orders are considered, λ

becomes a variable, which follows an
appropriate equation (renormalization
group equation, r.g.e.);

λ is required to be +ve for all the values of
the scale Q;

 if, for a given value Q = Λ, the value of λ
becomes −ve, the SM breaks;

 the only way to restore λ, is to assume
that, for Q ≥ Λ, some new physics appear
in the equation, such that λ remains +ve;

 therefore Λ is NOT a precise value in
some process, but a scale for new physics;

Λ depends on mH and the H couplings;
the most important (and unknown) is mt.

Triviality (red line) means:
 from the r.g.e. equation, one gets:

 to be consistent, λ(Q) must be small and
only vanish if Q = ∞; in this case, the H
gets no interaction (trivial solution);

 to avoid λ(Q) → ∞ (Landau pole), with a
similar argument as before, λ(Q=Λ) < ∞;

 this requirement puts a limit on mH vs the
scale Λ of possible new physics:

mH

(GeV)

2

2 2

1 1 3 Qn
(Q) ( ) 4

 
= −  λ λ υ π υ 

l

( )

= υ λ ≤

≤ υ λ =

π υ
=

Λ υ

2 2
H

2
max

2 2

2 2

m 2

2

8 .
3 n /l



H(MSM): vacuum stability7/8
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Assume the Higgs has been found
at ∼125 GeV:
• according to the previous

argument, the universe is stable,
meta-stable, or in-stable ?

• even with the MSM assumption
(particle found at LHC = MSM
Higgs), the present error does not
answer the question;

• only a future, more precise
measurement will solve it;

• notice in the plot (year 2018 !!!):
 the error on the top quark mass

is VERY important;
 the scale of "new physics"

necessary to get stability is very
large: > 1010 GeV;

• if the LHC measurement is taken at face value, the
universe is metastable, but its lifetime may exceed
its age (∼ 1010 years) [next page];

• so, do not panic, but improve the measurement !!!

this page should appear after the discussion 
of the Higgs discovery, but here it is easier.



H(MSM): is the universe decaying ?8/8
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From the same paper:
Thus, the lifetime of the Standard Model
universe is

That is, to 68% confidence, 10102 <
τSM/years < 10321. To 95% confidence 1065 <
τSM/years < 101383.
To be more clear about what the lifetime
means, we can ask a related question:
what is the probability that we would have
seen a bubble of a decaying universe by
now? Using the space-time volume of our
past lightcone [...] and the Hubble constant
[...], the probability that we should have
seen a bubble by now is

Since the bubbles expand at the speed of
light, chances are if we saw such a bubble
we would have been destroyed by it; thus
it is reassuring to find the probability of
this happening to be "quite small".

+
−τ =

160
59161

SM [...] 10 years.

( )
−
+−
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Γ
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Higgs properties: production dictionary1/8

Paolo Bagnaia - CP - 5b 26

q̄

q W,Z

W,Z

H

g
Ht

g

q/q̄

q/q’/q̄/q̄'

W,Z
W,Z

H

g

Hg

Z g

Hg

Z

t

t̄

Hg

g q̄

q g
H

t̄

t
g g

H
t̄

t

g

ggF
gluon 
gluon
fusion

VBF
vector 
boson 
fusion

VH
[= WH 
+ ZH]

VH 
production

tt̄H tt̄H
process

• Higgs production processes in hadron
colliders, with their usual names;

• only main diagrams, many others less
important (e.g. single top);

• emphasis on detectability → some
particles in final state may help it;

• here, when relevant, also virtual
particles [e.g. W = W(*), Z = Z(*)].



H → ƒ ̅ƒ

H → WW / ZZ

H → gg

H →�

Higgs properties: decay dictionary2/8
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• Higgs decay modes;
• "ƒ" = any fermion (q, ℓ, NOT ν) ; the

coupling (therefore the BR) is
strongly dependent on its mass;

• as usual, e.g. W = W(*), Z = Z(*)

[but, for mH = 125 GeV, H → WW*, 
ZZ* only !!!].

