Particle Physics - Chapter 3 Heavy flavors - $\mathrm{e}^{+} \mathrm{e}^{-}$low energy

Paolo Bagnaia
SAPIENZA

AA 18-19

3 - Heavy flavors - $\mathbf{e}^{+} \mathbf{e}^{-}$low energy

1. Mandelstam variables
2. Collisions $\mathrm{e}^{+} \mathrm{e}^{-}$
3. The November Revolution
4. Charmonium
5. Open charm
6. The $3^{\text {rd }}$ family
7. The τ lepton
8. The b quark
9. The tquark
10. Summary

much of h.f. studies have been performed in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions; therefore this chapter contains also a discussion of this subject.

Mandelstam variables ${ }^{(*)}$

The Mandelstam variables $s, \mathrm{t}, \mathrm{u}$:

Q.: what about φ (the azimuth) ?
A. : if nothing in the dynamics is φ-dependent (e.g. the spin direction), then the cross-section must be φ-symmetric.

General case ab \rightarrow cd, masses NOT negligible:
[p_{i} and p_{j} are 4-mom, $p_{i} p_{j}=\operatorname{dot}$ product]
$>\mathrm{s} \equiv\left(\mathrm{p}_{\mathrm{a}}+\mathrm{p}_{\mathrm{b}}\right)^{2}=\left(\mathrm{p}_{\mathrm{c}}+\mathrm{p}_{\mathrm{d}}\right)^{2}=\mathrm{m}_{\mathrm{a}}{ }^{2}+\mathrm{m}_{\mathrm{b}}{ }^{2}+2 \mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}} ;$
$>\mathrm{t} \equiv\left(\mathrm{p}_{\mathrm{a}}-\mathrm{p}_{\mathrm{c}}\right)^{2}=\left(\mathrm{p}_{\mathrm{b}}-\mathrm{p}_{\mathrm{d}}\right)^{2}=\mathrm{p}_{\mathrm{a}}{ }^{2}+\mathrm{m}_{\mathrm{c}}{ }^{2}-2 \mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{c}} ;$
$>\mathrm{u} \equiv\left(\mathrm{p}_{\mathrm{a}}-\mathrm{p}_{\mathrm{d}}\right)^{2}=\left(\mathrm{p}_{\mathrm{b}}-\mathrm{p}_{\mathrm{c}}\right)^{2}=\mathrm{p}_{\mathrm{a}}{ }^{2}+\mathrm{m}_{\mathrm{d}}{ }^{2}-2 \mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{d}} ;$
$\Rightarrow \mathrm{s}+\mathrm{t}+\mathrm{u}=\mathrm{m}_{\mathrm{a}}{ }^{2}+\mathrm{m}_{\mathrm{b}}{ }^{2}+\mathrm{m}_{\mathrm{c}}{ }^{2}+\mathrm{m}_{\mathrm{d}}{ }^{2}+$

$$
\begin{aligned}
& +2 p_{a}\left(p_{a}+p_{b}-p_{c}-p_{d}\right)= \\
= & m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2}=\sum_{i} m_{i}^{2} .
\end{aligned}
$$

In addition, the crossing symmetry correlates the processes which are symmetric wrt time ($s-$, t-, and u-channels [see box]). If the c.s. is conserved in the interaction, the same amplitude is valid for all the channels, in their appropriate physical domains (an example on next page).

$\begin{array}{lll}\text { s-channel } & a b \rightarrow c d & (\bar{p} p \rightarrow \bar{n} n) \\ \text { t-channel } & a \bar{c} \rightarrow \bar{b} d & (\bar{p} n \rightarrow \bar{p} n) \\ \text { u-channel } & a \bar{d} \rightarrow \bar{b} c & (\bar{p} \bar{n} \rightarrow \bar{p} \bar{n})\end{array}$
an old approach (1950-80), now almost forgotten, especially important for strong interactions at low energies (see the example $\overline{\mathrm{p} p} \rightarrow \overline{\mathrm{n}} \mathrm{n}$), where the dynamics was not calculable (still is not).

Example: $\mathrm{m}_{\mathrm{a}}=\mathrm{m}_{\mathrm{b}}=\mathrm{m}_{\mathrm{c}}=\mathrm{m}_{\mathrm{d}}=\mathrm{m}$;

- $\mathrm{s}=4 \mathrm{E}^{2} \geq 4 \mathrm{~m}^{2}$;
- $t=-4 p^{2} \sin ^{2}(\theta / 2) ; \quad s+t+u=4 m^{2} ;$
- $u=-4 p^{2} \cos ^{2}(\theta / 2) ;$
- in a xy plane draw an equilateral triangle of height $4 \mathrm{~m}^{2}$, and label s-tu the three sides and the lines through them (drawn in red);
- remember Viviani's theorem and its extension ("the sum of the signed distances between a point and the lines of a triangle is a constant");
- find the physical regions (i.e. the allowed values of s-t-u) for the given process (i.e. the "s-channel") and for the t and u channels;
- among s-t-u, only two variables are independent \rightarrow the "space of the parameters" is 2D.

- in a "s-channel" process (e.g. $\mathrm{e}^{+} \mathrm{e}^{--} \rightarrow \mu^{+} \mu^{-}$), the $\mid 4$-momentum $\left.\right|^{2}$ of the mediator γ^{*} is exactly s [i.e. $m\left(\gamma^{*}\right)=\sqrt{ }, V_{s}>0$];
- in a "t-channel" process (e.g. $\mathrm{e}^{+} \mathrm{e}^{+} \rightarrow \mathrm{e}^{+} \mathrm{e}^{+}$), the $\mid 4$-momentum $\left.\right|^{2}$ of the mediator $\left(\gamma^{*}\right.$ also in this case) is $\mathrm{t}[\mathrm{t}<0!!!]$;
- some processes (e.g. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$, called "Bhabha scattering") have more than one Feynman diagrams; some of them are of type s and some others of type t; in such a case we say it is a sum of "s-type diagrams" and "t-type diagrams" + the interference, ... although, needless to say, on an event-byevent basis, the observer does NOT know whether the event was s or t.

This discussion is over-simplified, e.g. "the u-channel" is not even mentioned. However, it is sufficient for the experimental results of this chapter.

