Particle Physics - Chapter 12a LHC – machine and detectors

Paolo Bagnaia SAPIENZA UNIVERSITÀ DI ROMA

AA 1**3-19**

last mod. 23-May-19

12 – LHC – machine and detectors

- 1. LHC physics
- 2. The LHC Collider
- 3. <u>The luminosity</u>
- 4. LHC operations
- 5. The ATLAS detector
- 6. The CMS detector
- 7. Detectors comparison
- 8. Detector performances
- 9. LHC events

- the LHC physics programme still has a long story ahead;
- [the heavy ion programme is outside the scope of the lectures see ALICE talks]
- until now, its results can be broadly divided into three categories :
 - a. "bread and butter", i.e. quantitative improvements on soft & SM physics;
 - b. the discovery of the Higgs boson [still a tiny probability that the "bump" is NOT the Higgs boson of the SM];
 - c. searches of physics beyond the SM;
- (a) contains beautiful and intelligent results, from soft physics to jets, from W[±] / Z to top;
- however, they are too fresh [imho] to be part of an institutional course;

- [we all hope that] (c) will be the most interesting;
- however, it is outside the scope of these lectures;
- therefore, this chapter includes two parts :
 - 1. a general discussion of the method of analysis of LHC, mainly the problems caused by the high \mathcal{L} ;
 - 2. a report of the Higgs discovery
 [noblesse oblige];
- the other parts are left to the next semester, your Thesis and (hopefully) your <u>individual research activity</u>.

Enjoy it !

Such a large \mathcal{L} is a must or a luxury ? Compute two toy processes :

- cross section for a s-channel process :

 - K : adimensional factor ~1 (e.g. $4\pi/3$);
 - g : coupling constant < 1

 (it depends on the dynamics);
 - ✤ s : (energy)² in CM sys;

- <u>formation of a resonance</u> (s-channel) [e.g. $\sqrt{s} = m_x = 100 \text{ GeV}$]:
 - * g ~ 10^{-2} ;
 - * $m_x \sim 100 \text{ GeV};$
 - > $\sigma \approx K g^2 / m_x^2 =$ = [0.389 GeV² mb] × 10⁻⁴ / 10⁴ ≈ = 4 × 10⁻³⁶ cm²;

[of course, it is too simplistic : parton structure functions (pdf), decay BR, detector acceptance, analysis inefficiencies are neglected; but all these effects DECREASE the yield or the identification of the effects.]

LHC physics: plots for 10³⁴ cm⁻² s⁻¹

these plots show the trend vs \sqrt{s} of :

- σ_x : s-channel cross section just defined;
- σ_{tot}/σ_x : if $\sigma_{tot} \approx$ 100 mb, ratio between number of events and interesting ones;
- lumi@.01Hz : \pounds to get a rate of .01 Hz for the m_x just defined;
- \div obvious, but concerning \rightarrow

high ${\mathfrak L}$ is a must.

LHC physics: events at 10³⁴ cm⁻² s⁻¹

How many (interesting) events? an estimate of the order of magnitude:

- "average year" ~ 10^7 s;
- $\mathcal{L}_{max} \approx 10^{34} \text{ cm}^{-2} \text{ s}^{-1};$

- ▷ $\mathcal{L}_{int} \approx 10^{41} \text{ cm}^{-2} = 100 \text{ fb}^{-1}$;
- last column roughly includes the detection efficiencies;
- clearly, it is NOT possible <u>to</u> record all these events (→ act on trigger/selection).

Process	σ (pb)	rate (@ 10 ³⁴ cm ⁻² s ⁻¹)	events / year
collisions (bc)		4 × 10 ⁷	4 × 10 ¹⁴
events	1 × 10 ¹¹	1 × 10 ⁹	10 ¹⁶
W→ev	1.5 ×10 ⁴	150	10 ⁹
$Z \rightarrow e^+e^-$	1.5 × 10 ³	15	10 ⁸
tŦ	800	8	10 ⁸
bō	5 × 10 ⁸	5 × 10 ⁶	10 ¹³
ĝ ĝ (SUSY) [m _g =1 TeV]	1	0.01	10 ⁵
Higgs [m _H =125 GeV]	20	0.2	2×10 ⁶
QCD jets [p _T >200 GeV]	10 ⁵	1000	10 ¹⁰

LHC physics: DAQ at 10³⁴ cm⁻² s⁻¹

 $[\sigma_{tot}(pp)]$ is a fundamental parameter of the Nature; however, here we study it only as an obstacle to observe high-p_T collisions]

- $\mathcal{L} \approx 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (actually higher);
- τ_{bc} = 25 ns

