Applied Radiation Physic Group

Available Thesis

ARTIFICIAL INTELLIGENCE IN MEDICINE

MARIANNE (Imaging for stadiation)

FILOBLU (Patient-Doctor interactions)

http://arpg-serv.ing2.uniroma1.it/arpg-site/index.php

Collaborations

Activity driven by medical input, with involvement of SMEs

HADROTHERAPY

Hadrotherapy

Concentrate release of energy inside tumor due to release of energy in ionization.

Correlation between activity and dose

Therapy beam	¹ H	³ He	⁷ Li	¹² C	¹⁶ O	Nuclear medicine
Activity density / Bq cm ⁻³ Gy ⁻¹	6600	5300	3060	1600	1030	10 ⁴ – 10 ⁵ Bq cm ⁻³

DOSE PROFILER (Particle Therapy dosimetry)

Range monitor applications

 To exploit the secondary particles detections as an online monitor, a Dose Profiler has been designed (within the INSIDE Italian project) to be deployed in the CNAO treatment center.

Project funded as a part of INSIDE Prin, INFN RDH and Premiale C.F.

Dose Profiler

Need a detector to simultaneously measure the rate of:

- charged particles with multilayer for track reconstruction
- single photons with compton camera

THE PAPRICA REVOLUTION NOVEL 3D PGI STRATEGY: PROOF OF PRINCIPLE

Exploiting Pair Production (PP)

Technique used by **pair telescopes** in astrophysics applications for cosmic photons imaging E > 30 MeV**Never explored in the lower PG energy range** $E \sim 1-10 \text{ MeV}$ (low cross section σ_{pp})

=> Intrinsic threshold of ~ 4 MeV

- Targeted PG E > 4 MeV more correlated with BP
- Reduction of background from uncorrelated photons induced by neutrons (low E)
- topological event signature: neutrons discrimination
- No need of collimation
- No TOF information needed
- Allow to 3D reconstruct the PG emission point

PAPRICA

¹²C Beam

Relative Dose

Target (patient) fragmentation & PT Target fragmentation in proton therapy: gives contribution also outside the tumor region! Cell killed by About 10% of biological R=1/40 ionization effect in the entrance Recoil fragment channel due to secondary generated fragments (Grun 2013) R=1/8 Largest contributions of recoil fragments expected 200 MeV proton from beam in water He, C, Be, O, N In particular on 1 x 1 mm² Normal Tissue Complication Probability Entrance channel: < 2% cell killing, < 0.25% cells undergoing nuclear inelastic interactions Bragg Peak: + 40% cell killing, + 1% cells undergoing nuclear inelastic interactions See also : - Paganetti 2002 PMB Depth

Cancers 2015,7 Tommasino & Durante

- Grassberger 2011 PMB

p-> C, p->O scattering @200 MeV

The elastic interaction and the forward Z=1 fragment production (p,d,t) are quite well known. Large uncertainty on large angle Z=1,2 fragments.

Missing data on heavy fragments. Unreliable nuclear models

"Heavy" (A>4)		Analitic mode	arresults on p->0	@200 Iviev	
fragment yields	Fragment	E (MeV)	LET (keV/µm)	Range (µm)	-
and emission	¹⁵ O	1.0	983	2.3	
enerav ~ unknown	¹⁵ N	1.0	925	2.5	
	¹⁴ N	2.0	1137	3.6	
very low energy-	¹³ C	3.0	951	5.4	
short range	¹² C	3.8	912	6.2	
fragments.	¹¹ C	4.6	878	7.0	
MCa confirm this	¹⁰ B	5.4	643	9.9	
NCS coniim unis	⁸ Be	6.4	400	15.7	
picture	⁶ Li	6.8	215	26.7	
Nuclear model &	⁴ He	6.0	77	48.5	
MC pot roliable	³ He	4.7	89	38.8	
IVIC HOLTEIIADIE	² H	2.5	14	68.9	
	Cancers 2015,7 Tommasino & Durante				7

Analitic model results on p->O @200 MeV

The FOOT Experimental setup

Expected performances:

- Resolution on fragment X-section < 5%
- Energy resolution < 1 MeV/u
- Measurements of Z with mistag <3%
- Measurement of A with mistag < 5%

- Despite the numerous and relevant application would use it, there is no dedicated model to nuclear interaction below 100 MeV/A in Geant4
- Many papers showed the difficulties of Geant4 in this energy domain:
 - Braunn et al. have shown discrepancies up to one order of magnitude in ²C fragmentation at 95 MeV/A on thick PMMA target
 - De Napoli et al. showed discrepancy specially on angular distribution of the secondaries emitted in the interaction of 62 MeV/A C on thin carbon target
 - Dudouet et al. found similar results with a 95 MeV/A C beam on H, C, O, Al and Ti targets

- G4-BIC
- G4-QMD

[Plot from De Napoli et al. Phys. Med. Biol., vol. 57, no. 22, pp. 7651– 7671, Nov. 2012]

Cross section of the ⁶Li production at 2.2 degree in a ¹²C on ^{nat}C reaction at 62 MeV/A.