Mandelstam variables: $1 / \mathrm{s}$

$>$ in absence of polarization, the cross sections of a process "X" does NOT depend on the azimuth φ :

$$
\frac{d \sigma_{" X "}}{d \Omega}=\frac{1}{2 \pi} \frac{d \sigma_{" X "}}{d \cos \theta}=\frac{s}{4 \pi} \frac{d \sigma_{" X "}}{d t} .
$$

$>$ for $\mathrm{m}^{2} \ll \mathrm{~s}$, if $\mathcal{M}_{" \mathrm{x"}}$ is the matrix element of the process ${ }^{(*)}$:
$\frac{\mathrm{d} \sigma_{" \mathrm{x"}}}{\mathrm{dt}}=\frac{\left|\mathcal{M}_{" \mathrm{x"}}\right|^{2}}{16 \pi \mathrm{~s}^{2}}$.
$>$ in lowest order QED, if $\mathrm{m}^{2} \ll \mathrm{~s}$:
$\frac{d \sigma_{" x "}}{d \cos \theta}=\frac{\left|\mathcal{M}_{\text {" }}{ }^{\prime \prime}\right|^{2}}{32 \pi \mathrm{~s}}=\frac{\alpha^{2}}{\mathrm{~s}} \mathrm{f}(\cos \theta)$.
$>$ when $\theta \rightarrow 0, \cos \theta \rightarrow 1$:

- s-channel : $f(\cos \theta) \rightarrow$ constant;
- t-channel : $f(\cos \theta) \rightarrow \infty$.
${ }^{(*)}$ also by dimensional analysis :

$[\mathrm{c}=\hbar=1],[\sigma]=\left[\ell^{2}\right] ;[\mathrm{t}]=[\mathrm{s}]=\left[\ell^{-2}\right]$;
therefore, in absence of any other dimensional scale, σ [and $\mathrm{d} \sigma / \mathrm{d} \Omega$] $=[$ number] $\times 1 / \mathrm{s}$.

Collisions $\mathrm{e}^{+} \mathrm{e}^{-}$: initial state

- At low energy(*), the main processes happen with annihilation into a virtual γ^{*}.
- The initial state is :
$>$ charge $=0$;
$>$ lepton (+ baryon + other additive) number = 0;
> spin = 1 (" γ^{*} ");

- CM kinematics :
$>e^{+}[E, p, 0,0] ;$
$>e^{-}[E,-p, 0,0] ;$
$>\gamma^{*}[2 \mathrm{E}, 0,0,0]$;
$>\mathrm{m}\left(\gamma^{*}\right)=V_{\mathrm{s}}=2 \mathrm{E}$ [virtual photon, short lived].

[^0]

Collisions $\mathrm{e}^{+} \mathrm{e}^{-}$: QED cross sections

Consider some QED processes in lowest order [$\sqrt{ } \mathrm{s} \ll \mathrm{m}_{\mathrm{z}}$, only γ^{*} exchange] :

$>\mathrm{e}^{ \pm} \mathrm{e}^{ \pm} \rightarrow \mathrm{e}^{ \pm} \mathrm{e}^{ \pm}$		$\frac{d \sigma\left(e^{ \pm} e^{ \pm} \rightarrow e^{ \pm} e^{ \pm}\right)}{d \cos \theta}=\frac{2 \pi \alpha^{2}}{s} \times\left(\frac{3+\cos ^{2} \theta}{1-\cos ^{2} \theta}\right)^{2} ;$
$>\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$		$\frac{\mathrm{d} \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma\right)}{\mathrm{d} \cos \theta}=\frac{2 \pi \alpha^{2}}{\mathrm{~s}} \times \frac{1+\cos ^{2} \theta}{1-\cos ^{2} \theta} ;$
$>\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$	$\frac{\xi}{>\stackrel{\oplus}{\sim}}$	$\frac{\mathrm{d} \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\right)}{\mathrm{d} \cos \theta}=\frac{\pi \alpha^{2}}{2 \mathrm{~s}} \times\left(\frac{3+\cos ^{2} \theta}{1-\cos \theta}\right)^{2} ;$
$\Rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$		$\frac{d \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}\right)}{\mathrm{d} \cos \theta}=\frac{\pi \alpha^{2}}{2 s} \times\left(1+\cos ^{2} \theta\right)$

Collisions e ${ }^{+} e^{-}:$QED d $\sigma / d \cos \theta$

Collisions $\mathrm{e}^{+} \mathrm{e}^{-}: \mathrm{e}^{+\mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}, \mathrm{q} \bar{q}}$

- kinematics, computed in CM sys, $V_{s} \gg \mathrm{~m}_{\mathrm{e}}, \mathrm{m}_{\mu}$:

$$
\begin{array}{llrl}
e^{+} & (E, & p, & 0,0) ; \\
e^{-} & (E, \quad-p, \quad 0,0) ; \\
\mu^{+} & (E, p \cos \theta, p \sin \theta, 0) ; \\
\mu^{-} & (E,-p \cos \theta,-p \sin \theta, 0) ; \\
p \approx E=\sqrt{ } / 2 ; \\
\vec{p}\left(e^{+}\right) \cdot \vec{p}\left(\mu^{+}\right) \approx E^{2} \cos \theta \approx s \cos \theta / 4 ; \\
p\left(e^{+}\right) p\left(\mu^{+}\right) \approx E^{2}(1-\cos \theta)=\sin ^{2}(\theta / 2)=-t ;
\end{array}
$$

- the case $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{q} \bar{q}$ is similar at parton level; however free (anti-)quarks do NOT exist \rightarrow quarks hadronize, producing collimated jets of hadrons [+ subtleties due to the fact that hadrons and leptons, unlike quarks, are color singlets with integer charge].

Collisions $\mathrm{e}^{+} \mathrm{e}^{-}: \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}, \mathrm{q} \overline{\mathrm{q}}\right)$

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$

$$
\begin{aligned}
\sigma_{\mu \mu} & =\int_{-1}^{1} d \cos \theta\left[\frac{\mathrm{~d} \sigma_{\mu \mu}}{\mathrm{d} \cos \theta}\right]=\frac{\pi \alpha^{2}}{2 s} \int_{-1}^{1} \mathrm{~d} \cos \theta\left(1+\cos ^{2} \theta\right)= \\
& =\frac{4 \pi \alpha^{2}}{3 \mathrm{~s}}=\frac{86.8 \mathrm{nb}}{\mathrm{~s}\left[\mathrm{GeV}^{2}\right]}=\frac{21.7 \mathrm{nb}}{\mathrm{E}_{\text {beam }}^{2}\left[\mathrm{GeV}^{2}\right]} .
\end{aligned}
$$

$$
\left[1+\cos ^{2} \theta\right]=\mathrm{P}_{1}{ }^{\text {Legendre }}(\cos \theta)
$$

$[\mathrm{spin} 1 \rightarrow 2 \operatorname{spin} 1 / 2]$

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \mathrm{q}^{-}$

$$
\begin{aligned}
\frac{d \sigma_{q \bar{q}}}{d \cos \theta}=\frac{d \sigma_{\mu \mu}}{d \cos \theta} \times c_{f} e_{f}^{2}=\frac{\pi \alpha^{2}}{2 s} c_{f} e_{f}^{2}\left(1+\cos ^{2} \theta\right) ; & c_{f}=\left\{\begin{array}{ll}
3 & \text { quarks } \\
1 & \text { leptons }
\end{array}\right\} & \text { [color] } \\
\sigma_{q \bar{q}}=\sigma_{\mu \mu} c_{f} e_{f}^{2}=\frac{4 \pi \alpha^{2}}{3 s} c_{f} e_{f}^{2} ; & e_{f}=\left\{\begin{array}{ll}
1 & \text { leptons } \\
2 / 3 & \text { uct } \\
-1 / 3 & \text { d sb }
\end{array}\right\} & \text { [charge]. }
\end{aligned}
$$

If $m_{e} \ll E_{\text {beam }}$, but m_{f} (the mass of the the finalstate fermion) is NOT negligible, the complete formula $\left(m_{f}>0\right)$ must be used [see next slide].