- $f_{bc} = 1/\tau_{bc} = 40$ MHz;
- $\sigma_{tot} \approx$ 100 mb (= 10^{-25} cm^2);
- therefore :

 - > n_{bc} = 25 events / bc;
 - > $n_{inelast}$ \approx 20 events / bc;
 - > $N_{partic.}^{\pm} \approx 1000 / bc;$
 - \succ dN[±]/dη \approx 100 / bc;
 - ▶ $W_{detect.} \approx 3 \text{ kW};$
 - > Δs_{bc} = 25 ns × c = 7.5 m;

- i.e. there are "waves" of ~1000 π^{\pm} (+ as many γ 's) every 25 ns;
- the waves are on concentric spheres at 7.5 m each other (e.g. at the same time the muon chambers "see" previous bc's respect to the inner detector);
- the detectors must have an adequate bandwidth to cope with it (and the necessary radiation resistance !!!).

LHC physics: trigger at 10³⁴ cm⁻² s⁻¹ Trigger Setup

The LHC Collider

The LHC Collider: a view

The LHC Collider: the complex

The LHC Collider : parameters

Date	2009	2012	2015	nomin.	Parameter	Value
Maximum beam energy (TeV) \uparrow	3.5	4	6.5	7	Circumference	26.659 km
Delivered integrated luminosity (fb ⁻¹) ↑	up to 5.6	23.3	4	—	Interaction regions	4 total, 2 high \pounds
Luminosity £ (10 ³³ cm ⁻² s ⁻¹) ↑	3.7	7.7	5.2	>10	Free space at interaction point 38 m	
Time between collisions $ au_{bc}$ (ns) \leftrightarrow	49.90	49.90	24.95	24.95	Magnetic length of dipole	14.3 m
Full crossing angle (μ rad) \leftrightarrow	240	≈ 300		≈ 300	Length of standard cell	106.9 m
Energy spread Δ E/E (units 10 ⁻³) \downarrow	0.116	0.116		0.113	Phase advance per cell	90°
Bunch length (cm) \leftrightarrow	9	9		7.5	Dipoles in ring	1232 main dipoles
Beam radius (10 ⁻⁶ m) \downarrow	26	20		16.6		402 2 in 1
Initial luminosity decay time, −ℒ/(dℒ/dt) (hr) ↑	8	8		14.9	Quadrupoles in ring	482 2-in-1 + 24 1-in-1
Transverse emittance (10 ⁻⁹ π rad-m) \downarrow	0.7	0.6		0.5	Magnattuna	s.c. 2 in 1
β^* , ampl. function @ i.p. (m) \downarrow	1	0.6	0.4	0.55	wagnet type	cold iron
Beam-beam tune shift / crossing (10 ⁻⁴)	23	60		34	Peak magnetic field	8.3 T
Particles per bunch (10 10) \uparrow	15	15		11.5	Injection energy	450 GeV
Bunches per ring per species 个	1380	1380	2244	2808	RF frequency	400.8 MHz
Average beam current / species (mA) \uparrow	374	374		584		from [PDG]

The LHC Collider: dipoles

1000th Dipole Installed (sep 5, 2007)

6/11

The LHC Collider: dipole structure

The LHC Collider: dipole operations

Dipoles

- Number 1232
- Field (450 GeV) 0.535 T
- Field (7 TeV) 8.33 T
- Bending radius 2803.95 m
- Main Length 14.3 m

Horizontal force component per quadrant (nominal field) 1.7 MN/m.

Force tends to "open" the magnet, hence the Austenitic steel collars.

[more info : <u>http://lhc-machine-</u> <u>outreach.web.cern.ch/lhc-</u> <u>machine-outreach/</u>]

The LHC Collider: injection cycle

17

The LHC Collider: nominal cycle

Globally the machine state is fairly well described by machine mode/beam mode combination

CMS Integrated Luminosity Delivered, pp

The luminosity: \mathcal{L}_{int} vs time

Paolo Bagnaia - PP - 12a

The luminosity: \mathcal{L}_{peak}

- In 2016 LHC has achieved the luminosity foreseen in the project, i.e. $\mathcal{L} = 10^{34} \text{ cm}^{-2}\text{s}^{-1}$...
- for $\sqrt{s} = 14$ TeV, wait another couple of years.
- [1 Hz/nb = 10³³ cm⁻²s⁻¹]
- ... and in 2017-18 it doubled it ($\pounds = 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$);