ƒ
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H
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t, (b)
H

g

g

γ

γ

t, (b)H
γ

γ

H W± γ
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Higgs properties: decays ƒ, W, Z3/8
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mH

• at "tree level" the partial width for the
Higgs decay into a pair of real fermions
(ƒ=quarks, leptons) or real gauge bosons
(V = W, Z) is given by :

• therefore, for mH small (mH < 110 GeV),
H→bb̄ dominates (see § LEP);

• if mH > 2 mW,Z, the largest BR would be
for H → W+W─, H → ZZ;

• in the region mH = 110 ÷ 180 GeV, the
decays into W*W and Z*Z are important
(also because of their detectability); but
the formula with βV assumes real W/Z;
when virtual W*/Z* are required, the
computation is different; for mH=125
GeV, results are reported below;

• when mH increases, new decay channels
open; moreover, the partial widths also
increase; therefore Γtot is a strong
function of mH :
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in principle correct, 
but useless



Higgs properties: decays gg, γγ4/8
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• in addition, also few "higher order" decays (γγ,
Zγ, gg);

• the decays H→gg and H→γγ (much less H→Zγ)
are important for the discovery :
 the decay H→gg is large, although not easy

to identify (→ 2 jets, large QCD bckgd);
 the decay H→γγ is rare, but has high

efficiency and little bckgd (see later);
• complete formulas in references :
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for � , interference W ↔ t 
large and negative (a nice 
test of the SM).



Higgs properties: decay BR vs H mass5/8
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mH

2mt

mH = 125 GeV [CERN-2013-004] 
decay mode Γ (MeV) BR (%)

bb ̄ 2.37 58.2
W±W∓* 0.871 21.4

gg 0.334 8.2
τ+τ− 0.255 6.3
ZZ* 0.107 2.6
cc̄ 0.118 2.9
γγ 9.2E-03 0.23
Zγ 6.2E-03 0.15

µ+µ− 8.9E-04 0.022
sum 4.07 100

Unlike LEP2, in the LHC energy
range, the Higgs boson decay mode
is highly variable
→ a challenge for the experiments.

2mZ

2mW



Higgs properties: BR(80 < mH < 200 GeV)6/8
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mH

enlarge for 80 < mH < 200 GeV.

Higgs BR 
(mH = 125 GeV)

bb

WW

gg

ττ

ZZ

cc

γγ

Ζγ

µµ



Higgs properties: full width vs mH
7/8
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mH

4.07 MeV

roughly ∝ mH
3

mH≈1.4 TeV →Γtot ≈ mH, 
not anymore a particle

the direct measure of
ΓH is a powerful test of
the SM. How measure
it ? ideas welcome !

ΓH=mH



Higgs properties: formation in ℓ+ℓ−
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8/8

ƒ

H
ƒ ̅

"X"
[=any-
thing]

( )
−= µ µ ==

 
Γ 

 − +

Γ   Γ
σ → →    Γ Γ  

→

π =   



Γ 
Γπ
Γ

 
 





→
H, 

+
H

2
H

2 2
H H

ƒƒ
2
H

ƒƒ X

s m X al

H

H

H

ƒƒ = , m 125 GeVl  

(ƒ ƒ H X) 1 /4

s M /4

4
m

 6

4

4

16   
s

 pb.

Question (for a lepton collider, not for LHC):
why not a direct formation from (spin ½) -
fermions (ƒƒ ̅ → H → X) in the s channel ?
Answer: it is depressed by the H coupling
with low-mass fermions (Γƒ ∝ mƒ

2).
Compute it for a hypothetical µ+µ− machine:

( )
( )( ) ( )

ψ

σ → → =

  +    π Γ Γ Γ   =         + + Γ Γ      − +Γ   

2
R ab X R

2 2
a b R R R R

[see Introduction, or the J/  in PP]

(ab R X, s)

2J 116 /4  
s 2S 1 2S 1 s M /4

for e+e─, factor (me/mµ)2 ≈ 1/40,000:
→ impossible for electron colliders;
→ one of the main motivations for

muon colliders.



Higgs − pre-LHC : Tevatron legacy (1)1/5
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Higgs Mass (GeV)

mH

The "American dream" in 2009:
get the Higgs before LHC, by
combining CDF + D0.



Higgs − pre-LHC : Tevatron legacy (2)
at LEP, for mH < 115 GeV, the value of n (= Lint εs σs)
was monotonic and strongly decreasing with mH;

on the contrary, for higher mH, due to the different
decay modes with different efficiency, n has various
maxima; the exclusion interval breaks accordingly.