Collisions $\mathrm{e}^{+} \mathrm{e}^{-}: \mathrm{m}_{\mathrm{f}}>0$

Previous formulæ NOT correct if m_{f} NOT negligible, e.g. near the threshold for the production of heavy quarks/leptons, $V_{\mathrm{s}} \approx 2 \mathrm{~m}_{\mathrm{f}}$.
\rightarrow list (no proof) the formulæ for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow f \bar{f}$

$$
\left(2 m_{e} \ll \sqrt{s} \approx 2 m_{f}\right):
$$

- $\beta_{\mathrm{f}}=\sqrt{1-\frac{4 \mathrm{~m}_{\mathrm{f}}^{2}}{\mathrm{~s}}}$ (see blue curve);
- $\frac{d \sigma_{f \bar{f}}}{d \cos \theta}=\frac{\pi \alpha^{2} c_{f} e_{f}^{2}}{2 s} \beta_{f}\left[\left(1+\cos ^{2} \theta\right)+\left(1-\beta_{f}^{2}\right) \sin ^{2} \theta\right]$;
- $\sigma_{f f}=\frac{4 \pi \alpha^{2}}{3 s} \beta_{f} \frac{3-\beta_{f}^{2}}{2}=\sigma_{0} \beta_{f} \frac{3-\beta_{f}^{2}}{2}$ (see red curve).

Clearly:

- $\sqrt{\mathrm{s}}<2 \mathrm{~m}_{\mathrm{f}} \rightarrow$ no f production;
- $\sqrt{s} \gg 2 m_{f} \rightarrow 2 m_{f} / \sqrt{s} \rightarrow 0, \beta_{f} \rightarrow 1, \sigma_{f \bar{f}} \rightarrow \sigma_{0}$.

Collisions $\mathrm{e}^{+} \mathrm{e}^{-}: \sigma_{\text {largev }}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}, \mathrm{q} \overline{\mathrm{q}}\right)$

$$
\begin{aligned}
\sigma_{\mu \mu} & =\frac{4 \pi \alpha^{2}}{3 \mathrm{~s}}= \\
& =\frac{86.8 \mathrm{nb}}{\mathrm{~s}\left[\mathrm{GeV}^{2}\right]}=\frac{21.7 \mathrm{nb}}{\mathrm{E}^{2}\left[\mathrm{GeV}^{2}\right]}
\end{aligned}
$$

- the continuum, for $0.5 \leq V_{s} \leq 50 \mathrm{GeV}$, agrees well with the predicted $1 / \mathrm{s}$ [the line in log-log scale];
- + resonances qq̄ [the bumps];
- for $V_{s}>50 \mathrm{GeV}$ [§ LEP] it is dominated by the Z formation in the s-channel.

Collisions $\mathrm{e}^{+} \mathrm{e}^{-}: \mathrm{R}=\sigma(q \bar{q}) / \sigma\left(\mu^{+} \mu^{-}\right)$

- define the quantity, both simple conceptually and easy to measure:
$R=\frac{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}\right)}=3 \sum_{\text {quarks }} \mathrm{e}_{\mathrm{i}}^{2}=\mathrm{R}(\sqrt{\mathrm{s}}) ;$

- sum over all the quarks, produced at energy V_{s} (i.e. $2 \mathrm{~m}_{\mathrm{q}}<\sqrt{s}$) :

$>0<\sqrt{ }<2 \mathrm{~m}_{\mathrm{c}}: R=R_{\text {uds }}=3 \times\left[(2 / 3)^{2}+(-1 / 3)^{2}+(-1 / 3)^{2}\right]=2 ;$
$>2 \mathrm{~m}_{\mathrm{c}}<\sqrt{ }<2 \mathrm{~m}_{\mathrm{b}}: R=R_{\mathrm{udsc}}=R_{\mathrm{uds}}+3 \times(2 / 3)^{2} \quad=3+1 / 3 ;$
$>2 \mathrm{~m}_{\mathrm{b}}<\sqrt{ } \mathrm{s}<2 \mathrm{~m}_{\mathrm{t}}: R=R_{\text {udscb }}=R_{\text {udsc }}+3 \times(-1 / 3)^{2}=3+2 / 3 ;$
$>2 \mathrm{~m}_{\mathrm{t}}<\sqrt{\mathrm{s}}<\infty \quad: R=R_{\text {udscbt }}=R_{\text {udscb }}+3 \times(2 / 3)^{2}=5$;
- but reality is more complicated :
$>$ the step at $\sqrt{ } \mathrm{s}=2 \mathrm{~m}_{\mathrm{q}}$ is rounded [see before];
$>q \bar{q}$ resonances are formed at $V_{s} \approx 2 m_{q}$; their decay modes affects the measurement of R;
$>$ at $V_{\mathrm{s}} \approx \mathrm{m}_{\mathrm{z}}$ [and $V_{\mathrm{s}} \approx 2 \mathrm{~m}_{\mathrm{w}}$] the weak interactions change completely the scenario \rightarrow for $V_{s} \geq 50$ GeV, R has a different explanation [see \& LEP];
$>$ also notice that $m_{z}<2 m_{t}$; therefore the "t step" happens at higher V_{s} than the Z resonance.

Collisions $\mathrm{e}^{+} \mathrm{e}^{-}: R$ vs $\sqrt{s}($ small $\sqrt{ } \mathrm{s})$

Plot R vs $\sqrt{ } s(=2 E)$:

- resonances uū, dd̃, ss̄ at 1-2 GeV (only those with $\mathrm{J}^{\mathrm{P}}=1^{-}$) (\rightarrow "vector dominance");
- step at $2 \mathrm{~m}_{\mathrm{c}}(\mathrm{J} / \psi)$;
- step at $2 \mathrm{~m}_{\mathrm{b}}(\Upsilon)$;
 (Z, next slide);
- [lot of effort required, as demonstrated by the number of detectors and accelerators];
- strong evidence for the color (factor 3 necessary).
plots from
[PDG, 588]

Collisions $\mathrm{e}^{+} \mathrm{e}^{-}: \mathrm{R}$ vs \sqrt{s}^{s} (large \sqrt{s})

- The full range $200 \mathrm{MeV}<V_{\mathrm{s}}<200$ GeV (3 orders of magnitude !!!).
- For $V_{s}>50 \mathrm{GeV}$ new phenomenon: electroweak interactions and the Z pole.