The luminosity : <n_{int}>

$$\mu = \langle n_{int} \rangle = \mathfrak{L}\tau_{bc}\sigma_{inel} = [e.g.\approx] \\\approx (10^{+34}) \times (25 \times 10^{-9}) \times (8 \times 10^{-26}) \approx 20.$$

Pros and cons of the value of μ at LHC:

☺ for fixed τ_{bc} , $\mu \propto \underline{S}$, so large μ necessary for rare processes, like Higgs;

- ☺ for fixed \mathcal{L} , $\mu \propto \tau_{bc}$; so a decrease in μ is payed by a decrease in τ_{bc} , the processing time for the trigger and DAQ (now 25 ns, the bare minimum);
- ⊗ large µ → many overlapping events → systematics in trigger thresholds;
 - \rightarrow systematics in vertex reconstruction;
 - → systematics in calo calibrations and reconstruction;
 - → mistakes in assignment of heavy flavors, jets, muons to event;
 - \rightarrow (... many other problems ...)
- ⓒ some of the LHC data have been taken with a different τ_{bc} (50 ns instead of 25 ns); for the same \pounds , this fact doubles µ (→ 25 ns is better than 50 ns, but ...)
 - anyway, <u>large μ is necessary</u>, so you better learn to survive with it.

LHC operations: 2018...

LHC schedule 2018

1/4

(the last year of operations before LS2, see later)

> 65 fb⁻¹

keeping the LHC availability close to 50% (stable beams)

LHC operations: 2015-2023

2015	2016		2017		2018	
JFMAMJJASOND	JFMAMJJ	ASONDJ	FMAM	JJASOND	JFMAMJJASOND	
		R	UN 2			
Shutdown/Te Protons phys Commission Ions	echnical stop sics ing CERN	us of LHC machir dérick Bordry	ne and plans	2015-18 : >2020 :	>160 fb ⁻¹ @13 TeV 300 fb ⁻¹ @ 14 TeV ?	
now						
2019	2020	202	21	2022	2023	
J F M A M J A S O N D J F M LS 2	AMJJJASOND	J F M A M J J	ASOND	J F M A M J J A S RUN 3		

LHC operations: HL-LHC

- March 2016: HL-LHC included in the ESFRI (European Strategy Forum on Research Infrastructures) roadmap as "landmark project" in March 2016.
- June 2016: HL-LHC project formally approved by CERN's Council.
- "Full exploitation of the LHC physics potential with the HL-LHC phase is the top priority of the ESPP [*European Strategy for Particle Physics*] and the highest near-term large-project priority of the US P5 roadmap."
 "LHC/HL-LHC is CERN's flagship project for the next 20 years."

[Fabiola Gianotti, CERN's Scientific Strategy, ECFA HL-LHC Experiments Workshop, Aix-Les-Bains, 3/10/2016].

LHC operations: HL-LHC performances

The ATLAS detector

2/9

The ATLAS detector: scheme

The ATLAS detector: inner tracker

Pixel	SCT	TRT
3 cylindrical layers	4 cylindrical layers	73 straw planes
2×3 disks	2×9 disks	160 straw planes

The ATLAS detector: calorimeters

The ATLAS detector: e.m. calo

- "accordion" LAr Pb
- cryogenic

- hermetic
- longitudinal + radial segmentation

The ATLAS detector: e[±] id and measure

an electron is detected many (>> 100) times after the interaction point; even the non-detection in the had. calo is important (cfr a γ in the pixels/SCT/TRT).

7/9

The ATLAS detector: had. calo

The ATLAS detector: µ spectrometer

The ATLAS detector: μ chambers

The CMS detector

The CMS detector: view

CMS DETECTOR

The CMS detector: scheme

The CMS detector: inner tracker

Si pixel + strip detector

4/7

4 inner barrel layers

The CMS detector: e.m. calo

e.m. calo: PbWO₄ crystals

The CMS detector: had. calo

7/7

The CMS detector: µ system

Detectors comparison : ATLAS vs CMS

Detectors comparison : structure

	ATLAS	CMS to
Magnet(s)	Air-core toroids + Solenoid in inner cavity Calorimeters outside field 4 magnets	Solenoid Calorimeters inside field 1 magnet
Tracker/ Inner Detector	Silicon pixels, Silicon strips, Transition Radiation Tracker. 2T magnetic field	Silicon pixels, Silicon strips. 4 T magnetic field
Electro- magnetic calorimeter	Lead plates as absorbers with liquid argon as the active medium	Lead tungstate (PbW04) crystals both absorb and respond by scintillation
Hadronic calorimeter	Iron absorber with plastic scintillating tiles as detectors in central region, copper and tungsten absorber with liquid argon in forward regions.	Stainless steel and copper absorber with plastic scintillating tiles as detectors
Muon detector	Large air-core toroid magnets with muon chamber form outer part of the whole ATLAS	Muons measured already in the central field, further muon chambers inserted in the magnet return yoke

