Particle Physics - Chapter 9
 The Sp $\overline{\mathrm{p}} \mathrm{S}-\mathrm{W}^{ \pm}$and Z discovery

Paolo Bagnaia
SAPIENZA

AA 18-19

9 - The Spp̄S - $\mathbf{W}^{ \pm}$and Z discovery

1. p collisions
2. The Spp̄S parameters
3. Detectors
4. Events
5. Hadronic interactions
6. The Drell-Yan process
7. $\mathrm{W}^{ \pm}$discovery
8. Z discovery
9. $\mathrm{W}^{ \pm} / \mathrm{Z}$ properties ${ }^{(*)}$
${ }^{(*)}$ some of the properties of $\mathrm{W}^{ \pm}$ and Z are best studied in $\mathrm{e}^{+} \mathrm{e}^{-}$ interactions [typical examples : Γ 's and BR's] : their discussion is postponed to § LEP.

- The antiprotons ($\overline{\mathrm{p}})$ are the antiparticles of the protons (p).
- Therefore $\overline{\mathbf{p}} \boldsymbol{p}$ and $\mathbf{e}^{+} \mathbf{e}^{-}$colliders have similarities (e.g. one mag. channel with head-on collisions).
- ... with the bonus of the lack of brem for $\bar{p} p$: in the same SPS tunnel, p / \bar{p} were accelerated up to $273 / 315 / 450 \mathrm{GeV}$, while $\mathrm{e}^{ \pm}$up to few GeV only.
- ... and the disadvantage of compositeness \rightarrow in high Q^{2} collisions, partons ${ }_{1,2}$ have a momentum ($x_{1,2} \sqrt{s} / 2^{s}$) and the energy of the parton collision is $\sqrt{\hat{\mathrm{s}}}=\sqrt{\mathrm{SX}_{1} \mathrm{X}_{2}}$.
- In addition ${ }^{-1}$'s are very scarce in our world (also e^{+} are, but they are easy to produce and cheap).
- The real problem is the \bar{p} "fabrication", accumulation and cooling, which has to happen before the acceleration process.
- It requires lot of clever ideas, both from Physics, Electronics, Engineering.

Sowe mon at the bur 1976...

Producing Massive Neutral Intermediate Vector Bosons with Existing Accelerators ${ }^{(*)}$
C. Rubbia and P. McIntyre

Department of Physics Harvard University Cambridge, Massachusetts 02138
and
D. Cline

Department of Physics University of Wisconsin Madison, Wisconsin 53706
C. Rubbia, P. McIntyre and D. Cline, Proc. Int. Neutrino Conf., Aachen, 1976 (eds. H. Faissner, H. Reithler and P. Zerwas) (Vieweg, Braunschweig, 1977), p. 683.

$\overline{\mathrm{p}} \mathrm{p}$ collisions: sequence

A little animation may help :

1. Protons are accelerated to an intermediate suitable energy [the proposal says $E_{p}=100 \mathrm{GeV}$ from Fermilab main ring, but it is NOT critical -at CERN $E_{p}=$ 26 GeV from PS].
2. Then the p are extracted and sent onto a target, to produce high intensity collisions.
3. The resultant \bar{p} (very rare) are collected and cooled ("stacked") in a lower energy ring [at CERN $E_{\bar{p}}=3.5 \mathrm{GeV}-$ can't store \bar{p} 's at rest, despite Dan Brown stories ${ }^{(*)}$].
4. After hours (days), when enough \bar{p} are available, they are re-extracted and injected in the main ring, together with protons.
5. Both \bar{p} and p are accelerated to the max energy, and then let collide.

Although every step requires ingenuity, step (3) and (4) are the real nightmares; have a closer look.

Rubbia, McIntyre,

5 - pp̄ collisions !!!
(*) Penning traps work for few (< 10) particles.

Rubbia et al. invented an innovative scheme for $\bar{p} p$ collisions ${ }^{(*)}$.

- Carlo initially offered it to Fermilab, then he built it at CERN in 1978-81, later somebody else implemented it at Fermilab [another turning point in particle physics, people thinks that Americans are more fast and flexible].
- The key structures were the \bar{p} collectors, which were a new design of the Van der Meer horn (see figs) ...
- ... and the AA (= Antiproton Accumulator),
 the ring where the \bar{p} were collected, cooled, accumulated and stored for up to few days (next page).
${ }^{(*)}$ imho the creation of the $\overline{\mathrm{p}} \mathrm{p}$ machine (and not the relatively easy W and Z discovery) was the real success of the CERN $\bar{p} p$ Collider.
look the v horn in $\S v$ (same author) and comment on the difference.

The main problem : the "cooling" of \bar{p} :

- [why "cooling" ? in classical physics, the temperature of a gas is related to its motion in the CM frame : higher temperature means higher ($\left\langle v^{2}\right\rangle-\langle v\rangle^{2}$) velocity; so "gas cooling" means reducing the relative velocity of particles;]
- analyze a single particle (-) circulating in a ring;
- it oscillates with "betatron oscillations" around the ideal particle (-);
- a "pick-up" electrode detects its position respect to the nominal orbit;
- this value, appropriately amplified, is transmitted to a "kicker", displaced by ($\mathrm{n} / 2+1 / 4$) wavelengths;

- the kicker corrects the orbit;

- notice that the space displacement produces an angle correction;
- in reality, the pick-up and kicker are traversed by a large and incoherent number of particles at the same time;
- but if their average displacement is NOT zero, they get a correction and become closer to the ideal orbit.

THE problem: do everything (analysis, transmission, kicking) really fast !!!

$\overline{\mathrm{p} p}$ collisions: stochastic cooling

- Wikipedia : "Liouville's theorem, [...] after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics. It asserts that the phase-space distribution function is constant along the trajectories of the system."
- A principle well known to experts of beam optics : e.g. a quadrupole, or the principle of strong focusing.
- The cooling of \bar{p} in a reduced phase space region conflicts with the theorem : e.g. a squeeze in transverse momentum must result in an increase in space dimensions.
- Stochastic cooling : [S. van der Meer, Nobel Lecture] "Fortunately, there is a trick - and it consists of using the fact that particles are points in phase space with empty space in between. We may push
each particle towards the center of the distribution, squeezing the empty space outwards. The small-scale density is strictly conserved, but in a macroscopic sense the particle density increases. This process is called cooling because it reduces the movements of the particles with respect to each other."

${ }^{6 / 9}$ p collisions: (how to avoid) Liouville theorem

Stochastic cooling

After Cooling

A cartoon by Carlo, to explain the previous sentence of van der Meer and the solution of the "Liouville problem".

- My understanding : cannot modify individual particle trajectories, but act on packets of n particles, small enough that their means be sensibly different from the ideal orbit ($1 / \sqrt{\mathrm{n}}$ not negligible).
- it requires to divide the $\overline{\text { p's }}$ in small packets, act on each packet, and then reassemble the beam.
- A completely different type of cooling exists, electron cooling, invented by G.I. Budker. It is used in other accelerators.

$\bar{p} p$ collisions: the AA

1. A view of the CERN $p \bar{p}$ complex in the '80s.
2. The AA and the its functioning principle.
3. A scheme of the AA operations.

$\bar{p} p$ collisions: the AA at work

1. The first pulse of $7 \times 10^{6} \bar{p}$ has been injected into the vacuum chamber.
2. Precooling has reduced the momentum spread.
3. The first pulse has been moved to the stack-tail region.
4. The second pulse is injected, 2.4 s later.

5. The second pulse, after having been precooled, is also stacked.

6. After 15 pulses, the stack contains $10^{8} \bar{p}$.

7. After 1 h , a dense core has formed inside the stack.

8. After 24 h , the core contains enough \bar{p} for transfer to the SPS.

9. The remaining \bar{p} are used to begin the next day of accumulation.

- In hadronic interactions, partonic collisions at high Q^{2} are more interesting than coherent hadron scattering at low Q^{2}.
- Why in some cases pp are preferred, and in other $\overline{\mathrm{p}} \mathrm{p}$? [see the score card]
- Pros and cons are balanced : the winner depends on many considerations (money, availability of the facilities ...)
- However, the physics trend is clear :
> pp machines are more expensive ...
> but pointlike cross sections decrease like $1 / \mathrm{s}$; therefore as V_{s} increases, the luminosity is the essential requisite;
> the level of sea quarks increases with Q^{2}, even at high x, therefore the argument of "valence @ high-x" loses strength;
> probably the Spp̄S and the Tevatron will be the highest energy $\bar{p} p$ colliders.