GENIALE: results

Example: alpha production

Treatment Planning System

From the tumor margin to the beam sequencing ("Raster Scan")

FRED (TPS with GPU)

Use of GPUs

Typical times:

- Full MC 72hr
- Analytical commercial sw: 1hr
- GPUs \rightarrow 1min

Algorithm 3.2.1 Original Dose Calculation 1: for i = 0 to N_{beams} do for j = 0 to $N_{beamlets}[i]$ do $currentBeamlet \leftarrow j + ptr$ calculate angle θ Split algo to parallelize 3: calculate radiological depth d compute input and output body points and corrections W_1, W_2 for ivoxel = 0 to N_{voxels} do calculate parameters to dose calculation compute F_x calculate dose $D(\vec{r})$ 10. end for 11: end for $ptr \leftarrow ptr + N_{beamlets}[i]$ 14: end for

Algorithm 3.2.2 Loop 1

- 1: for i = 0 to N_{beams} do
- 2: for j = 0 to $N_{beamlets}[i]$ do
- 3: $currentBeamlet \leftarrow j + ptr$
- 4: calculate and store angle θ
- 5: calculate and store radiological depth d
- 6: compute and store input and output body points
- 7: end for

8:
$$ptr \leftarrow ptr + N_{beamlets}[i]$$

9: end for

Algorithm 3.2.4 Kernel Loop

- 1: threadIdx, blockIdx 2: for i = 0 to N_{beams} do
- 3: for j = 0 to $N_{beamlets}[i]$ do
- 4: calculate x and y
- calculate parameters to dose calculation
- 5: compute \tilde{F}_x
- 7: each thread calculates its dose contribution $D(\vec{r})$
- 8: end for

```
9: ptr \leftarrow ptr + N_{beamlets}[i]
```

```
10: end for
```

Hardware and Performance

		Threads	primary/s	$\mu s/primary$
CPU ^a	full-MC *	1	0.75 k	1340
	FRED	1	15 k	68
	FRED	16	50 k	20
	FRED	32	80 k	12.5
GPU	FRED	1 GPU^1	500 k	2
	FRED	2 GPU^2	2000 k	0.5
	FRED	4 GPU^3	20000 k	0.05

Table A1: Computing times for different hardware architectures.
^a motherboard with two Intel[®] Xeon E5-2687 8-Core CPU at 3,1GHz
¹ LAPTOP: Apple[®] MacBook Pro with one AMD[®] Radeon R9 M370X.
² DESKTOP: Apple[®] Mac Pro with two AMD[®] FirePro D300.
³ WORKSTATION: Linux box with four NVIDIA[®] GTX 980.

* FLUKA or Geant4

NUCLEAR MEDICINE

CHIRONE (Radio Guided Surgery)

Radio Guided Surgery

Administration of radio-tracer

PET/SPECT scan to estimate receptivity and background

Each tumor requires its own tracer

During surgery a probe is used to detect residuals/lymphnodes

Probe adjustable to needs

LIMITS OF γ -RGS

140 keV photons

➔ attenuation in body ~8cm

Long range of gamma's involve:

- exposure of medical personnel
- Background from healthy organs

Difficult to apply in:

- Brain tumors
- Abdominal tumors
- Pediatric tumors

A CHANGE IN PARADIGM

- Use of β^- tracers (electrons): pros
 - Detect electrons that travel ~100 times
 less than γ
 - Tracers with ⁹⁰Y can be used (already used for Molecular RT)
 - No background from gamma
 - Shorter time to have a response
 - » Smaller administered activity
 - Smaller and more versatile detector
 - reduced effect of nearby healthy tissues
 - Reduced dose to medical staff

NOTE: only detection at contact is possible

EXTEND RGS TO MORE CLINICAL CASES E. Solfaroli Camillocci et al, Sci. Repts. 4,4401 (2014)

The probe prototype

Compact, easy to handle, local measurement

Simple technology:

- scintillating crystal
- Light sensor (SiPM)

Most stringent constraints:

- **Mechanics**
- electrical safety
- sterilization

Ongoing R&D:

- Detector improvements to lower energy threshold
- Laparoscopic application (adjustment in size, multiple reading for information from the side)