Detectors comparison : performances

	ATLAS	CMS Anna Colalec	
Tracker/ Inner Detector	TRD \rightarrow particle identification $\sigma/p_T \approx 5 \times 10^{-4} p_T$ (GeV) \oplus 0.01	No particle identification $\sigma/p_T \approx 1.5 \times 10^{-4} p_T$ (GeV) \oplus 0.005	
Electro- magnetic calorimeter	σ /E ≈ 10%/ $√$ E (GeV) Longitudinal segmentation	$\sigma/E \approx (2 \div 5) \%/\sqrt{E}$ (GeV) No longitudinal segmentation	
Hadronic calorimeter	> 10 λ σ/E ≈ 50%/√E (GeV) ⊕ 0.03	> 5.8 λ + tail catcher $\sigma/E \approx 65\%/\sqrt{E}$ (GeV) \oplus 0.05	
Muon detector	air $\sigma/p_T \approx 7\%$ @ 1 TeV (spectrometer alone)	Fe σ/p _T ≈ 5% @ 1 TeV (combining spectrometer + tracker)	
Imho (<i>common, but not unanimous</i>): • two complementary stratogies of			

- strategies almost everywhere;
- ... with different optimizations (e.g. resolution vs robustness); a textbook example of "guided" detector design;
- ... to guarantee optimal results (\rightarrow not miss major discoveries).

Detectors comparison : mag. spectrometers

ATLAS:

- main magnet: toroid B = 0.7 T;
- bending in (r,z);
- straight tracks in (r,φ);
- at small r, a solenoid $B = 2 T \rightarrow$ bending also in (r, ϕ);
- less precise in extrapolating to main vtx;
- μ -system in air \rightarrow no multiple scatt. for μ 's;
- larger bending for μ at large $\eta \rightarrow$ more precise.

CMS:

- main magnet: <u>solenoid</u> B = 4 T;
- bending in (r,φ);
- straight tracks in (r,z);
- more precise in extrapolating to main vtx;
- μ -system in Fe \rightarrow large multiple scatt. for μ 's;
- less bending for μ 's at large $\eta.$

Detector performances : $Z \rightarrow e^+e^-$

Detector performances : $Z \rightarrow \mu^+\mu^-$

Detector performances : $J/\psi \rightarrow \mu^+\mu^-$

 $Z \to \mu^+ \mu^-$ and $J/\psi~Z \to \mu^+ \mu^-$ are ideal channels for $\mu~$ studies :

- inner detector + muon spectrometer;
- agreement (MC ↔ data) → confidence in analysis (including errors !).

Detector performances : silicon trackers

- resolution of few µm necessary for impact parameter → identification of secondary verteces → heavy flavors → higgs;
- agreement (MC ↔ data) → confidence in analysis (including errors !).

Detector performances : vertex resolution

Detector performances : e.m. calo

Detector performances : π^0 , $\eta \rightarrow \gamma \gamma$

×10⁶

250

CMS Preliminary 2012

s = 8 TeV

The π^0 and η widths are a measurement of the electro calo resolution in a difficult environment (inside jets or in high multiplicity events).

Events / (0.010 GeV/c²) 200 (almost perfect) Notice the good 150 agreement with MC predictions. 100 ATLAS preliminary 6000 $\eta \rightarrow \gamma \gamma$ 50 5000 4000 0 0.55 0.4 0.45 0.5 0.6 0.65 $\pi^0 \rightarrow \gamma \gamma$ $M_{\eta^0(\gamma\gamma)}$ (GeV/c²) 3000 σ_{data} = 19 MeV 2000 Data Fit to data 1000 Non diffractive minimum bias MC °ò 100 300 600 200 400 500 700

7/15

Entries / (10 MeV

 $\sigma = 4.8 \%$

 $S/B_{\pm 2\sigma} = 0.47$

Detector performances : jet response

jet resolution as a function of p_T^{jet} :

- measured for different event types;
- stat and (mainly) syst uncertainty 2%, almost independent on p_T.