Antiproton-proton $\overline{\mathrm{p} p}$:

> [lot of \bar{q} at high $x \rightarrow$ initial state with the vacuum quantum number \rightarrow], more $Z, W^{ \pm}$, Higgs with same $\sqrt{ }$ s and luminosity;
> cheaper machine [only one magnetic ring];
> but lower reliability [a fault in AA, e.g. due to a storm, could block the Spp̄S for one week, due to the loss of \bar{p}]

Proton-proton pp :

$>$ no auxiliary machines (AA, horns, ...) [no antimatter];
> higher reliability [no antimatter];
$>$ much higher luminosity ($\sim 10^{6}$) [no antimatter].

Spp̄S parameters

1983 was the "golden year" of Spp̄S : performances still improving, $\mathrm{W}^{ \pm}$and Z discovery. Notice :

- The rate of \bar{p} production : a rate ${ }^{\sim} 10^{6}$ paid to convert matter into antimatter.
- The energy for \bar{p} collection (3.5 GeV) was chosen because it is optimal for production σ and acceptance.
- The cross-section of the design, from an old experiment $\sigma\left(\mathrm{p}_{74} \mathrm{~W} \rightarrow \overline{\mathrm{p}}\right)$, was higher. The project had margins to (barely) survive.
- The Spp̄S performances were considered great, but LHC is $\times 1 \mathbf{0}^{5}$ in luminosity and \times 20 in energy ($\mathbf{3 0}$ years later).

The Spp̄S in 1983

$\mathrm{p}_{74} \mathrm{~W} \rightarrow \overline{\mathrm{p}} \mathrm{X}$	$\begin{gathered} \|\vec{p}\|= \\ 26 \mathrm{GeV} \end{gathered}$	$10^{13} / 2.4 \mathrm{~s}$
\bar{p}	$\begin{gathered} \|\vec{p}\|= \\ 3.5 \mathrm{GeV} \end{gathered}$	$\begin{aligned} & 1 /\left(10^{6} \mathrm{p}\right) \\ \rightarrow & \text { few } \times 10^{9} / \mathrm{h} \end{aligned}$
$\bar{p} p$	$\begin{gathered} V_{\mathrm{s}}=546 \\ \mathrm{GeV}^{(*)} \end{gathered}$	$\begin{gathered} \mathscr{L}=1.6 \times 10^{29} \\ \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \end{gathered}$
$\int ¢ \mathrm{dt}$	$153 \mathrm{nb}^{-1}$	Don't confuse " ${ }_{74}$ W" (tungsten,"wolfram") with "W", the IVB.
$\mathrm{N}_{\text {events }}(\overline{\mathrm{p}} \mathrm{p})$	8×10^{9}	
$\mathbf{W}^{ \pm} \rightarrow \mathrm{e}^{ \pm} \boldsymbol{v}$	90	
$\mathbf{W}^{ \pm} \rightarrow \mu^{ \pm} v$ (UA1 only)	14	[sorry, not my fault, only 26 letters available]
$\mathbf{Z} \rightarrow \mathrm{e}^{+} \mathbf{e}^{-}$	12	
$\mathbf{Z} \rightarrow \mu^{+} \mu^{-}$ (UA1 only)	4	
(*) $V_{s}=630 \mathrm{GeV}$ in ≥ 1984.		

Spp̄S parameters: $\mathscr{L}_{\text {int }} /$ year

Year	1982	1983	1984	1985	1986	1987	1988	1989	1990
Beam energy (GeV)	273	273	315	315		315	315	315	315
$\beta_{\mathrm{h}}{ }^{*}(\mathrm{~m})$	1.5	1.3	1	1		1	1	1	0.6
$\beta_{\mathrm{v}}{ }^{*}(\mathrm{~m})$	0.75	0.65	0.5	0.5		0.5	0.5	0.5	0.15
\# bunches	$3+3$	$3+3$	$3+3$	$3+3$		$3+3$ $(6+6)$	$6+6$	$6+6$	$6+6$
$\mathrm{p} /$ bunch $\left(10^{10}\right)$	9.5	14	16	16			12	12	12
$\overline{\mathrm{p}} /$ bunch $\left(10^{10}\right)$	1.2	1.5	2	2			4	6	7
$<\mathfrak{S}_{\text {initial }}>\left(10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	0.05	0.17	0.36	0.39		0.35	1.3	1.8	3.1
$<\mathfrak{S}_{\text {int }} /$ coast $>\left(\mathrm{nb}^{-1}\right)$	0.5	2.1	5.3	8.2		2.8	31.5	40	70
$\#$ coasts/year	56	72	77	80	0	33	107	119	104
$<\mathrm{T}_{\text {coast }}>(\mathrm{h})$	13	12	15	17			11	12	10
$\mathfrak{L}_{\text {int }} /$ year $\left(\mathrm{nb}^{-1}\right)$	28	153	395	655	0	94	3608	4759	7241

The detectors

UA1 and UA2 are placed at 60° wrt each other, in the region far from the injection from PS.

- Modern Collider detectors cover a solid angle as close as possible to 4π;
- there are two reasons for that :
> detect all the particles of the final state (e.g. to reconstruct a rare multibody state with high efficiency);
> "detect" the invisible particles (e.g. v 's), which escape without interacting with the apparatus ("hermeticity", as Carlo used to call it);
- there is a fundamental difference between $\mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{pp}(\overline{\mathrm{p}} \mathrm{p}$) :
$>$ in hadronic colliders (NOT in $\mathrm{e}^{+} \mathrm{e}^{-}$), most of $V_{s}\left(=1-\sqrt{x_{1} x_{2}}\right)$ is lost in spectator fragments, which escape in the beam chamber without being detected;
> the "visible energy" is a (small and variable) fraction of $\sqrt{ } \mathrm{s}$;
- therefore, in pp and $\overline{\mathrm{p}} \mathrm{p}$, the constraint of 4-mom conservation is not applicable in 4D;
- instead, a 2D constraint in the transverse plane is used;
- in the analysis, use the "missing transverse energy" Z_{T} (assume $Z_{T}=\left|\overrightarrow{\mathrm{p}}_{\mathrm{T}}\right|$). ["missing transverse momentum" looks more correct].

Rules for trigger and analysis:
$\mathrm{e}^{+} \mathrm{e}^{-}$: "4D";
pp(р̄p) : "2D":

$$
\begin{array}{ll}
\text { v's } & \rightarrow \mathrm{E}_{T} \\
\text { spectators } & \rightarrow \mathrm{E}_{\ell}
\end{array}
$$

The detectors: UA1 parameters

Central drift	Gas	Field	$\mathrm{v}_{\text {drift }}$	$\alpha_{\text {Lorentz }}$	$\mathrm{N}_{\text {sense wires }}$
chamber	Ar-ethane $40-60$	$1.5 \mathrm{kV} / \mathrm{cm}$	$53 \mu \mathrm{~m} / \mathrm{ns}$	$23^{\circ} @ 0.7 \mathrm{~T}$	6110

UA1	Zenith θ	type	Name	e.m. radlength	had. abslength	$\begin{gathered} \text { Cell } \\ \Delta \theta \times \Delta \phi \end{gathered}$	$\sigma_{\mathrm{E}} / \mathrm{E}$
Central calorimeter	$25^{\circ}-155^{\circ}$	e.m.	gondolas	26.6/sin θ	1.1/sin θ	$5^{\circ} \times 180^{\circ}$	0.15/ $\sqrt{\mathrm{E}}$ (GeV)
		had.	C's	-	5.0/sin θ	$15^{\circ} \times 18^{\circ}$	0.80/ $\mathrm{VE}(\mathrm{GeV})$
Endcap calorimeter	$\begin{gathered} 5^{\circ}-25^{\circ} \\ 155^{\circ}-175^{\circ} \end{gathered}$	e.m.	bouchons	27/cos θ	1.1/ $\cos \theta$	$20^{\circ} \times 11^{\circ}$	0.12/ V (GeV)
		had.	I's	-	7.1/ $\cos \theta$	$5^{\circ} \times 10^{\circ}$	0.80/ $\sqrt{ } \mathrm{E}(\mathrm{GeV})$