2/5
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i.e. "µ"

mH

"LLR" ≡ log likelihood ratio =
−2ℓn(Λs/Λb)



Higgs − pre-LHC : complete legacy (1)
• the (in)famous "blueband",

already discussed, wants a
light Higgs; it includes all the
known info, BUT the direct
search at LEP, Tevatron and
LHC, shown separately;

• instead, the yellow bands
represent the result of the
direct searches [NB : no
experimental correlation
with the blueband];

• the yellow bands varied a
lot with time; the present
figure refers to just before
2012; it includes TeVatron
(160-170 GeV excluded) and
the first LHC data;

• everything is now ready to
show the direct LHC search.

3/5
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mH

allowed only here 



Higgs − pre-LHC : complete legacy (2)
bottom: mw vs mH (strong correlation);
right : individual meas. contribution;

4/5
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mH



Higgs − pre-LHC : radiative corrections
Already in 2010, radiative corrections
+ direct searches allowed for a very
precise determination of mH.
[Gfitter, Eur.Phys.J. C72 (2012), 2003]

5/5
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mH

( )

2 2 2
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H 22
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Higgs − LHC predictions : production1/5
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mH

Luminosity (fb-1) L / √s / exp

√s (TeV) 7 TeV 8 TeV 7,8,13
ATLAS 4.7 20.7 139
CMS 5.1 19.6 137

• real process at parton level;
• PDFs depend on MH and √s,  (i.e. √ŝ and x);
• σ125 = few × 10 pb;
• observables = σ×Bri, but some decays not 

measurable, some difficult.

to be compared with:



Higgs − LHC predictions : σH @ 7 TeV2/5
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mH

VH

ggF

tt̄H

VBF

(see dictionary)



Higgs − LHC predictions : σH @ 8 TeV3/5
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mH

VH

ggF

tt̄H

VBF

√s (TeV) ggF VBF WH ZH tt ̅H (…) Sum σ(pp → HX) 
(pb)

[computed for 
mH = 125 GeV]

7 15.0 1.22 0.58 0.33 0.09 0.2 17.4

8 19.2 1.58 0.70 0.41 0.13 0.3 22.3

14 49.2 4.15 1.47 0.86 0.59 … 56.3

(see dictionary)



Higgs − LHC predictions : σH × BR4/5
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mH

potentially visible decays only
[e.g. WW → qq ̄qq ̄ is missing]

VH

ggF

tt̄H

VBF



Higgs − LHC predictions : σH × BR5/5
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mH

Same plot, different scale, to
show the low mH behavior.
The dots are the "golden
channels":
a) � ;
b) ℓ+ℓ−ℓ+ℓ−.

i.e. a compromise between
yield and observability.



Higgs discovery : H → ZZ* - ATLAS1/8
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looking for the 
Higgs boson !!!

H → ZZ* → ℓ+ℓ─ℓ+ℓ─

Test mass ~ 125 GeV
(exact values from mass fits,
small variations – within errors)

1. ATLAS animated gifs: 
https://twiki.cern.ch/twiki/bin/vi
ew/AtlasPublic/HiggsPublicResul
ts#Animations

2. ditto for CMS: 
https://twiki.cern.ch/twiki/bin/vi
ew/CMSPublic/Hig13002TWiki

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults#Animations
https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig13002TWiki


Higgs discovery : H → ZZ* - ATLAS p-value2/8
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NB. obs (−) and exp (- -)
are expected to agree
ONLY at mH

obs.

ATLAS 4 ℓ±

• 2011 : some excess,
below 3σ;

• 2012 : ~ 6 σ;
• combined : between 6

and 7 σ.

more than expected, but
not incompatible.



Higgs discovery : H → ZZ* - CMS3/8
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H → ZZ* → ℓ+ℓ─ℓ+ℓ─

Test mass ~ 125 GeV
(exact values from mass fits,
small variations – within errors)



Higgs discovery : H → ZZ* - CMS p-value4/8

Paolo Bagnaia - CP - 5b 49

NB. obs (−) and exp (- -)
are expected to agree
ONLY at mH

obs.

CMS 4 ℓ±

• 2011 : some excess,
~3 σ;

• 2012 : > 6 σ;
• combined : between 6

and 7 σ.

well compatible with
expected.



Higgs discovery : H → γγ - ATLAS5/8
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Higgs discovery : H →� - ATLAS p-value6/8
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NB. obs (−) and exp (- -) are
expected to agree ONLY at mH

obs.