Detector performances : E_{T}

 $W^{\pm} \rightarrow \ell^{\pm}(v)$ (jacobian peaks)

Detector performances: ATLAS μ^{\pm}

 $\Delta p_T/p_T$ vs p_T [project, low η] :

- meas. error + calib ($\propto p_T$);
- **O** chamber alignment ($\propto p_T$);
- \Box multiple scattering ($\propto \approx \text{const}$);
- ΔE_{μ} (calo) fluctuations (tail at high loss measurable from brem shower);
- O at spectrometer entrance $(= \mathbf{\nabla} \oplus \mathbf{O} \oplus \mathbf{\Box});$
- \triangle total at main vertex (= $\bigcirc \oplus \bigcirc$).
- > at low p_T (p_T < 200 GeV) vtx extrapolation (○) and scattering (□) give the main contributions;
- > at high p_T the accuracy of the spectrometer (▼⊕○) dominates;
- > at fixed p_T and high η (not shown), Δp_T gets worse.

Detector performances : mass(μ⁺μ⁻)

Detector performances: $W^{\pm} \rightarrow \ell^{\pm} v$

Detector performances: trigger thresholds

- e^+e^- : small cross section \rightarrow [R = $\pounds \sigma \approx$ few Hz] \rightarrow <u>event trigger</u>, i.e. trigger on single bunch crossing, if it contains an event candidate; @ LEP, $1-\varepsilon \approx 10^{-3}$, negligible dead time;
- $pp(\bar{p}p)$: high hadronic total cross section $\rightarrow [R = \pounds \sigma \approx 10^6 - 10^9 \text{ Hz}] \rightarrow \text{rates too big}$ (and uninteresting events) $\rightarrow \underline{physics}$ <u>trigger</u>, i.e. select a (tiny) fraction of events, which exhibit peculiar

the thresholds are applied on a kinematical variable "x" (e.g. p_T^{lepton}), measured in a rough and fast way by the trigger detector(s); therefore the experimenters have to compromise among rejection, efficiency, dead time, bandwidth ... and physics.

Detector performances: µ-trigger lvl-1

15/15

Detector performances: µ-trigger HLT

Efficiency ε vs p_T <u>at the highest</u> <u>trigger level</u> (HLT):

- > notice the sharper "size" of the threshold (→ less useless data);
- ➤ ... at the price of a much higher threshold (→ no recovery of events lost in lvl1);
- > ... with the advantage of (much) smaller rates : $O(10 \text{ KHz}) @ \text{lvl-1} \rightarrow O(10 \text{ Hz}).$

LHC events : Pb Pb \rightarrow Z X \rightarrow e⁺e⁻ X

2/11

LHC events: 78 primary interactions

3/11

LHC events : 2 jets, $p_T \approx 2$ TeV

LHC events : a multijet event

LHC events : $W \rightarrow ev$

LHC events : $H \rightarrow ZZ^* \rightarrow (e^+e^-)(\mu^+\mu^-)^*$

 $2e2\mu$ candidate with $m_{2e2\mu}$ = 123.9 GeV

 p_T (e,e, μ , μ)= 18.7, 76, 19.6, 7.9 GeV, m (e⁺e⁻)= 87.9 GeV, m($\mu^+\mu^-$)=19.6 GeV

F. Gianotti, ATLAS Higgs paper, LMC, 8/8/2012

LHC events : $H \rightarrow ZZ^* \rightarrow (\mu^+\mu^-)(\mu^+\mu^-)^*$

LHC events : $H \rightarrow W^+W^- \rightarrow e^+\nu\mu^-\nu$

Run Number: 189483, Event Number: 90659667

Date: 2011-09-19 10:11:20 CEST

LHC events : $Z \rightarrow \mu^+\mu^-$, $Z \rightarrow \mu^+\mu^-$

Run: 338220 Event: 2718372349 2017-10-15 00:50:49 CEST

same bunch-crossing, different interactions production vertices separated by 67 mm.

LHC events : $H \rightarrow \gamma \gamma$

LHC events : $H \rightarrow \gamma \gamma$

References: collider & experiments

- 1. LHC : JINST 3 (2008) S08001.
- LHC : L.Evans, Ann. Rev. Nucl. Part. Sci. 2011. 61:435–66.
- 3. LHC (recent) : J. Wenninger, PoS (Charged 2018) 001.
- 4. ATLAS detector : JINST 3 (2008) S08003.
- 5. ATLAS events : <u>https://twiki.cern.ch/twiki/bin/view/A</u> <u>tlasPublic/EventDisplayPublicResults/</u>
- 6. CMS detector : JINST 3 (2008) S08004.
- 7. CMS events : <u>https://cdsweb.cern.ch/</u>
- 8. [see also references on results]

Jacopo Robusti (Tintoretto) - The Forge of Vulcan, ca. 1578 Palazzo Ducale - Venice

SAPIENZA Università di Roma

End of chapter 12

Paolo Bagnaia - PP - 12a