The detectors: UA2

The detectors: UA2 calos

The events: jets discovery

Hadronic jets discovery : UA2 - Paris conference, 1982

The events: UA2 jets

The events: UA1 jets

$\overline{\mathrm{p} p} \rightarrow 2,3,4$ jets

The events: UA1 $\mathrm{W}^{ \pm} \rightarrow \mathrm{ev}$

The events : UA2 $\mathrm{W} \pm \rightarrow \mathrm{ev}$

The events: UA1 $\mathrm{Z} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

The events: UA2 $\mathrm{Z} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$

The events: UA1 $\mathrm{Z} \rightarrow \mu^{+} \mu^{-}$

$Z \rightarrow \mu^{+} \mu^{-}$

- At the time, the scheme of the quarkparton model (qpm) was established, but not shared by everybody .
- The expected signature of qpm is the "jettyness" of the hadronic events.
- If qpm and QCD hold, the expectation is a change of regime as a function of Q^{2} :
$>$ at low Q^{2}, coherent $\overline{\mathrm{p} p}$ collisions \rightarrow final state hadrons spherically distributed;
> at high Q^{2}, parton-parton collisions \rightarrow two thin jets.
- Otherwise, expect all types of events at any Q^{2}, but most should be spherical.
- A difficult experimental challenge :
> prove jettyness without a "trigger bias" (i.e. cherry piking the events);
> disentangle dynamics from kinematics
(3-momentum conservation may simulate jettyness);
> prove that the majority (?) of events at high Q^{2} are "jet-like".

hadronic interactions: transition region

The solution :

- measure Q^{2} independently from jets: define $\boldsymbol{\Sigma} \mathbf{E}_{\mathbf{T}}$ (total transverse energy, i.e. an unbiased ${ }^{(*)}$ observable, in $\mathrm{QCD} \propto \sqrt{ } \mathrm{Q}^{2}$) :

$$
\sum \mathrm{E}_{\mathrm{T}}=\sum_{\mathrm{k}}\left|\mathrm{E}_{\mathrm{T}}^{\text {hadron- }}\right|=\sum_{\mathrm{k}} \mathrm{E}_{\mathrm{k}}\left|\sin \theta_{\mathrm{k}}\right| ;
$$

- identify the two highest jets of the events and their transverse energies $\mathrm{E}_{\mathrm{T}}^{1}, \mathrm{E}_{\mathrm{T}}^{2}$;
- plot, in bins of $\Sigma \mathrm{E}_{\mathrm{T}}$, the fractions:

$$
\begin{aligned}
& h_{1}=\left\langle E_{T}^{1} / \Sigma E_{T}\right\rangle ; \\
& h_{2}=\left\langle\left(E_{T}^{1}+E_{T}^{2}\right) / \Sigma E_{T}\right\rangle .
\end{aligned}
$$

- Ideally, in qpm+QCD :
> $\bar{p} p$ int. @ low Q^{2} : both h_{1}, h_{2} small;
$>$ qpm @ high $Q^{2}: h_{1} \approx 0.5, h_{2} \approx 1$.
$\left(^{*}\right)$ events selected (triggered) by $\Sigma \mathrm{E}_{\mathrm{T}}$ are unbiased respect to shape; moreover, if qpm holds, $\Sigma E_{T} \propto \sqrt{ } Q^{2}$.

Success !!! As a function of $\Sigma \mathrm{E}_{\mathrm{T}}$, (i.e. $\sqrt{ } \mathrm{Q}^{2}$), the events change in the expected way; the qpm region is not precisely defined, but

$$
\Sigma \mathrm{E}_{\mathrm{T}}>\sim 100 \mathrm{GeV}\left(\ell<\sim 10^{-18} \mathrm{~m}\right) .
$$

hadronic interactions: $\mathrm{d}^{2} \sigma /\left.\mathrm{dp} p_{T} \mathrm{~d}\right|_{\eta=0}$

Already discussed. Just notice :

- the increase as a function of V ;
- the comparison with pQCD;

for higher limits on Λ, see \S LHC.
- limit on $\Lambda \geq 370 \mathrm{GeV}$ @ 95\% CL ($1 / \Lambda$ hypothetical scale of a substructure : $(370 \mathrm{GeV})^{-1} \approx 5 \times 10^{-19} \mathrm{~m}$.

hadronic interactions: $\mathrm{d} \sigma / \mathrm{d} \cos \theta$

The (\mathbb{L}-invariant) angular variable χ :
$\chi \equiv \frac{\hat{\mathrm{u}}}{\hat{\mathrm{t}}}=\frac{1+\cos \theta^{*}}{1-\cos \theta^{*}} ;[\chi$ large $\leftrightarrow \theta$ small $]$

$$
\begin{aligned}
\frac{d \chi}{d \cos \theta^{*}} & =\frac{1}{1-\cos \theta^{*}}+\frac{1+\cos \theta^{*}}{\left(1-\cos \theta^{*}\right)^{2}}=\frac{2}{\left(1-\cos \theta^{*}\right)^{2}} \\
\frac{d \sigma_{\text {Rutherf. }}}{d \chi} & =\left(\frac{d \sigma}{d \cos \theta^{*}}\right)\left|\frac{d \chi}{d \cos \theta^{*}}\right|^{-1} \propto\left(\frac{1}{\hat{t}^{2}}\right)\left|\frac{d \chi}{d \cos \theta^{*}}\right|^{-1} \propto \\
& \propto \frac{1}{\left(1-\cos \theta^{*}\right)^{2}}\left(1-\cos \theta^{*}\right)^{2}=\text { const. }
\end{aligned}
$$

The data (UA1 1983, actually Bill
The variable χ "flattens" the Rutherford angular cross-section, i.e. $d \sigma / d \cos \theta^{*} \propto t^{-2} \propto\left(1-\cos \theta^{*}\right)^{-2}$ $\rightarrow \mathrm{d} \sigma / \mathrm{d} \chi=$ const. [box].

Scott) show :

- $\mathrm{d} \sigma / \mathrm{d} \chi$ is remarkably "quasi flat";
- good agreement with pQCD: $\mathrm{d} \sigma / \mathrm{d} \chi$ not constant because of α_{s} running : χ large $\rightarrow \theta$ small $\rightarrow \mathrm{Q}^{2}$ small $\rightarrow \alpha_{s}$ larger $\rightarrow \sigma$ larger);
- in addition, non- t^{-2} processes at small χ (large θ).

- Drell and Yan in 1971 computed in qp model:

$$
\mathrm{q} \overline{\mathrm{q}} \rightarrow \gamma^{*} \rightarrow \ell^{+} \ell^{-}, \quad \ell=\mathrm{e}, \mu, \tau ;
$$

- they found :

$$
\frac{d^{2} \sigma}{{d m_{12}^{2}}^{2} \mathrm{dx}_{\mathrm{F}}}=\frac{4 \pi \alpha^{2}}{9 \mathrm{~m}_{12}^{2} \mathrm{~s}} \frac{1}{\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)} \times
$$

$$
\mathrm{pA} \rightarrow \mu^{+} \mu^{-} \mathrm{X}
$$

$$
\begin{array}{r}
\quad \times \sum_{i} e_{i}^{2}\left[q_{i}\left(x_{1}\right) \bar{q}_{i}\left(x_{2}\right)+\bar{q}_{i}\left(x_{1}\right) q_{i}\left(x_{2}\right)\right] \\
\frac{d \sigma}{d \Omega}=\sigma_{0}\left(1+\cos ^{2} \theta\right) ; \quad x_{F}=x_{1}-x_{2} ; \quad \tau=m_{12}^{2} / s
\end{array}
$$

$$
\begin{gathered}
\text { Ann.Rev.Nucl.Part.Sci. } \\
2 . \\
2 .
\end{gathered}
$$

- by extension, in hadronic interactions, the name "DY" was also used for processes with two leptons mediated by a (heavy) vector bosons :
$\mathrm{du} \rightarrow \mathrm{W}^{-} \rightarrow \ell^{-} \bar{v}$, (+ any qq $\bar{q}^{\prime} \rightarrow$ leptons); $u \bar{u} \rightarrow Z \rightarrow \ell^{-} \ell^{+}, v \bar{v}, q \bar{q}(+\ldots) ;$
- by a further extension, it is also used for all processes with a fermionantifermion pair in the final state, mediated by an electro-weak vector boson, either real or virtual $\left(\gamma^{(*)}, Z^{(*)}\right.$, $\left.\mathrm{W}^{ \pm(*)}\right)$, e.g. du $\rightarrow \mathrm{W}^{-} \rightarrow \mathrm{q} \bar{q}^{\prime} ;$
- ie. "DY" = production of a ff pair in a hadronic interaction with an electroweak spin-1 mediator;
- when the γ^{*} is replaced by another IVB, at parton level the electro-magnetic process has to be replaced by the appropriate electro-weak cross-section;
- a DY process is calculable with the usual qum scheme [as shown in § 8];
- computations of the DY processes were at the origin of the $\mathrm{Sp} \overline{\mathrm{p}}$ S proposal, and the main ingredient of the comparison data-theory;
- since then, this scheme has been technically improved without basic modifications.