Collisions $\mathrm{e}^{+} \mathrm{e}^{-}: \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

The case $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$(Bhabha scattering) is different, as seen before:

- two Feynman diagrams with a spin-1 boson exchange ($\gamma^{*}[+Z$ at higher energy]) :
- s-channel, similar to $\mu^{+} \mu^{-}$;
- t-channel, like e ${ }^{+} e^{+}$;
- interference between the two diagrams [four at higher energies];
- the angular distribution (see before) reflects these differences;
- [il va sans dire que] on an event-by-event basis it is NOT possible to determine whether an event belongs to s- or t-channel; however, different regions of the final state parameter space are actually dominated by s - or t channel [therefore physicists speak of "schannel" physics (e.g. the formation of
 resonances) or t-channel physics (e.g. Bhabha at small $\theta)]$.
- The u, d, s quarks have not been predicted; in fact the mesons and baryons have been discovered, and later interpreted in terms of their quark content [§ 1];
- Some theoreticians had foreseen another quark, based on (no $\mathrm{K}^{0} \rightarrow \mu^{+} \mu^{-}$), but people did not believe it.
- In November 1974, the groups of Burton Richter (SLAC) and Samuel Ting (Brookhaven) discovered simultaneously a new state with a mass of $\approx 3.1 \mathrm{GeV}$ and a tiny width, much smaller than their respective mass resolution.
- Ting \& coll. had the name "J", while Richter \& coll. called it " ψ ". Today's name is "J/ ψ ".
- We split the discussion : start with the hadronic experiment.
- The width was measured, after some time, to be 0.087 MeV , a surprisingly small value for a resonance of 3 GeV mass.

the two experiments are quite different: we will review first the "J" and then the " ψ ".

- The group of Ting at the AGS proton accelerator measured the inclusive production of $\mathrm{e}^{+} \mathrm{e}^{-}$pairs in interactions of 30 GeV protons on a plate of beryllium :

$$
\mathrm{pBe} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mathrm{X}
$$

- The detector was designed to search for high mass resonances with $\mathrm{J}^{\mathrm{P}}=1^{-}(=\gamma)$, decaying into ($\mathrm{e}^{+} \mathrm{e}^{-}$) pairs.
- They were very clever in minimizing the multiple scattering \rightarrow the resolution for the invariant mass was good:

$$
\Delta \mathrm{m}\left(\mathrm{e}^{+} \mathrm{e}^{-}\right) \approx 20 \mathrm{MeV} .
$$

- This resolution allowed for a much higher sensitivity wrt another previous exp. (Leon Lederman), which studied $\mu^{+} \mu^{-}$pairs in the same range. Lederman had a "shoulder" in $d \sigma / \mathrm{dm}\left(\mu^{+} \mu^{-}\right)$, but no conclusive evidence [next slide].
- Ting called the new particle "J", because of the e.m. current.

Measured quantum numbers of the J:

- mass ~3.1 GeV;
- width << 20 MeV (upper limit, not meas.);
- charge = 0;
- JP = 1-;
- no isospin, Γ, other decay modes ...

${ }_{3 \pi}^{3 \pi}$ The November Revolution : the J experiment

- The Ting experiment used a two arm magnetic spectrometer, to measure separately the electron and the positron.
- Ting (and also Lederman) studied the Drell-Yan process [$\delta \bar{p} p$]: hadron collisions $\rightarrow \gamma^{*} \rightarrow \ell^{+} \ell^{-}$(Ting: $\mathrm{e}^{+} \mathrm{e}^{-} /$Lederman: $\mu^{+} \mu^{-}$).
- Leptonic events are rare \rightarrow very intense beams ($\left.2 \times 10^{12} \mathrm{ppp}^{(*)}\right) \rightarrow$ high rejection power $\left(\sim 10^{8}\right)$ to discard hadrons, that can fake $\underline{e}^{+} e^{-}$or $\mu^{+} \mu^{-}$.
- Advantage in the $\mu^{+} \mu^{-}$case: μ penetration \rightarrow select leptons from hadrons with a thick absorber in a large solid angle \rightarrow larger acceptance, higher counting rate.
- Disadvantage : thick absorber \rightarrow multiple scattering \rightarrow worst mass resolution.

[^1]- Benefit in the $\mathrm{e}^{+} \mathrm{e}^{-}$case: electron identification with Čerenkov counter(s) + calorimeters \rightarrow simpler setup.
Disadvantage : small instrumented solid angle \rightarrow smaller yield.

The November Revolution : $\Delta \mathrm{m}_{\bar{c} \bar{c}}$

Problem (see previous slides)

Three similar exp. distributions:
$\mathrm{d} \sigma\left(\right.$ hadron Nucleus $\left.\rightarrow \ell^{+} \ell^{-} X\right) / \mathrm{dm}_{\text {ee }}$.
Similar dynamics:

- continuum, exponentially falling [yes, even in Ting's plot];
- resonance(s) on top [how many/plot ?].

Differences:

- $\mathrm{m}_{\text {ee }}$ resolution [!!! why ?];
- horizontal scale (i.e. mass interval);
- vertical scale (i.e. resonance size)

Please comment on:

- effect of these differences on ratio resonance/continuum (\rightarrow discovery ?);
- "quality" of the experiments.

[back to 1974 : they did not know]
- Mark I at the $\mathrm{e}^{+} \mathrm{e}^{-}$collider SPEAR was studying collisions at $\sqrt{S}=2.5 \div 7.5 \mathrm{GeV}$.
- The detector was made by a series of concentrical layers ("onion shaped").
- Starting from the beam pipe :
> magnetostrictive spark chamber (tracking),
> time-of-flight counters (particles' speed + trigger),
> coil (solenoidal magnetic field, 4.6 kG),
> electromagnetic calorimeter (energy and identification of $\gamma^{\prime} \mathrm{s}$ and $\mathrm{e}^{ \pm} \mathrm{s}$),
>proportional chambers interlayered with iron plates (identification of $\mu^{ \pm} \mathrm{s}$).

- [Notice the strong similarity among all the Collider detectors : CMS - 40 years later has the same "onion" structure, with a scale factor > 10, i.e. a volume ~1000 times larger. However, ATLAS is different].

The November Revolution : Mark I at SLAC

- In 1974, up to the highest available energies, $\mathrm{R}=$ $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow\right.$ hadrons $) / \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}\right) \approx 2$.
- Measurements at the Cambridge Electron Accelerator (CEA, Harvard) in the region of energies of SPEAR had found $R \cong 6$ (a mixture of continuum and resonances). Also ADONE at LNF, which could reach an energy just sufficient, was not pushed to its max energy [At the time the large amount of information carried by R was not completely clear].
- At the novel Collider SPEAR, the scanning in energy was performed in steps of 200 MeV .
- The measured cross-section appeared to be a constant, NOT with expected trend $\propto 1 / \mathrm{s}$.
- When a drastic reduction in the step $(200 \rightarrow 2.5$ MeV) increased the "resolving power", a resonance appeared, with width compatible with the beam dispersion (even compatible with a δ-Dirac).
- The particle was called " ψ " (see fig. on page 2).