RESEARCH PATH

Perspectives

Application to other radio-tracers

- ⁶⁸Ga in prostate cancer
- Development of a CMOS sensor based device
 - Extend to more radionuclides \rightarrow more tumors

Dosimetry in Target Radio Therapy

- TRT: Injection of radio-tracer that links preferentially with tumor → beta- radiation for therapy
- Need to certify acquired dose on patient-bypatient basis

ARTIFICIAL INTELLIGENCE IN MEDICINE

MARIANNE (Imaging for stadiation)

Automatic classification of response to chemoradiotherapy in rectal cancer using 3T T2-w MRI

Application of Machine Learning

Aim of the study: develop an algorithm capable to estimate, patient by patient, the dose profile of TomoTherapy HiArt Delivery Quality Assurance (DQA)

Towards artificial QA

Virtual dose distribution

- In red measured images (sample of 729)
- In gree images simulated with the developed neural network.

Machine learning for patient-doctor interactions

FILOBLU is an App to deal with post-operation follow-up @ home

- Machine Learning is required to
 - Authomatic text analysis
 - Data Augmentation
 - Response classification

 \rightarrow Talk by Silvia Capuani

Titolo	Nuclear process-driven Enhancement of Proton Therapy UNravEled
Area di ricerca	multidisciplinare
Responsabile nazionale	G Cuttone (INFN-LNS)
Unità partecipanti	LNS, Napoli, Roma1, Roma3, LNL, Milano, Pavia, TIFPA

Available techniques: PET/MRI

PET has a worse resolution and tracers more difficult to synthetize/handle but 1H-MRI does not show a signal ...

... but:

- gyromagnetic factor of 19F is only 6% away from 1H
- 19F is not present in human body (no physical background)

Concentrations and Performances

PET

- Typical PET activity concentrations:
 - Inject ~200MBq FDG (i.e. 3 10⁻¹² moles), detect ~ 10⁻¹⁶ moles/ml

Cell Lines: PANCREAS(PANC-1) Tracers: BSH phenylalanine

Concentrations required by Particle Therapy:

- 80 ppm
- 0.11 mg/ml
- 10 µM/ml

MRI

Evaluation of bio-distributions of tracers

THIS PROJECT

- A) Tests on animals to have samples with the correct concentration
- B) Setup a test stand to study and improve, with INFN competences, the signal/noise ratio

C) Study co-registered 19F and 1H images to study the noise correlation and possible algorithms to enhance sensitivity to signal

Study of co-registered 1H-19F analyses

Currently 1H and 19F images are only superimposed for visual comparison (combination is just product of signals)

Artificial Intelligence needed to:

- Align images
- Use autoencoders as de-noisers
- Segment 1H images
- Data augmentation

Possibili tesi di laurea

HARDWARE:

- o Sviluppo e test di rivelatori
 - o Assemblaggio
 - Machining componenti (stampante 3D)
- Setup e acquisizione dati di test NMR
- Setup e acquisizione dati test clinici o pre-clinici

SOFTWARE:

- Analisi dati esperimenti su fascio, fantoccio, animali pazienti
- o Applicazioni Machine Learning
- o Simulazioni Monte Carlo
- Swiluppo di software
 - o per simulazioni
 - Per ricostruzione esperimenti

http://arpg-serv.ing2.uniroma1.it/arpg-site/index.php

riccardo.faccini@uniroma1.it

Possibili tesi di laurea

- Studio di fattibilità della matrice di sensori (WIDMApp): simulazioni MC, analisi dati e test su fantoccio
- Analisi test clinici e pre-clinici sonda intraoperatoria (CHIRONE) Contatto:
 elena.solfaroli@roma1.infn.it, francesco.collamati@roma1.infn.it
- Caratterizzazione di nuovi scintillatori plastici per lo sviluppo di fast timing detector e/o pulse shape discrimination.
- Test del sensore e ricostruzione degli eventi di MONDO
- Sviluppo della camera a coppie (PAPRICA)
- Studio performance dei rivelatori di FOOT su TestBeam
- implementazione in FRED dei modelli di interazione di elettroni e fotoni Contatto: per la IORT. alessio.sarti@roma1.infn.it, vincenzo.patera@roma1.infn.it
- Studio del segnale analogico delle antenne NMR tramite Software Designed Radio (NEPTUNE)
- Applicazione del machine learning alle immagini NMR con 19F (NEPTUNE)
- Applicazione del machine learning alla stadiazione dei tumori (MARIANNE)
 cecilia.voena@roma1.infn.it, stefano.ajaqu

NUCL MED

표

HADRON