$W^{ \pm}$discovery

On 25 January 1983 CERN announced the discovery of the W boson. Left to right: Carlo Rubbia, Simon van der Meer, Herwig Schopper, Erwin
Gabathuler, Pierre Darriulat (Image: CERN)

EXPERIMENTAL OBSERVATION OF ISOLATED LARGE TRANSVERSE ENERGY ELECTRONS WITH ASSOCIATED MISSING ENERGY AT $\sqrt{s}=540 \mathrm{GeV}$

UA1 Collaboration, CERN, Geneva, Switzerland
G. ARNISON ${ }^{j}$, A. ASTBURY ${ }^{\text {j }}$, B. AUBERT ${ }^{\text {b }}$, C. BACCI $^{\text {i }}$, G. BAUER ${ }^{1}$, A. BÉZAGUET ${ }^{\text {d }}$, R. BÖCK ${ }^{\text {d }}$, T.J.V. BOWCOCK ${ }^{\text {f }}$, M. CALVETTI ${ }^{\text {d }}$, T. CARROLL ${ }^{\text {d }}$, P. CATZ ${ }^{\text {b }}$, P. CENNINI ${ }^{\text {d }}$, S. CENTRO ${ }^{\text {d }}$, F. CERADINI ${ }^{\text {d }}$, S. CITTOLIN ${ }^{\text {d }}$, D. CLINE ${ }^{1}$, C. COCHET ${ }^{\text {k }}$, J. COLAS ${ }^{\text {b }}$, M. CORDEN $^{\mathrm{c}}$, D. DALLMAN ${ }^{\mathrm{d}}$, M. DeBEER ${ }^{\text {k }}$, M. DELLA NEGRA $^{\text {b }}$, M. DEMOULIN ${ }^{\text {d }}$, D. DENEGRI ${ }^{\text {k }}$, A. Di CIACCIO ${ }^{i}$,
D. DiBITONTO ${ }^{\text {d }}$, L. DOBRZYNSKI ${ }^{\text {g }}$, J.D. DOWELL ${ }^{\text {c }}$, M. EDWARDS ${ }^{\text {c }}$, K. EGGERT ${ }^{\text {a }}$,
E. EISENHANDLER ${ }^{\text {f }}$, N. ELLIS ${ }^{\text {d }}$, P. ERHARD ${ }^{\text {a }}$, H. FAISSNER ${ }^{\text {a }}$, G. FONTAINE ${ }^{\text {g }}$, R. FREY ${ }^{\text {h }}$, R. FRÜHWIRTH ${ }^{1}$, J. GARVEY ${ }^{\text {c }}$, S. GEER $^{\text {g }}$, C. GHESQUIÈRE ${ }^{\text {g }}$, P. GHEZ ${ }^{\text {b }}$, K.L. GIBONI ${ }^{\text {a }}$, W.R. GIBSON ${ }^{\text {f }}$, Y. GIRAUD-HÉRAUD ${ }^{\mathrm{g}}$, A. GIVERNAUD $^{\mathrm{k}}$, A. GONIDEC ${ }^{\text {b }}$, G. GRAYER ${ }^{\text {j }}$, P. GUTIERREZ ${ }^{\text {h }}$, T. HANSL-KOZANECKA ${ }^{\text {a }}$, W.J. HAYNES ${ }^{\text {j }}$, L.O. HERTZBERGER ${ }^{2}$, C. HODGES ${ }^{\text {h }}$, D. HOFFMANN ${ }^{\text {a }}$, H. HOFFMANN ${ }^{\text {d }}$, D.J. HOLTHUIZEN ${ }^{2}$, R.J. HOMER ${ }^{\text {c }}$, A. HONMA ${ }^{\text {f }}$, W. JANK ${ }^{\text {d }}$, G. JORAT ${ }^{\text {d }}$, P.I.P. KALMUS ${ }^{f}$, V. KARIMÄKI ${ }^{\mathrm{e}}$, R. KEELER ${ }^{\mathrm{f}}$, I. KENYON ${ }^{\mathrm{c}}$, A. KERNAN ${ }^{\text {h }}$, R. KINNUNEN ${ }^{\text {e }}$, H. KOWALSKI ${ }^{\text {d }}$, W. KOZANECKI ${ }^{\text {h }}$, D. KRYN ${ }^{\text {d }}$, F. LACAVA ${ }^{\text {d }}$, J.-P. LAUGIER ${ }^{\text {k }}$, J.-P. LEES ${ }^{\text {b }}$, H. LEHMANN ${ }^{\text {a }}$, K. LEUCHS ${ }^{\text {a }}$, A. LÉVEQUE ${ }^{\text {k }}$, D. LINGLIN ${ }^{\text {b }}$, E. LOCCI ${ }^{\text {k }}$, M. LORET ${ }^{\text {k }}$, J.-J. MALOSSE ${ }^{\text {k }}$, T. MARKIEWICZ ${ }^{\text {d }}$, G. MAURIN ${ }^{\text {d }}$, T. McMAHON ${ }^{\text {c }}$, J.-P. MENDIBURUg, M.-N. MINARD ${ }^{\text {b }}$, M. MORICCA ${ }^{i}$, H. MUIRHEAD ${ }^{\text {d }}$, F. MULLER ${ }^{\text {d }}$, A.K. NANDI ${ }^{j}$, L. NAUMANN ${ }^{\text {d }}$, A. NORTON ${ }^{\text {d }}$, A. ORKIN-LECOURTOIS $^{\text {g }}$, L. PAOLUZI ${ }^{i}$, G. PETRUCCI ${ }^{\text {d }}$, G. PIANO MORTARI ${ }^{i}$, M. PIMIÄ ${ }^{\text {e }}$, A. PLACCI ${ }^{\text {d }}$, E. RADERMACHER ${ }^{\text {a }}$, J. RANSDELL ${ }^{\text {h }}$, H. REITHLER ${ }^{\text {a }}$, J.-P. REVOL ${ }^{\text {d }}$, J. RICH $^{\mathrm{k}}$, M. RIJSSENBEEK $^{\mathrm{d}}$, C. ROBERTS ${ }^{\mathrm{j}}$, J. ROHLF ${ }^{\text {d }}$, P. ROSSI ${ }^{\text {d }}$, C. RUBBIA ${ }^{\mathrm{d}}$, B. SADOULET $^{\text {d }}$, G. SAJOT ${ }^{\text {g }}$, G. SALVI ${ }^{\text {f }}$, G. SALVINI ${ }^{i}$, J. SASS ${ }^{\text {k }}$, J. SAUDRAIX ${ }^{k}$, A. SAVOY-NAVARRO ${ }^{\text {k }}$, D. SCHINZEL ${ }^{\text {f }}$, W. SCOTT ${ }^{\mathrm{j}}$, T.P. SHAH ${ }^{\mathrm{j}}$, M. SPIRO ${ }^{\mathrm{k}}$, J. STRAUSS ${ }^{1}$, K. SUMOROK ${ }^{\mathrm{c}}$, F. SZZONCSO ${ }^{1}$, D. SMITH ${ }^{\text {h }}$, C. TAO $^{\text {d }}$, G. THOMPSON ${ }^{\text {f }}$, J. TIMMER ${ }^{\text {d }}$, E. TSCHESLOG ${ }^{\text {a }}$, J. TUOMINIEMI ${ }^{\text {e }}$, S. Van der MEER ${ }^{\text {d }}$, J.-P. VIALLE ${ }^{\text {d }}$, J. VRANA ${ }^{\text {g }}$, V. VUILLEMIN $^{\text {d }}$, H.D. WAHL ${ }^{1}$, P. WATKINS ${ }^{\text {c }}$, J. WILSON ${ }^{\text {c }}$, Y.G. XIE $^{\text {d }}$, M. YVERT ${ }^{\text {b }}$ and E. ZURFLUH ${ }^{\text {d }}$