ATLAS γγ

• 2011 : some excess,
>3 σ;

• 2012 : > 6 σ;
• combined : >7 σ.

more than expected,
but not incompatible.



Higgs discovery : H →� - CMS7/8
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Higgs discovery : H →� - CMS p-value8/8

Paolo Bagnaia - CP - 5b 53

NB. obs (−) and exp (- -)
are expected to agree
ONLY at mH

obs.

CMS �

• 2011 : some excess,
>3 σ;

• 2012 : > 3 σ;
• combined : ∼4 σ.

well compatible with
expected.



Higgs today
After discovery, what next ?
[the new particle exists, but must check
whether it is exactly the SM Higgs]
Strategy :
• measure as many as possible H

properties :
mass ( → masses in all decays);
production rates (→ vs √s);
production mechanisms and decay

BR's (→ couplings);
 angular distr. of decay products;

• compare with SM predictions and check
(hope) for discrepancies;

• look for the rest of the mH range,
searching for a richer Higgs spectrum;

• [the same for any other bSM theory];
• [also with model-independent analyses].

Warning:
• neither a standard textbook explanation

nor a report of present state-of-art
results, but an attempt to show the
strategy of the current studies;

• best effort to produce updated results
and plots, but no guarantee (updates
almost daily);

• few properties only (e.g. skip the
interesting but complicated attempt to
measure H width and JCP);

• no discussion of bSM analyses (actually
most studies, but none successful, until
now…, see next chapter);

• a neverending work in progress …
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Higgs today: 4ℓ± mass - plot 2020
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2/6

A fresh look to new data at 13 TeV for H → 4ℓ±
(see L plot).
The data size has strongly improved: just look at
the discovery plots.
The exact p-value looks irrelevant, we are back to
the old-fashioned regime "the presence of the
effect is obvious" [but NOT the interpretation !]





Higgs today: γγ mass - plot 2020

Paolo Bagnaia - CP - 5b 56

3/6



... and for H → γγ.
[same comment on p-value]



Higgs today: mass(es ?)
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4/6

Fot the (� ) and (4ℓ) channels 
∆mH/mH < 1% (very precise): 
• if particle NOT the SM H →

m(� ) and m(4ℓ) could be 
different;

• but in the data their mass is
compatible;

• and ATLAS and CMS are fully
compatible;

• assuming combination, the
PDG 2020 estimation has the
error at 10-3 level:

mH = 125.10 ± 0.14 GeV
[an unprecedented success, just 
go back and look for W/Z at the 
Spp̄S].





Higgs today: mass SM vs direct
• the indirect measurement still likes a low-

mass Higgs;
• [but be aware that "2σ" is NOT "2 × 1σ";]

• stat. fluctuation [most likely imho] or real
hint of new physics ?

• "ai posteri l'ardua sentenza" ["sentence
waits posterity", really ?]

5/6
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I love this plot, 
I've shown it 5 
or 6 times.



Higgs today: H →µ+µ−
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One of the highlights of the last year:
H →µ+µ−

• the coupling is very small (BR 2×10−4) →
difficult;

• before it, only 3rd family + IVB's, this is 
the 1st fermion of the 2nd family;

• in the SM the coupling is NOT a function 
of the family [but you never know].

6/6



Higgs couplings: new SM predictions
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For production/decay precision meas.,
better SM predictions are needed.
Calculations of Higgs properties vs mH up
to mH = 1 TeV are now useless (they are
used to look for a larger Higgs sector).

New calculations for:
• σH vs √sLHC for mH = 125 GeV;
• BR(H →X).

1/9



Higgs couplings: Γ's
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2/9

• Γ(H→fermions/IVBs/…) ≡ Γƒƒ/WW/ZZ/…
completely specified in SM, once mH
fixed [see plot before and IE, § 14];

• very different if real/virtual W/Z
(H125 → W*W or Z*Z only);

• computable from H production and
decay (difficult because of higher
orders, loops, …);

• strong function of mƒ / mIVB;

• [LINT up → more events → smaller
mƒ probed];

• wonderful agreement theory ↔ exp.
[as usual … … ];

• powerful test of SM : improve
accuracy for better test →
discrepancies [hope … …].
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Higgs couplings: modifiers κ3/9
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An example of this analysis:
• κF vs κV (i.e. fermions vs IVBs);
• large errors, but compatible

with κF = κV = 1;
• agreement ATLAS ↔ CMS

(not shown).