- After some discussion, the correct interpretation emerged :
$>$ the resonance, now called J / ψ, is a bound state of a new quark, called charm (c), and its antiquark;
> the c had been proposed in 1970 to exclude FCNC [GIM mechanism, § 4];
\Rightarrow the J / ψ has $\mathrm{J}^{\mathrm{P}}=1^{-}$[next slide];
$>$ the name "charmonium" is an analogy with positronium ("onium" : bound state particle-antiparticle);
- The cross-section (Breit-Wigner) for the formation of a state ($\mathrm{J}_{\mathrm{R}}=1$) from $\mathrm{e}^{+} \mathrm{e}^{-}$ ($S_{a}=S_{b}=1 / 2$), followed by a decay into a final state, shows that [see § intro.]:

- $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi \rightarrow f \overline{\mathrm{f}}, \sqrt{\mathrm{s}}\right)=$

$$
=\frac{12 \pi}{\mathrm{~s}}\left[\frac{\Gamma_{\mathrm{e}}}{\Gamma_{\text {tot }}}\right]\left[\frac{\Gamma_{\mathrm{f}}}{\Gamma_{\text {tot }}}\right] \frac{\Gamma_{\text {tot }}^{2} / 4}{\left(m_{\mathrm{J} / \psi}-\sqrt{\mathrm{s}}\right)^{2}+\Gamma_{\text {tot }}^{2} / 4} ;
$$

- $\Gamma_{f}=$ width for the $(J / \psi \leftrightarrow f \bar{f})$ coupling;
- $\Gamma_{\text {tot }}=\Gamma_{\mathrm{e}}+\Gamma_{\mu}+\Gamma_{\text {had }}=$ full width of J $/ \psi$;
- $\Gamma_{f} / \Gamma_{\text {tot }}=\mathrm{BR}(\mathrm{J} / \psi \rightarrow \mathrm{f} \overline{\mathrm{f}}) \quad$ [very useful].
- After 1974, many exclusive decays have been precisely measured, all confirming the above picture; the last PDG has 227 decay modes; the present most precise value of the mass and width is

$$
\mathrm{m}(\mathrm{~J} / \psi)=3097 \mathrm{MeV}, \quad \Gamma_{\text {tot }}(\mathrm{J} / \psi)=93 \mathrm{keV} .
$$

Charmonium : J / ψ quantum numbers

At SPEAR they were able to measure many of the J / ψ quantum numbers :

- the resonance is asymmetric (the right shoulder is higher); therefore there is interference between J/ ψ formation and the usual γ^{*} exchange in the s-channel; therefore the J / ψ and the γ have the same JP=1-;
- from the cross section, by measuring $\sigma_{\text {had }}, \sigma_{\mu}$ and σ_{e}, they have 3 equations + a constraint (see the box, three $\sigma_{f}+\Gamma_{\text {tot }}$) for the 4 unknowns (three $\Gamma_{f}+\Gamma_{\text {tot }}$); therefore they measured everything, obtaining a $\Gamma_{\text {tot }}$ very small ($\sim 90 \mathrm{keV}$, a puzzling results, see next slides);
- the equality of the $\operatorname{BR}\left(J / \psi \rightarrow \rho^{0} \pi^{0}\right)$ and $\left(\rightarrow \rho^{ \pm} \pi^{\mp}\right)$ implies isospin $1=0$;
- the J / ψ decays into an odd $(3,5)$ number
of π, not in an even $(2,4)$ number; this fact has two important consequences :
$>$ the G-parity is conserved in the decay (so the J/ ψ decays via strong inter.).
$>$ G-parity $=-1$ [also $\left.(-1)^{1+e+s}=-1\right]$.

$$
\begin{aligned}
& \sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi \rightarrow f \bar{f}\right)= \\
& \quad=\frac{3 \pi}{\mathrm{~s}} \frac{\Gamma_{\mathrm{e}} \Gamma_{\mathrm{f}}}{\left(\mathrm{~m}_{\mathrm{q} \bar{q}}-\sqrt{\mathrm{s}}\right)^{2}+\Gamma_{\text {tot }}^{2} / 4} \\
& \quad=\sigma_{\mathrm{f}}\left(\Gamma_{\mathrm{e}}, \Gamma_{\mathrm{f}}, \Gamma_{\text {tot }}, \sqrt{\mathrm{s}}\right) ; \\
& \Gamma_{\text {tot }}=\Gamma_{\mathrm{e}}+\Gamma_{\mu}+\Gamma_{\text {had }} \\
& \text { [see previous slide]. }
\end{aligned}
$$

4 equations ($f=e, \mu$,had $+\Gamma_{\text {tot }}$), 4 unknowns;
NO direct measurement of "width" required.

Charmonium : the GIM mechanism

- The weak neutral current processes between quarks of different flavor (FCNC, "Flavor Changing Neutral Current") are strongly suppressed [e.g. $\Gamma\left(\mathrm{K}_{\mathrm{L}}^{0} \rightarrow \mu^{+} \mu^{-}\right)$ $\left.\ll \Gamma\left(\mathrm{K}^{ \pm} \rightarrow \mu^{ \pm} v\right)\right]$.
- This fact was explained in 1970 by S . Glashow, J. Iliopoulos and L. Maiani by introducing the charm quark (Phys. Rev. D2, 1285);
- they predicted:
>a fourth quark (c), identical to the u quark, apart from its mass, carrying a new quantum number C, "charm";
> as for the strangeness, C is conserved in strong and electromagnetic interactions and violated in weak interactions;
$>$ the lightest charmed mesons are c \bar{q} or $\bar{c} q$ pairs ($q=u d s$), and have a mass of 1500-2000 MeV and $\mathrm{J}^{\mathrm{P}}=0^{-}$;
> these mesons decay weakly; because of their larger mass, their lifetimes are $\mathrm{O}(\mathrm{ps})$, an order of magnitude shorter than those of the K mesons;
>the positive meson with open charm (cad, now called D^{+}) decays preferably in final states with negative strangeness ($c \rightarrow s f \bar{f}, \Delta S=\Delta C$).
[see § 4 for more details]

Charmonium : QCD decay

$\mathrm{Q} \overline{\mathrm{Q}}$ states $^{(*)}$ [e.g. $\left.\phi(\mathrm{s} \overline{\mathrm{s}}), \mathrm{J} / \psi(\mathrm{c} \overline{\mathrm{c}}), \Upsilon(\mathrm{b} \overline{\mathrm{b}})\right]:$