Aachen ${ }^{\mathrm{a}}-$ Annecy (LAPP) $)^{\mathrm{b}}-$ Birmingham $^{\mathrm{c}}-$ CERN $^{\mathrm{d}}-$ Helsinki $^{\mathrm{e}}-$ Queen Mary College, London ${ }^{\mathrm{f}}-$ Paris (Coll. de France) ${ }^{\mathrm{g}}$ - Riverside $^{\mathrm{h}}-$ Rome $^{\mathbf{i}}-$ Rutherford Appleton Lab. ${ }^{\mathrm{j}}-$ Saclay (CEN) ${ }^{\mathbf{k}}{ }^{- \text {Vienna }^{1}}{ }^{1}$ Collaboration

$\mathrm{W}^{ \pm} \rightarrow \mathrm{e}^{ \pm} v$

Phys. Lett 122B (1983)

OBSERVATION OF SINGLE ISOLATED ELECTRONS OF HIGH TRANSVERSE MOMENTUM IN EVENTS WITH MISSING TRANSVERSE ENERGY AT THE CERN $\bar{p} p$ COLLIDER

The UA2 Collaboration
 J.-C. CHOLLET ${ }^{\text {d }}$, A.G. CLARK ${ }^{\text {b }}$, C. CONTA ${ }^{e}$, P. DARRIULAT ${ }^{\text {b }}$, L. DI LEILA ${ }^{\text {b }}$, J. DINES-HANSEN ${ }^{\mathrm{c}}$, P.A. DORSAZ. ${ }^{\text {b }}$, L. FAYARD ${ }^{\text {d }}$, M. FRATFRNALI ${ }^{\text {e }}$, D. FROIDEVAUX ${ }^{\text {b }}$, J.-M. GAILLARD ${ }^{\text {d }}$, O. GILDEMEISTER ${ }^{\text {b }}$, V.G. GOGGI ${ }^{\mathrm{c}}$, H. GROTF $^{\mathrm{b}}$, B. HAHN ${ }^{\mathrm{a}}$, H. HÄNNI ${ }^{\text {a }}$, J.R. HANSEN ${ }^{\mathrm{b}}$, P. HANSEN ${ }^{c}$, T. HIMEL ${ }^{b}$, V. HUNGERBÜHLER ${ }^{\text {b }}$, P. JENNI ${ }^{\text {b }}$, O. KOFOED. HANSEN ${ }^{c}$, E. LANÇON ${ }^{f}$, M. LIVAN $^{\text {b }}, \mathrm{e}, \mathrm{S}$. LOUCATOS ${ }^{\mathrm{f}}$, B. MADSEN $^{\mathrm{c}}$, P. MANI ${ }^{\mathrm{a}}$, B. MANSOULIÉ f , G.C. MANTOVANI ${ }^{1}$, L. MAPELLI ${ }^{\text {b }}$, B. MERKEL ${ }^{d}$, M. MERMIKIDES ${ }^{\text {b }}$, R. M \varnothing LLERUD ${ }^{\mathrm{c}}$, B. NILSSON ${ }^{c}$, C. ONIONS ${ }^{b}$, G. PARROUR ${ }^{\text {b,d }}$, F. PASTORE ${ }^{\text {b,e }, ~ H . ~ P L O T H O W-B E S C H ~}{ }^{\text {b,d }}$, M. POLVEREL ${ }^{\mathrm{f}}$, J.P. REPELLIN ${ }^{\mathrm{d}}$, A. ROTHENBERG ${ }^{\text {b }}$, A. ROU'SSARIE ${ }^{\mathrm{f}}$. G. SAUVAGE ${ }^{\mathrm{d}}$, J. SCHACHER ${ }^{\text {a }}$, J.L. SIEGRIST ${ }^{\text {b }}$, H.M. STEINER ${ }^{\text {b, }}{ }^{3}$, G. STIMPFL, ${ }^{\text {b }}$, F. STOCKFR ${ }^{\text {a }}$, J. TEIGER ${ }^{\text {f }}$, V. VERCESI ${ }^{\mathrm{e}}$, A. WEIDBERG ${ }^{\text {b }}$, H. ZACCONE ${ }^{\mathrm{f}}$ and W. ZFLLER ${ }^{\text {a }}$
a Iaboratorium für Hochenergie physik. Universität Bern. Sidlerstrasse 5, Bern. Switzerland
${ }^{\mathrm{b}}$ Cl:RN, 1211 Geneva 23. Switzerland
${ }^{\text {c }}$ Niels Bohr Institute, Blegdamsvej 17. Copenhagen, Denmark
${ }^{\text {d Laboratoire de l'Accélérateur Linćaire, U'niversité de Paris-Sud, Orsay, France }}$
${ }^{\text {e }}$ Dipartimento di Fïsica Nucleare e Teorica, liniversità di Pavia and INFN, Sezione di Pavia. Via Bassi 6, Pavia, Italy
${ }^{f}$ Centre d'Etudes nucléaires de Saclay, France

- production (assume only valence) : $\overline{\mathrm{u} d} \rightarrow \mathrm{~W}^{-} \rightarrow \ell^{-} \bar{v}$ [the case ($u d \rightarrow \mathrm{~W}^{+} \rightarrow \ell^{+} v$) is equal, mutatis mutandis];
- $\ell=e / \mu$, study the "e" case (original discovery, μ similar);
- the hadronic decay modes are dominant (see § LEP), but essentially invisible at the Spp̄S, but an attempt by UA2;
- $\mathrm{qpm} \rightarrow \mathrm{p}_{\mathrm{T}}\left(\mathrm{W}^{ \pm}\right) \approx 0 ; \mathrm{p}_{\mathrm{z}}\left(\mathrm{W}^{ \pm}\right)$unknown and varying;
- v not detected (but Z_{T});
- selection :
$>$ trigger in E_{T} electromagnetic $\left(\mathrm{e}^{ \pm}\right): \mathrm{E}_{\mathrm{T}}>8 \mathrm{GeV}$ [UA2];
$>$ selection requires large $Z_{T}\left(\rightarrow p_{T}{ }^{\nu}\right)$;
> ... and a true $\mathrm{e}^{ \pm}$(from its e.m. shower);
$>$ reconstruct $\mathrm{p}_{\mathrm{T}}^{\mathrm{e}}, \mathrm{p}_{\mathrm{T}}^{v}\left(=Z_{\mathrm{T}}\right), \rightarrow \mathrm{E}_{\mathrm{T}}^{\text {tot }}, \mathrm{p}_{\mathrm{T}}^{\text {tot }}$;
> compute: $\mathrm{m}_{\mathrm{T}}[$ "transverse mass"] :

$$
\mathrm{m}_{\mathrm{T}}^{2} \equiv\left(\mathrm{E}_{\mathrm{T}}^{\ell}+\mathrm{E}_{\mathrm{T}}^{v}\right)^{2}-\left(\overrightarrow{\mathrm{p}}_{\mathrm{T}}^{\ell}+\overrightarrow{\mathrm{p}}_{\mathrm{T}}^{v}\right)^{2} \approx 2 \mathrm{E}_{\mathrm{T}}^{\ell} \mathrm{E}_{\mathrm{T}}^{v}\left(1-\cos \Delta \phi_{\ell v}\right) ;
$$

- analysis :
$>$ select clean $\mathrm{W}^{ \pm}$decays, i.e. high $-\mathrm{p}_{\mathrm{T}} \mathrm{e}^{ \pm}+Z_{T} ;$
$>$ correlate $\mathrm{m}_{\mathrm{T}} \rightarrow \mathrm{m}_{\mathrm{w}}$, e.g. via montecarlo.

Problem : In a W \rightarrow ev event, only $\overrightarrow{\mathrm{p}}_{\mathrm{e}}$ and $\underline{Z}_{\mathrm{T}}$ are detected. Is it possible to get $\overrightarrow{\mathrm{p}}_{\mathrm{w}}$ and $\overrightarrow{\mathrm{p}}_{v}$?