The present situation:
• a measurement of the modifiers κj for

the couplings with Z, W, t, b, τ, g, γ;
• [of course the couplings with g and γ

go through loops];
• Bi[nvisible] and Bu[ndetected] are added as

free parameters to allow for possible
bSM couplings;

• consistency with SM: all κ's = 1, B's ≈
0 (Bi < 9% at 95%CL).

Higgs couplings: results (ATLAS)

Paolo Bagnaia - CP - 5b 63
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Higgs couplings: results (CMS)

Paolo Bagnaia - CP - 5b 64

5/9

a similar plot for CMS:
• couplings with bosons (γ/Z/W), 3rd

gen. fermions (τ,b), 2nd gen.
fermions (µ);

• coupling with t also tested via
production;

• 1st gen. still missing;
• ="1" → SM ok;
• the physics is VERY clear: no

deviation from SM.



Higgs couplings: values vs mƒ/mV
6/9
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Higgs couplings (measured vs SM):

• plot together couplings (including κƒ,
κV) vs mass of fermions and IVBs;

• compatible with SM (κƒ = κV = 1),
represented by the line (- - - -);

• agreement ATLAS (not shown) ↔
CMS;

• impressive, from mµ to mt → more
than 3 orders of magnitude;

• [imho the best evidence for SM in the
higgs sector].

ra
tio

to
SM

κ ƒ
or



Higgs couplings: σ × BR7/9
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An old example of this analysis:
• for all the decays (5 × "ƒ");
• group (VBF+VH) and (ggF+tt̄H),

i.e. bosons vs fermions.
VH

ggF tt̄HVBF 



Higgs couplings: production mechanisms

Paolo Bagnaia - CP - 5b 67

8/9

All main production
mechanisms (see diagrams)
observed with significance
> 5σ and yields compatible
with SM;

VH

ggF tt̄HVBF



Higgs couplings: production & decay
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9/9

and the detailed
analysis of all
the channels
(production and
decay) is in
agreement.



Higgs conclusion: (1)

Paolo Bagnaia - CP - 5b 69

… finally (PDG 2020, slightly simplified):

The discovery of the Higgs boson [H] is a major
milestone in the history of particle physics as
well as an extraordinary achievement of the LHC
machine and the ATLAS and CMS experiments.
Seven years after the discovery, substantial
progress in the field of H physics has been
accomplished and a significant number of
measurements probing the nature of this unique
particle have been made. They are revealing an
increasingly precise profile of the H.

The LHC has now concluded its Run 2,
delivering a dataset of 13 TeV pp collisions
corresponding to an integrated luminosity of
approximately 140 fb−1 of data collected by
ATLAS and CMS. With the substantial increase in
production rates at the higher center-of-mass
energy and the larger datasets, new landmark
results in Higgs physics have been achieved.

Three new results of fundamental importance
have been achieved with partial Run 2 datasets
by ATLAS and CMS independently: (i) the clear

and unambiguous observation of the Higgs
boson decay to taus; (ii) the clear and
unambiguous observation of the H decay to a
pair of b quarks; (iii) the clear and unambiguous
observation of the production of the H through
the tt̄H process. These results provide direct
evidence for the Yukawa coupling of the H to
fermions of the third generation: taus, bottom
quarks and top quarks, at rates compatible with
those expected in the SM. These, and all other
experimental measurements, are consistent
with the EWSB mechanism of the SM.

New theoretical calculations and
developments in Monte-Carlo simulation
pertaining to H physics are still occurring at a
rapid pace. [...] With these improvements in the
state-of-the-art theory predictions and the
increase in luminosity and center-of-mass
energy, Higgs physics has definitively entered a
precision era. Its impact can already be seen on
the latest Run 2 combined measurements of the
H couplings.

(continue …)

1/3



Higgs conclusion: (2)
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(… continue)
Since the discovery of the H, new ideas have

emerged to probe its rare decays and
production modes. [...] The H has now become
part of the standard toolkit in searches for new
physics.

[...] The ATLAS and CMS experiments have
searched for additional H in the Run 2 data, and
have imposed constraints in broad ranges of
mass and couplings for various scenarios with an
extended Higgs sector.