- decay preferentially 1 [($Q \overline{\mathrm{Q}}) \rightarrow(\mathrm{Q} \bar{q})(\overline{\mathrm{Q} q)] \text {, }}$ e.g. $\phi \rightarrow \bar{K} K$, i.e. [(ss̄) \rightarrow (ds) (ds̄)];
- J/ $\psi \rightarrow \mathrm{D}^{+} \mathrm{D}^{-}\left(\right.$or $\left.\mathrm{D}^{0} \overline{\mathrm{D}}^{0}\right)[(\mathrm{c} \overline{\mathrm{c}}) \rightarrow(\mathrm{dc})(\mathrm{d} \overline{\mathrm{c}})$ or (u c) (uc̄)] forbidden ($m_{\mathrm{J} / \psi}<2 \mathrm{~m}_{\mathrm{D}}$);
- then $c \overline{\text { c }}$ annihilate into gluons ($J / \psi \rightarrow \pi$'s 2):

> 1 gluon forbidden by color;
> 2 gluons forbidden by C-parity

$$
\left[C_{2 g}=+1 ; C_{J / \psi}=C_{\gamma}=-1\right] ;
$$

> 3 gluons allowed:

$$
\Gamma\left(\mathrm{Q} \overline{\mathrm{Q}} \rightarrow 3 \mathrm{~g} \rightarrow \pi^{\prime} \mathrm{s}\right)=\frac{160\left(\pi^{2}-9\right)}{81 \mathrm{~m}_{\mathrm{Q} \overline{\mathrm{Q}}}^{2}} \alpha_{\mathrm{s}}^{3}|\psi(0)|^{2} ;
$$

- The value $\alpha_{s}{ }^{3}$ (and its "running" [§ 6]) produces a smaller width for larger masses :
$>\alpha_{s}{ }^{3}\left(\mathrm{~m}_{\phi}^{2}\right) \approx 0.5^{3}=.125 ;$
$>\alpha_{\mathrm{s}}^{3}\left(\mathrm{~m}_{\mathrm{J} / \psi}^{2}\right) \approx 0.3^{3}=.027$;
$>\alpha_{s}^{3}\left(\mathrm{~m}^{2}{ }_{\Upsilon}\right) \approx 0.2^{3}=.008$.

$$
\text { (*) in these slides: } \mathrm{q}=\mathrm{u} / \mathrm{d}, \mathrm{Q}=\mathrm{s} / \mathrm{c} \text { ". }
$$

Charmonium ：the Zweig rule（OZI）

The＂Zweig rule＂was set out empirically in a qualitative way before the advent of QCD ：
－compare $(\phi \rightarrow 3 \pi) \leftrightarrow(\phi \rightarrow K K) \leftrightarrow(\omega \rightarrow 3 \pi)$ ；
－in the decay of a bound state of heavy quarks Q，the final states without Q＇s（＂decays with disconnected diagrams＂（2）have suppressed amplitude wrt＂connected decays＂（1）
－if only the decays 2 are kinematically allowed（ex．J／ψ or Υ ），the total width is small and the bound state is＂narrow＂；
1963-1966 :

Susumu Okubo （大久保進 Ōkubo Susumu）， George Zweig， Jugoro lizuka（飯塚）

- After the discovery of the J / ψ, at SPEAR they performed a systematic energy scanning with a very small step. After ten more days a second narrow resonance was found, called ψ^{\prime}, with the same quantum numbers of the J / ψ.
- The analysis shows that the J/ ψ was the 1 S state of $c \bar{c}$, while the ψ^{\prime} is the 2 S .
- Both particles have $\mathrm{J}^{\mathrm{P}}=1^{-}, \mathrm{I}=0$.
- The next page gives a scheme of the cc̄ levels.
- They offer a reasonable agreement with the solution of the Schrödinger equation of a hypothetical QCD potential [see § Standard Model]

$$
V(r)=-\frac{4}{3} \frac{\alpha_{s}}{r}+k r=\frac{A}{r}+B r .
$$

- Notice that this approximation should become more realistic for heavier quarks, when the nonrelativistic limit gets better.

Charmonium : cc̄ levels

Open charm : discovery

- If the J / ψ is a bound $c \bar{c}$ state, then mesons $c \bar{q}$ and $\bar{c} q$ must exist, with a mass $\mathrm{m}_{\mathrm{J} / \psi} / 2+$ $100 \div 200 \mathrm{MeV}\left[3690 / 2<\mathrm{m}_{\mathrm{D}}<3770 / 2 \mathrm{MeV}\right.$.
- In 1976, the Mark I detector started the search for charmed pseudoscalar mesons, the companions of π 's and K's.
- They looked at $V_{s}=4.02 \mathrm{GeV}$ in the channels

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{D}^{0} \overline{\mathrm{D}}^{0} \mathrm{X}^{0} ; \quad \rightarrow \mathrm{D}^{+} \mathrm{D}^{-} \mathrm{X}^{0} .
$$

- According to theory, D-mesons lifetimes are small, with a decay vertex not resolved (with 1976 detectors) wrt the $\mathrm{e}^{+} \mathrm{e}^{-}$one.
- Therefore the strategy of selection was the presence of "narrow peaks" in the combined mass of the decay products.
- A first bump at 1865 MeV with a width compatible with the experimental resolution was observed in the combined mass $\left(\mathrm{K}^{ \pm} \pi^{\mp}\right)$, corresponding to the D^{0} and $\overline{\mathrm{D}}^{0}$ decay.

Open charm: "C-allowed, suppressed"

- Also the mass $\left(\mathrm{K}^{\mp} \pi^{ \pm} \pi^{ \pm}\right)$had a bump at 1875 MeV , corresponding to the D^{+}and D^{-}decays.
- Moreover, in perfect agreement with the GIM predictions, no bump was found in ($\mathrm{K}^{ \pm} \pi^{+} \pi^{-}$), which is forbidden ("Cabibbo doubly suppressed", in this language).

			the c quark decays through its Cabibbo couplings (see): $[c \leftrightarrow s, u \leftrightarrow d] \propto \cos \theta_{c}=$ "big" $[c \leftrightarrow \mathrm{~d}, \mathrm{u} \leftrightarrow \mathrm{s}] \propto \sin \theta_{\mathrm{c}}=$ "small"	
2/3	-1/3 $21 / 31 / 3$	K/ π	"Cabibbo	ependence
	$s \mathrm{u} d$	$\overline{\mathrm{K}}(\mathrm{n} \pi)$	$\propto \cos ^{2} \theta_{c}$	"allowed"
c	s u s	$\bar{K} K(n \pi)$	$\propto \sin \theta_{c} \cos \theta_{c}$	"suppressed"
\rightarrow	d u d	$(\mathrm{n} \pi)$	$\propto \sin \theta_{c} \cos \theta_{c}$	"suppr
	d u \bar{s}	$\mathrm{K}(\mathrm{n} \pi)$	$\propto \sin ^{2} \theta_{c}$	("suppressed") ${ }^{2}$

the so-called " $\Delta \mathrm{S}=\Delta \mathrm{C}$ " rule :
$c \rightarrow \bar{K}:(C:+1 \rightarrow 0) \leftrightarrow(S: 0 \rightarrow-1)$
$\bar{c} \rightarrow K:(C:-1 \rightarrow 0) \leftrightarrow(S: 0 \rightarrow+1)$