... but:

- Γ_{W} neglected $\rightarrow \Delta \mathrm{p}_{\mathrm{w}}{ }^{\text {sys }}$;
- better : $\overrightarrow{\mathrm{p}}_{\mathrm{T}}{ }^{\mathrm{w}}={ }^{\prime} \mathrm{Z}_{\mathrm{T}}(2 \mathrm{D})^{\prime}-\overrightarrow{\mathrm{p}}_{\mathrm{T}}{ }^{\mathrm{e}}$ (but large error from spectators).

$$
\mathrm{W}:\left(\sqrt{\mathrm{m}_{\mathrm{w}}^{2}+\mathrm{p}^{2}}, \quad \mathrm{p}, \quad 0\right) ; \quad \begin{aligned}
& \text { because } \\
& \text { of q.p.m. }
\end{aligned}
$$ e : $(k, \quad k \cos \theta, \quad k \sin \theta)$; $v:\left(\sqrt{m_{w}^{2}+p^{2}}-k, \quad \mathrm{p}-\mathrm{k} \cos \theta, \quad-\mathrm{k} \sin \theta\right)$; measured: k, θ, Z_{T}; unknowns: $m_{w}, p=p_{w}$; check: $\quad E_{T}\left[\approx E_{T}^{v} \approx E_{T}^{e}\right] \approx k \sin \theta[+$ planarity $] ;$ $m_{v}^{2} \approx 0 \rightarrow\left(\sqrt{m_{w}^{2}+p^{2}}-k\right)^{2}=(p-k \cos \theta)^{2}+k^{2} \sin ^{2} \theta ;$ \rightarrow one equation, two unknowns \rightarrow no solution. But, if m_{w} known : e.g. from the jacobian [next slide] $m_{w}^{2}+p^{2}+k^{2}-2 k \sqrt{m_{w}^{2}+p^{2}}=p^{2}+k^{2}-2 p k \cos \theta ;$ $\left(2 k \sqrt{m_{w}^{2}+p^{2}}\right)^{2}=\left(m_{w}^{2}+2 p k \cos \theta\right)^{2}$; $4 \mathrm{p}^{2} \mathrm{k}^{2}\left(1-\cos ^{2} \theta\right)-4 \mathrm{p} k m_{w}^{2} \cos \theta+4 \mathrm{k}^{2} \mathrm{~m}_{\mathrm{w}}^{2}-m_{w}^{4}=0$; \rightarrow two solutions for p_{w} and for $\overrightarrow{\mathrm{p}}_{v}$.

- the "jacobian peak" ["*" = W sys.] :

$$
\begin{aligned}
& \begin{array}{ll}
p_{T}^{e} * & =p_{T}^{e}=p^{e} * \sin \theta^{*}=\frac{1}{2} m_{w} \sin \theta^{*} ; \\
\cos \theta^{*} & =\sqrt{1-\left(2 p_{T}^{e} / m_{w}\right)^{2}}=\sqrt{m_{w}^{2}-4\left(p_{T}^{e}\right)^{2}} / m_{w} \\
d N / d p_{T}^{e} & =\left(d N / d \cos \theta^{*}\right) \times\left|d \cos \theta^{*} / d p_{T}^{e}\right| \propto \\
& \propto \sqrt{\left(1+\cos \theta^{*}\right)^{2} \times \frac{4 p_{T}^{e}}{m_{w}}} \times \sqrt{\frac{1}{m_{w}^{2}-4\left(p_{T}^{e}\right)^{2}}}
\end{array} \\
& \\
& =f\left(p_{T}^{e}, m_{W}\right) \text { smooth, no-peak }
\end{aligned}
$$

- therefore the "jacobian" $\left|\mathrm{d} \cos \theta^{*} / \mathrm{dp}_{\mathrm{T}}{ }^{\mathrm{e}}\right|$ produces a sharp peak at $\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{e}} \approx \mathrm{m}_{\mathrm{W}} / 2$, modulated by $\Gamma_{\mathrm{w}} \oplus$ (detector).

$\mathrm{W}^{ \pm}$discovery: the jacobian peak

- Assume that the main process be valence-valence. The large values of the $\mathrm{W}^{ \pm}$mass makes all the other masses negligible. Thus the particles have -ve helicity and the antiparticles + ve helicity.
- Then, the $(\mathrm{V}-\mathrm{A})$ structure of the CC favor the collinearity ($e^{-} p$), $\left(\mathrm{e}^{+} \overline{\mathrm{p}}\right)$, i.e. $\cos \theta^{*} \approx 1$.
- As in many similar processes, $d \sigma / d \cos \theta^{*} \propto\left(1+\cos \theta^{*}\right)^{2}$.
- The process is a simple and powerful test of the theory ...
- ... but does it discriminate between $(\mathrm{V}-\mathrm{A})$ and $(\mathrm{V}+\mathrm{A})$? [think and answer]

- As important as the pure discovery [less media impact, of course].
- This beautiful effect is only evident at the $\mathrm{Sp} \overline{\mathrm{p}} \mathrm{S}\left[\mathrm{m}_{\mathrm{w}}^{2}=\mathrm{sx}_{1} \mathrm{x}_{2} \rightarrow\right.$ increasing $\sqrt{ } \mathrm{s}$, the value of $x_{1,2}$ decreases, and therefore sea-quarks become dominant].
- [probably one of the few advantages in hadronic colliders for a low value of $\sqrt{ }$ s].
- At LHC, the initial state is pp, completely symmetric, so the effect is completely absent. The W^{+}yield is more abundant, especially at large x, where the valence quarks are dominant [do not confuse difference in initial state with parity violation].
- At LHC, cross-section larger \rightarrow more precise $\mathrm{m}_{\mathrm{w}} \Gamma_{\mathrm{w}}$ measurements.
- A method to increase the asymmetry at high V_{S} is the selection of "low- p_{T} " $W^{ \pm}$ $\left(q \bar{q} \rightarrow W^{ \pm}\right)$, with respect to "high $p_{T}{ }^{\prime \prime} W^{ \pm}$ (qg, $\bar{q} g \rightarrow W^{ \pm}$jet).