The landscape of Higgs physics has been
extended extraordinarily since its discovery. The
current dataset is approximately only five
percent of the total dataset foreseen for the HL-
LHC project. The current precisions on the
measurements of the couplings of the H to
gauge bosons and third generation fermions are
typically of the order of 10–20%. The uncertainty
on the H coupling to the muon is approximately
100%, and the upper limits on the branching

fraction to new invisible or undetected particles
are approximately 20%. The sensitivity to the H
self-coupling has not reached the SM value yet
and there is no information on how the Higgs
field acquired its VEV in the early times of the
Universe. This situation allows for new
challenges to ultimately increase further the
reach in precision and it also widens the
possibilities of unveiling the true nature and the
dynamics of the EWSB.

(continue …)
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Higgs conclusion: (3)
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(… continue)
[...] The fermion-Higgs boson couplings are not

governed by local gauge symmetry. Thus, in
addition to a new particle, the LHC has also
discovered a new force, different in nature from
the other fundamental interactions since it is
non-universal and distinguishes between the
three families of quarks and leptons. The
existence of the H embodies the problem of an
unnatural cancellation among the quantum
corrections to its mass if new physics is present
at scales significantly higher than the EW scale.
The non-observation of additional states which
could stabilise the H mass is a challenge for
natural scenarios [...] in which the H is not a
fundamental particle. This increasingly pressing
paradox starts questioning the principle of
naturalness.

The search for the H has occupied the particle
physics community for the last 50 years. Its
discovery has shaped and sharpened the physics
programs of the LHC and of prospective future

accelerators. With the HL-LHC, the precision will
improve by a factor 5–10 on all observables with
respect to current data. [... In this case t]he
experimental systematic uncertainties are
similar to the statistical uncertainties, but the
dominant source of uncertainty arises from
theory, and this remains the case even after
assuming that, by the end of the HL-LHC run, the
theory uncertainties can be reduced by a factor
two compared to the current uncertainties, a
hypothesis that appears realistic but still
requires dedicated and concerted work. For
both hadron and lepton colliders, some
theoretical progress is crucial to fully exploit and
capitalise on the experimental data. In
particular, the expected HL-LHC data together
with rapid ongoing progress in theoretical
calculations are defining a new era of precision H
measurements.

3/3



SM today: a simple tree-level flow-diagram1/1
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why the SM is not final – (1)
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TH E SM P R O B LE M S [SNOWMASS 2013,
Energy frontier summary]:

a. dark matter/energy [85% of the matter
in the universe is "dark" - neutral, weakly
interacting];

b. excess of baryons over antibaryons in
the universe [the SM contains a
mechanism to generate baryon number in
the early universe, baryon number
violation, CP violation, and a phase
transition in cosmic history; however it
predicts a baryon-antibaryon asymmetry
that is too small by ten orders of
magnitude];

c. grand unification [the quantum numbers
of the quarks and leptons under the gauge
symmetry SU(3)×SU(2)×U(1) of the SM
suggests that these symmetry groups are
unified into a larger grand unification
group, like SU(5) or SO(10); however, the

results of precision measurements of the
strengths of the gauge couplings is
inconsistent with this hypothesis];

d. ν masses [the SM could account for Dirac
ν’s with few new parameters – technically
simple, but intriguing];

e. fermion mixing [the pattern of weak
interaction mixing among neutrinos is
completely different from that observed for
quarks];

f. gravity [no quantum theory of gravity is
incorporated in the SM].
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TH E SM P R O B LE M S [according to
J.Iliopoulos & T.Tomaras, 2021, slightly
simplified]:

• Unification. The Standard Model describes
three fundamental interactions in the
unified framework of gauge quantum field
theories. Nevertheless, it is not a unified
theory because it contains three
independent gauge coupling constants.

• Quantisation of the electric charge. For
example, the equality of the electric
charges of the electron and the muon
must be imposed by hand.

• The three families. This is part of the
general problem of flavour.

• The large number of arbitrary constants. A
really fundamental theory should be able
to predict the values of all its

dimensionless constants, or at least to
reduce this number considerably.

• Questions related to astrophysics and
cosmology. Examples are the absence of a
dark matter candidate, or an explanation
for the observed matter-antimatter
asymmetry in the universe.

• The gravitational interactions are not
included.

• The particular value of the [Higgs] boson
mass.
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