Open charm: meson multiplets

$$
4 \otimes \overline{4}=15 \oplus 1 .
$$

$$
\underline{\mathrm{SU}(3)_{\text {flavor }}} \rightarrow \underline{\mathrm{SU}(4)_{\text {flavor }}}
$$

With 4 quarks, the $\operatorname{SU}(3)$ nonets become multiplets in a 3-D space. However, the c quark has a large mass, so $\operatorname{SU}(4)_{\text {flavor }}$ is much more broken that SU(3) flavor

Open charm : baryon multiplets

$S U(4)_{\text {flavor }}$ baryons

The $3^{\text {rd }}$ family

- "who ordered that ?" [I.I.Rabi about the μ];
- in modern terms : "why consecutive families of quarks/leptons, differing only in mass ? why/how they mix ?" [see § 4-5]
- as of today, nobody knows : the number of families and the mixing matrix are free parameters of the SM [maybe one day some theory bSM will constrain it];
- "non-QCD" constraints in the SM:
> families must be complete : the existence of a single member (e.g. the v or the ℓ^{-}) implies the existence of all the others, to avoid anomalies (Adler-Bell-Jackiw); it requires $\Sigma_{i} \mathrm{e}_{\mathrm{i}}=0$, where the sum runs on all members i and colors c of the family F [see red box];
> the Z full width $\Gamma_{\text {tot }}^{\mathrm{Z}}$ constrains the number of "light v's" [see § LEP] ;
> in the SM, (at least) three families are necessary to generate a natural mechanism of CP violation in the quark decays [see § K°];
$>$ in the $\mathrm{SM}, \mathrm{n}_{\mathrm{F}}$ is free, but n_{c} must be 3 .

$$
\sum_{F}\left(\sum_{i} e_{i}\right)=n_{F} \times\left\{\begin{array}{c}
(-1)+(0)+ \\
\left.+3_{\mathrm{C}} \times\left[\left(\frac{2}{3}\right)+\left(\frac{-1}{3}\right)\right]\right\}=0 .
\end{array}\right. \text {. }
$$

The analysis of Mark I data produced another beautiful discovery : the τ lepton (M. Perl won the 1995 Nobel Prize):

- the selection followed a method well known, pioneered at LNF-Frascati : the "unbalanced pairs $\mathrm{e}^{ \pm} \mu^{\mp}$ ": $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \tau^{+} \tau^{-}$

$$
\begin{aligned}
& \left.\begin{array}{l}
\hookrightarrow \mu^{-} \bar{v}_{\mu} \nu_{\tau} \\
\rightarrow \mathrm{e}^{+} v_{\mathrm{e}} \bar{v}_{\tau}
\end{array}\right\} \rightarrow \mu^{-} \mathrm{e}^{+} \text {(unbalanced) } \\
& \left(+C C \mu^{+} \mathrm{e}^{-}\right) .
\end{aligned}
$$

- events from this process are extremely clean and free from background [see fig.];
- the $\mathrm{e}^{+} \mathrm{e}^{-} / \mu^{+} \mu^{-}$unbalanced pairs, which have to be present in the correct number

$$
\begin{aligned}
& \mathrm{N}_{\text {unb }}\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)=\mathrm{N}_{\text {unb }}\left(\mu^{+} \mu^{-}\right)= \\
& =\mathrm{N}\left(\mathrm{e}^{+} \mu^{-}\right)=\mathrm{N}\left(\mathrm{e}^{-} \mu^{+}\right),
\end{aligned}
$$

are only used to cross-check the sample.

Simple method: the yield of $e^{ \pm} \mu^{\mp}$ pairs vs V_{s} : it immediately points to the threshold $\sqrt{ } s=2 m_{\tau}$.

- therefore : $\mathrm{m}_{\tau} \approx 1780 \mathrm{MeV}$. [best present value 1776.8 MeV]
- why is the $\tau^{ \pm}$a lepton ?
> at the time, the evidence came from the lack of any other plausible explanation;
> today, the evidence is solid :
- the Z and W decays into (e $\mu \tau$) with the same BR and angular distribution;
- the lifetime has been measured and found in agreement with predictions ...
- the discovery of the τ started the hunt for the particles of a new ($3^{\text {rd }}$) family, still unknown:
$>$ the v_{τ} (possibly mixed with the others);
$>$ the pair of quarks $\mathrm{q}_{\text {up }} \mathrm{q}_{\text {down }}$, similar to ud (now called top and bottom).
- The down quark of the $3^{\text {rd }}$ family was called b (= beauty, bottom).
- In 1977 Leon Lederman and collaborators built at Fermilab a spectrometer with two arms, designed to study $\mu^{+} \mu^{-}$pairs produced by interactions of 400 GeV protons on a copper (or platinum) target.
- The reaction under study was again the Drell-Yan process. As already pointed out, this type of events is rare, therefore requiring intense beams (in this case $10^{11} \mathrm{ppp}$) and high rejection power against charged hadrons.

- The usual price of the absorber technique is a loss of resolution in the muon momenta, which was $\Delta \mathrm{m}_{\mu \mu} / \mathrm{m}_{\mu \mu} \approx 2 \%$.
- The figures show the distribution of $m_{\mu \mu}$. Between 9 and 10 GeV : there is a clearly visible excess.
- When the $\mu \mu$ continuum is subtracted, the excess appears as the superimposition of three separate states.
- The states, called $\Upsilon(1 S), \Upsilon(2 S), \Upsilon(3 S)$ are bound states bந.

- Precision measurement, carried out at DESY and Cornell with $\mathrm{e}^{+} \mathrm{e}^{-}$Colliders, soon confirmed the results. After two years, also "open beauty", i.e. bound states $b \bar{q}$, was identified and called $\mathrm{B}^{0, \pm}$.
- The figure in the next page shows an updated compilation of the bБ states.
- Bottomonium (beauty in not used anymore, don't know why) is a very interesting system. Recently, a lot of
studies (BABAR) have been performed on the $\mathbb{C P}$ violation in the $\mathrm{B}^{0} \overline{\mathrm{~B}}^{0}$ system (similar to the $\mathrm{K}^{0} \mathrm{~s}$, but different from the charms) [see § $\left.K^{0}\right]$.
- Leon Lederman together with Mel Schwartz and Jack Steinberger got the 1988 Nobel Prize, NOT for his bb discovery, but for his neutrino studies (the "two neutrino experiment" in 1962).