EXPERIMENTAL OBSERVATION OF LEPTON PAIRS OF INVARIANT MASS AROUND $95 \mathrm{GeV} / c^{2}$ AT THE CERN SPS COLLIDER

UA1 Collaboration, CERN, Geneva, Switzerland
G. ARNISON ${ }^{\mathrm{j}}$, A. ASTBURY $^{\mathrm{j}}$, B. AUBERT $^{\text {b }}$, C. BACCI ${ }^{\mathrm{i}}$, G. BAUER 1, A. BÉZAGUET ${ }^{\mathrm{d}}$, R. BÖCK ${ }^{\text {d }}$, T.J.V. BOWCOCK ${ }^{\text {f }}$, M. CALVETTI ${ }^{\text {d }}$, P. CATZ ${ }^{\text {b }}$, P. CENNINI ${ }^{\text {d }}$, S. CENTRO ${ }^{\text {d }}$, F. CERADINI ${ }^{\text {d,i}}$, S. CITTOLIN ${ }^{\text {d }}$, D. CLINE ${ }^{1}$, C. COCHET ${ }^{\text {k }}$, J. COLAS ${ }^{\text {b }}$, M. CORDEN ${ }^{\text {c }}$,
D. DALLMAN ${ }^{\text {d, }}$, D. DAU ${ }^{2}$, M. DeBEER ${ }^{k}$, M. DELLA NEGRA ${ }^{\text {b,d }}$, M. DEMOULIN ${ }^{d}$,
D. DENEGRI ${ }^{k}$, A. Di CIACCIO ${ }^{i}$, D. DiBITONTO ${ }^{\text {d }}$, L. DOBRZYNSKI ${ }^{\text {g }}$, J.D. DOWELL ${ }^{\text {c }}$,
K. EGGERT ${ }^{\text {a }}$, E. EISENHANDLER ${ }^{\mathrm{f}}$, N. ELLIS ${ }^{\mathrm{d}}$, P. ERHARD ${ }^{\text {a }}$, H. FAISSNER ${ }^{\text {a }}$, M. FINCKE ${ }^{2}$,
G. FONTAINE ${ }^{\text {g }}$, R. FREY $^{\text {h }}$, R. FRÜHWIRTH ${ }^{1}$, J. GARVEY $^{\text {c }}$, S. GEER $^{\text {g }}$, C. GHESQUIĖRE ${ }^{\mathrm{g}}$,
P. GHEZ ${ }^{\text {b }}$, K. GIBONI $^{\text {a }}$, W.R. GIBSON ${ }^{\text {f }}$, Y. GIRAUD-HÉRAUD ${ }^{\mathrm{g}}$, A. GIVERNAUD ${ }^{\mathrm{k}}$, A. GONIDEC ${ }^{\mathrm{b}}$,
G. GRAYER ${ }^{\mathrm{j}}$, T. HANSL-KOZANECKA ${ }^{\text {a }}$, W.J. HAYNES ${ }^{\text {j }}$, L.O. HERTZBERGER ${ }^{3}$, C. HODGES ${ }^{\mathrm{h}}$
D. HOFFMANN ${ }^{\text {a }}$, H. HOFFMANN ${ }^{\text {d }}$, D.J. HOLTHUIZEN ${ }^{3}$, R.J. HOMER ${ }^{\text {c }}$, A. HONMA ${ }^{\text {f }}$, W. JANK ${ }^{\text {d }}$,
G. JORAT ${ }^{\mathrm{d}}$, P.I.P. KALMUS ${ }^{\mathrm{f}}$, V. KARIMÄKI ${ }^{\mathrm{e}}$, R. KEELER ${ }^{\mathrm{f}}$, I. KENYON ${ }^{\mathrm{c}}$, A. KERNAN ${ }^{\mathrm{h}}$,
R. KINNUNEN ${ }^{\mathrm{e}}$, W. KOZANECKI ${ }^{\text {h }}$, D. KRYN ${ }^{\text {d,g }}$, F. LACAVA ${ }^{\mathrm{i}}$, J.-P. LAUGIER ${ }^{\mathrm{k}}$, J.-P. LEES ${ }^{\mathrm{b}}$,
H. LEHMANN ${ }^{\text {a }}$, R. LEUCHS ${ }^{\text {a }}$, A. LÉVÊQUE ${ }^{\text {k,d }}$, D. LINGLIN ${ }^{\text {b }}$, E. LOCCI ${ }^{\text {k }}$, J.J. MALOSSE ${ }^{\text {k }}$,
T. MARKIEWICZ ${ }^{\mathrm{d}}$, G. MAURIN ${ }^{\mathrm{d}}$, T. McMAHON ${ }^{\text {c }}$, J.-P. MENDIBURU ${ }^{\mathrm{g}}$, M.-N. MINARD ${ }^{\text {b }}$,
M. MOHAMMADI ${ }^{1}$, M. MORICCA $^{\mathrm{i}}$, K. MORGAN ${ }^{\text {h }}$, H. MUIRHEAD ${ }^{4}$, F. MULLER ${ }^{\text {d }}$, A.K. NANDI ${ }^{\mathrm{j}}$,

G. PIANO MORTARI ${ }^{\mathrm{i}}$, E. PIETARINEN ${ }^{\mathrm{e}}$, M. PIMIÄ ${ }^{\mathrm{e}}$, A. PLACCI ${ }^{\mathrm{d}}$, J.P. PORTE ${ }^{\mathrm{d}}$,
E. RADERMACHER ${ }^{\text {a }}$, J. RANSDELL ${ }^{\text {h }}$, H. REITHLER ${ }^{\text {a }}$, J.-P. REVOL ${ }^{\text {d }}$, J. RICH ${ }^{\text {k }}$,
M. RIJSSENBEEK ${ }^{\text {d }}$, C. ROBERTS ${ }^{\mathrm{j}}$, J. ROHLF ${ }^{\mathrm{d}}$, P. ROSSI ${ }^{\mathrm{d}}$, C. RUBBIA ${ }^{\mathrm{d}}$, B. SADOULET ${ }^{\mathrm{d}}$,
G. SAJOT ${ }^{\mathrm{g}}$, G. SALVI ${ }^{\mathrm{f}}$, G. SALVINI ${ }^{\mathrm{i}}$, J. SASS ${ }^{\text {k }}$, J. SAUDRAIX ${ }^{\mathrm{k}}$, A. SAVOY-NAVARRO ${ }^{\mathrm{k}}$,
D. SCHINZEL ${ }^{\text {d }}$, W. SCOTT ${ }^{\text {j }}$, T.P. SHAH ${ }^{\text {j }}$, M. SPIRO ${ }^{\text {k }}$, J. STRAUSS ${ }^{1}$, J. STREETS ${ }^{\text {c }}$,
K. SUMOROK ${ }^{\text {d }}$, F. SZONCSO ${ }^{1}$, D. SMITH ${ }^{\text {h }}$, C. TAO 3, G. THOMPSON ${ }^{\text {f }}$, J. TIMMER ${ }^{\text {d }}$,
E. TSCHESLOG ${ }^{\text {a }}$, J. TUOMINIEMI ${ }^{\text {e }}$, B. Van EIJK ${ }^{3}$, J.-P. VIALLE ${ }^{\text {d }}$, J. VRANA ${ }^{\text {g }}$,
V. VUILLEMIN ${ }^{\text {d }}$, H.D. WAHL ${ }^{1}$, P. WATKINS ${ }^{\text {c }}$, J. WILSON ${ }^{\text {c }}$, C. WULZ ${ }^{1}$, G.Y. XIE ${ }^{\text {d }}$,
M. YVERT ${ }^{\text {b }}$ and E. ZURFLUH ${ }^{\text {d }}$

Aachen ${ }^{\mathbf{a}}-$ Annecy $(\text { LAPP })^{\mathbf{b}}-$ Birmingham $^{\mathrm{c}}-$ CERN $^{\mathrm{d}}-$ Helsinki $^{\mathrm{e}}-$ Queen Mary College, London ${ }^{\mathrm{f}}{ }_{-}$
Paris (Coll. de France) ${ }^{\mathrm{g}}$-Riverside ${ }^{\mathrm{h}}-$ Rome $^{\mathrm{i}}-$ Rutherford Appleton Lab. ${ }^{\mathrm{j}}{ }_{- \text {Saclay }}(\text { CEN })^{\mathrm{k}}-$ Vienna $^{\mathrm{h}}$ Collaboration

Phys. Lett. 129B (1983)

EVIDENCE FOR $\mathrm{Z}^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$AT THE CERN $\overline{\mathrm{p}} \mathrm{p}$ COLLIDER

The UA2 Collaboration
P. BAGNAIA ${ }^{\text {b }}$, M. BANNER ${ }^{f}$, R. BATTISTON ${ }^{1,2}$, Ph. BLOCH ${ }^{f}$, F. BONAUDI b, K. BORER $^{\text {a }}$, M. BORGHINI ${ }^{b}$, J.C. CHOLLET ${ }^{\text {d }}$, A.G. CLARK ${ }^{\text {b }}$, C. CONTA ${ }^{\mathrm{c}}$, P. DARRIULAT ${ }^{\mathrm{b}}$, L. Di LELLA ${ }^{\mathrm{b}}$. J. DINES-HANSEN ${ }^{\mathrm{c}}$, P.-A. DORSAZ ${ }^{\text {b }}$, L. FAYARD ${ }^{\text {d }}$, M. FRATERNALI ${ }^{\mathrm{c}}$, D. FROIDEVAUX ${ }^{\text {b }}$, G. FUMAGALLI ${ }^{\mathrm{e}}$, J.-M. GAILLARD ${ }^{\text {d }}$, O. GILDEMEISTER ${ }^{\mathrm{b}}$, V.G. GOGGI $^{\mathrm{c}}$, H. GROTE $^{\mathrm{b}}$, B. HAHN ${ }^{\mathrm{a}}$, H. HÄNNI ${ }^{\mathrm{a}}$, J.R. HANSEN ${ }^{\mathrm{b}}$, P. HANSEN $^{\mathrm{c}}$, T. HIMEL ${ }^{\mathrm{b}}, \mathrm{V}^{\text {V }}$ HUNGERBÜHLER ${ }^{\text {b }}$, P. JENNI ${ }^{\text {b }}$, O. KOFOED-HANSEN ${ }^{c}$, E. LANÇON ${ }^{f}$, M. LIVAN ${ }^{\text {b }}$,, S. LOUCATOS ${ }^{f}$, B. MADSEN ${ }^{\text {c }}$, P. MANI ${ }^{a}$, B. MANSOULIÉ ${ }^{f}$, G.C. MANTOVANI ${ }^{1}$, L. MAPELLI ${ }^{\text {b, }}{ }^{3}$, B. MERKEL ${ }^{\text {d }}$, M. MERMIKIDES ${ }^{b}$, R. M \dagger LLERUD ${ }^{c}$, B. NILSSON c, C. ONIONS ${ }^{\text {b }}$, G. PARROUR $^{\text {b,d }}$, F. PASTORE ${ }^{\text {e }}$, H. PLOTHOW-BESCH ${ }^{\text {b }}$. M. POLVEREL ${ }^{\mathrm{f}}, \mathrm{J}$-P. REPELLIN ${ }^{\mathrm{d}}$, A. RIMOLDI ${ }^{\mathrm{e}}$, A. ROTHENBERG ${ }^{\mathrm{b}}$, A. ROUSSARIE ${ }^{\mathrm{f}}$.
 J. TEIGER ${ }^{f}$, V. VERCESI ${ }^{\mathrm{e}}$, A.R. WEIDBERG ${ }^{\text {b }}$, H. ZACCONE ${ }^{\text {f }}$, J.A. ZAKRZEWSKI ${ }^{\text {b. }}{ }^{5}$ and W. ZELLER ${ }^{\text {a }}$
${ }^{\text {a }}$ Laboratorium für Hochenergiephysik, Universität Bern, Sidlerstrasse 5, Bern, Switzerland
${ }^{\mathrm{b}}$ CERN, 1211 Geneva 23, Switzerland
c Niels Bohr Institute, Blegdamsvej 17, Copenhagen, Denmark
${ }^{\text {d }}$ Iaboratoire de l'Accélérateur Linéaire, Université de Paris-Sud, Orsay, France
${ }^{\text {e }}$ Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, Sezione di Pavia, Via Bassi 6, Pavia, Italy
${ }^{\text {t }}$ Centre d'Etudes Nucléaires de Saclay, France

Z discovery: mass computation

- production ūu (đd) $\rightarrow Z \rightarrow \ell^{+} \ell^{-}$;
- both selection and analysis easier than in the $\mathrm{W}^{ \pm}$case [despite smaller cross-section] :
> require two well identified, oppositecharge, same-flavor leptons;
> use fake e μ to study bckgd [NOT existent, NO bckgd, the easiest analysis ever];
- compute :
$m\left(\ell^{+} \ell^{-}\right) \approx \sqrt{2 E_{+} E_{-}(1-\cos \alpha)}=2 \sqrt{E_{+} E_{-}} \sin (\alpha / 2) ;$
$\frac{\partial \mathrm{m}}{\partial \mathrm{E}_{+}}=\frac{\mathrm{m}}{2 \mathrm{E}_{+}} ; \quad \frac{\partial \mathrm{m}}{\partial \mathrm{E}_{-}}=\frac{\mathrm{m}}{2 \mathrm{E}_{-}} ; \quad \frac{\partial \mathrm{m}}{\partial \alpha}=\frac{\mathrm{m}}{2 \tan (\alpha / 2)} ;$
$\left(\frac{\Delta m}{m}\right)^{2}=\frac{1}{4}\left[\left(\frac{\Delta \mathrm{E}_{+}}{\mathrm{E}_{+}}\right)^{2}+\left(\frac{\Delta \mathrm{E}_{-}}{\mathrm{E}_{-}}\right)^{2}+\left(\frac{\Delta \alpha}{\tan (\alpha / 2)}\right)^{2}\right] ;$

$\left\{\mathrm{E}_{+} \approx \mathrm{E}_{-} ; \alpha \approx 180^{\circ}\right\} \Rightarrow \frac{\Delta \mathrm{m}}{\mathrm{m}} \approx \frac{1}{\sqrt{2}} \frac{\Delta \mathrm{E}}{\mathrm{E}} ; \Delta \mathrm{m} \approx \sqrt{2} \Delta \mathrm{E}$.
for Z,
$\Delta \mathrm{m}_{\mathrm{exp}} \approx \Gamma_{\mathrm{TOT}}$
- typically $\Delta \mathrm{m} \approx 2 \mathrm{GeV}$ for a single event.

Z discovery: results

Results :

UA1 :

$$
\begin{array}{ll}
m_{z}=93.1 & \pm 1.0 \text { (stat) } \pm 3.0 \text { (syst) } \mathrm{GeV} ; \\
\Gamma_{z}=2.7 & +1.2 \\
-1.0 & \text { (stat) } \pm 1.3 \text { (syst) GeV; }
\end{array}
$$

Comparison with SM :

- $\mathrm{m}_{\mathrm{w}} / \mathrm{m}_{\mathrm{z}}$;
- $\sin \theta_{w}$;
- SM checks;
- SM predictions (e.g. top mass); - "bSM" physics.

UA2 :

$$
\begin{aligned}
& m_{z}=91.74 \pm .28 \text { (stat) } \pm .93 \text { (syst) GeV; } \\
& \Gamma_{z}=2.7 \quad \pm 2.0 \text { (stat) } \pm 1.0 \text { (sys) GeV; }
\end{aligned}
$$

[PDG > 1995, i.e. LEP] :
the $\mathrm{e}^{+} \mathrm{e}^{-}$machine improves by >100 in m_{z} and >1000 in Γ_{z} !
... but the discovery was made in $\bar{p} p$!!!

$$
\begin{aligned}
& m_{z}=91.1876 \pm .0021 \mathrm{GeV} ; \\
& \Gamma_{z}=2.4952 \pm .0023 \mathrm{GeV} .
\end{aligned}
$$

- The dominant decays of W / Z are into quark pairs:

$$
\begin{aligned}
& \mathrm{W}^{+} \rightarrow \mathrm{ud}, \rightarrow \mathrm{c} \overline{\mathrm{~s}} ; \\
& \mathrm{W}^{-} \rightarrow \overline{\mathrm{u} d}, \rightarrow \overline{\mathrm{c} s} ; \\
& \mathrm{Z} \quad \rightarrow \mathrm{u} \overline{\mathrm{u}}, \rightarrow \mathrm{~d}, \mathrm{~d}, \rightarrow \mathrm{~s}, \bar{s}^{2}, \ldots
\end{aligned}
$$

- but they are overwhelmed by the dominant QCD two-jet processes;
- the only analysis [to my knowledge] to select them by UA2, shown here;
- the first attempt of "jet spectroscopy", important as a method, but still quite rudimental in 1986.

Check the qpm with $\mathrm{W}^{ \pm}$and Z :

- NOT a joke : if unsuccessful, serious breakdown both of the theory and the experimental method;
- x : the same variable as in structure functions and qpm;
$>$ the qpm predicts the x distribution, both for W and Z ;
$>$ ok.
- p_{T} : the transverse momentum :
> in qpm, NOT predicted (≈ 0);
> expected to be "small";
> heavily affected by detector;
> "prediction" is a mixture of theory and exp.
> ok.

References

1. all textbooks, e.g. [BJ 14], [Perkins 7-8], ...
2. Spp̄S : Phys. Rep. 403 (2004) 91;
3. Drell-Yan : Ann. Rev. Nucl. Part. Sci. 49:217 (1999);
4. UA2 $\sum \mathrm{E}_{\mathrm{T}}$ analysis: Phys. Lett. B165 (1985).
5. UA1 jets : Phys. Lett. B177 (1986) 244.
6. UA2 jets : Phys. Lett. B118 (1982) 203, Phys. Lett. B160 (1985) 349.
7. UA1 W,Z : C.Rubbia, Nobel Lecture 1984.
8. UA2 W,Z : Phys. Lett. B241 (1990) 150.
9. UA2 W,Z $\rightarrow q \bar{q}$: Phys. Lett B186 (1987) 452.

NB original papers are quoted everywhere; these are reviews - usually easier to understand.

AA antiproton production target
The first version of the antiproton production target was a tungsten rod, 11 cm long (actually a row of 11 rods, each 1 cm long) and 3 mm in diameter. The rod was embedded in graphite, pressure-seated into an outer casing made of stainless steel. The casing had fins for forced-air cooling. In this picture, the 26 GeV highintensity beam from the PS enters from the right, where a scintillator screen, with circles every 5 mm in radius, permits precise aim at the target centre.

End of chapter 9