The b quark : bottomonia

- The top quark was directly searched in hadron (Spp̄S, Fermilab) and lepton (Tristan, LEP) colliders, but was NOT found until 1990's;
- at the time the mass limit was $\mathrm{m}_{\mathrm{t}} \geq 90 \mathrm{GeV}$;
- at $\mathrm{m}_{\mathrm{t}} \approx \mathrm{m}_{\mathrm{w}}-\mathrm{m}_{\mathrm{b}}(\approx 75 \mathrm{GeV})$, the search changes: the "golden discovery channel" moves from $\left(\mathrm{W}^{+} \rightarrow \mathrm{tb} \rightarrow \mathrm{W}^{+*} \mathrm{~b}\right.$) to $\left(\mathrm{t} \rightarrow \mathrm{W}^{+} \mathrm{b}\right)$ [fig. (1)];
- the mass was first computed from the radiative corrections for m_{w} and m_{z} [see § LEP];
- the LEP data, together with all other e.w. measurements, allowed for a prediction of m_{t} $\approx 175 \mathrm{GeV}$ [fig. 2];
- in the 1990's the search was finally concluded at the Tevatron, by the CDF and DO experiments.
- At present, we measure $m_{t}=173 \pm 0.4 \mathrm{GeV}$.

- in a hadronic collider [see § Colliders], the top is produced in pairs, via hadronic interactions;
- in pp and $\overline{\mathrm{p}} \mathrm{p}$ the PDF of initial state partons are different (valence / sea) [see § Colliders]: the q \bar{q} channel decreases from 90% ($\bar{p} p$ at Tevatron, V s=1.8 TeV) to 5% (pp at LHC, $\mathrm{V}=14 \mathrm{TeV}$) [qualitatively understandable];
- in the same range, the total cross section increases from 5 to 600 pb [also quite understandable].

The t quark : decay

- the top quark decays weakly in a (real) W and a "downtype" quark ($q=d / s / b$), with a coupling $\propto V_{\text {tq }}[C K M$, see §5];
- therefore the most common decay is $\mathrm{t} \rightarrow \mathrm{bW}^{+}\left(\mathrm{t} \rightarrow \mathrm{bW}^{-}\right)$;
- since $\Gamma \approx \mathrm{G}_{\mathrm{F}} \mathrm{m}_{\mathrm{t}}^{3} /(8 \pi \mathrm{~V} 2) \sim 2 \mathrm{GeV}, \tau_{\mathrm{t}} \sim 4 \times 10^{-25} \mathrm{~s}\left[\mathrm{c}\right.$ " $\mathrm{m}^{3 \prime \prime}$?];
- therefore the top decays before any hadronic process (hadronization, toponium formation) may happen;
- in turn the W decays "democratically" [see § LEP] into all the (ℓv) ($q \bar{q}$) pairs (hadrons $\times 3$ because of color);
- putting all together, the main decays for a tt pair are :
> both W's into e/ μ : the golden channel, but rare;
> only one W into e/ μ : more common, less easy;
> both W into quarks (i.e. jets) : difficult;
> (one or more) $\tau^{ \pm}$in the final state : v^{\prime} s \rightarrow almost impossible with present technology.

The t quark : discovery (1992-4)

CDF: e μ event

The t quark : results (1992-4)

- in may 1994, with $20 \mathrm{pb}^{-1}$ of data, the CDF collaboration was able to claim the top "evidence" (3б) and, one year after, its "discovery" (5σ);
- [for the latest results on top, see § LHC].

data before b-tag data after b-tag
[t-signal]
computed background

0

0

Figure 10
(a) Number of CDF events before secondary vertex b tagging (circles), number of tags observed (triangles), and expected number of background tags (batch marks) versus jet multiplicity. (Inset) The secondary vertex proper time distribution for events with three or more jets (triangles) compared with the expectation for b quark jets in top quark decay. (b) CDF reconstructed mass distribution for b-tagged events with at least four jets (solid line). Also shown are the background shape (dasbed purple line) normalized to the expected number of background events and the sum of the background and top quark contributions (dotted green line). (Inset) The likelihood fit used to determine the top quark mass. Modified from Abe et al. 1995 (115) with permission.

Summary

Finally, a simple table with all the quarks and their quantum numbers [antiquarks have same I and opposite $\mathscr{B}, \mathrm{Q}, \mathrm{I}_{3}, \mathrm{~S}, \mathrm{C}, \mathrm{B}, \mathrm{T}$]:

	d	u	s	C	b	t
$\mathcal{B}:$ baryon number	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$
$\mathrm{Q}:$ electric charge	$-1 / 3$	$+2 / 3$	$-1 / 3$	$+2 / 3$	$-1 / 3$	$+^{2 / 3}$
$\mathrm{I}:$ Isospin	$1 / 2$	$1 / 2$	0	0	0	0
$\mathrm{I}_{3}:$ Isospin 3-component	$-1 / 2$	$+1 / 2$	0	0	0	0
$\mathrm{~S}:$ strangeness	0	0	-1	0	0	0
$\mathrm{C}:$ charm	0	0	0	+1	0	0
$\mathrm{~B}:$ bottomness	0	0	0	0	-1	0
$\mathrm{~T}:$ topness	0	0	0	0	0	+1

conventional rules:

- in Gell-Mann-Nishijima all +ve;
- I_{3}-ve for d / +ve for u;
- S/B -ve for s / b;
- C/T +ve for c/t;
(could use a different rule, but stay consistent).

Gell-Mann - Nishijima formula : $\mathrm{Q}=\mathrm{I}_{3}+1 / 2(\mathcal{B}+\mathrm{S}+\mathrm{C}+\mathrm{B}+\mathrm{T})$.

Is this the REAL end of the story, i.e. no other quark exists ?

- the SM does not answer: discoveries or mass limits are left to the experiments;
- LEP measurement of n_{v} [see];
- present mass limits, see §LHC;
- a bSM theory could predict the number of families (or any other constraint).

References

1. [BJ, 10];
2. [Bettini, 4];
3. [YN1 14], [YN2 11.9]
4. the process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{ff}:[\mathrm{MQR} 14]$;
5. the CKM mixing and the GIM mechanism : [§4] and refs. therein;
6. the LEP fit to $m_{t}:[\S 6]$;
7. Tevatron results : Ann. Rev. Nucl. Part. Sci. 2013. 63:467-502 [notice that the LEP fit to m_{t} is NOT mentioned].

End of chapter 3

[^0]: (*) "low energy" ($\mathrm{m}_{\mathrm{f}} \ll V_{\mathrm{s}}=\mathrm{E}_{\mathrm{CM}}=2 \mathrm{E}=\mathrm{m}_{\gamma *} \ll \mathrm{~m}_{\mathrm{Z}}$), where m_{f} are the masses of all (initial+final) fermions. When $E_{C M}$ $\sim m_{\mathrm{Z}}$, a $\mathrm{Z}^{(*)}$ may also be formed; the process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Z}$ resonates at $\sqrt{ } \mathrm{s}=\mathrm{m}_{\mathrm{z}}$ and becomes dominant (see § LEP).

[^1]: (*) "ppp" : "particles (or protons) per pulse", i.e. once per accelerator cycle every few seconds; it is the typical figure of merit of a beam from an accelerator.

