IEEE – Valencia 25 Oct. 2011

Study of the performance of the ATLAS muon spectrometer

Cesare Bini

Sapienza Università and INFN, Roma on behalf of the ATLAS Collaboration

Detection of muons @ ATLAS

Muons @ LHC:

- probes of Standard Model processes: $Z \rightarrow \mu\mu$, $W \rightarrow \mu\nu$, $H \rightarrow \mu\mu\mu\mu$
- signature of phenomena beyond the Standard Model (Z', W', SUSY)

How muons are detected:

- filtering provided by the calorimeters
- tracking in B field for momentum measurement
- matching with Inner Detector (ID) to improve resolution and vertex capabilities

The ATLAS muon spectrometer (MS):

based on air-core toroid magnetic field:

- Detects muons up to $|\eta|=2.7$ (*)
- Triggers on muons (single and di-muon)
- Standalone operation + extrap. to vertex
- Combined mode with ID

(*)
$$\eta = -\log \tan \frac{\theta}{2}$$

$ZZ^{(*)} \rightarrow \mu^+\mu^-\mu^+\mu^-$ event detected by ATLAS

The ATLAS Muon Spectrometer - II

		Chamber resolution (RMS) in			Measurements/track		Number of	
Туре	Function	z/R	ø	time	barrel	end-cap	chambers	channels
MDT	tracking	$35 \mu m(z)$	—	—	20	20	1088 (1150)	339k (354k)
CSC	tracking	$40 \mu\mathrm{m}\left(R\right)$	5 mm	7 ns	—	4	32	30.7k
RPC	trigger	10 mm(z)	10 mm	1.5 ns	6	—	544 (606)	359k (373k)
TGC	trigger	2-6 mm(R)	3–7 mm	4 ns	—	9	3588	318k

ATLAS Muon Trigger concept

Level-1: hardware - based on RPC or TGC coincidences,		rate
with up to 6 p_T thresholds with full η coverage;	L1	<10kHz
Event-Filter: software - using precision chambers with coarse granularity	L2	<1kHz
01	EF	<100Hz

ATLAS Muon Tracking concept

A muon tracks can be: *"standalone"* based on MS *"combined"* btw MS and ID *"tagged"* ID + MS tag Tagged muons allow to recover *"geometrical"* inefficiencies The combined momentum resolution is dominated by

ID @ low p_T MS @ high p_T

Design p_T resolutions: standalone and combined (G.Aad et al., JINST 3,:S08003,2008)

Measurement of the muon performance

The muon detection performance are continuously monitored during collision data-taking

- → Data Quality Assessment and continuous Detector Calibration (see M.Iodice talk in this session)
- → Tag & Probe method to determine reconstruction and trigger efficiencies, based on J/ψ and Z resonances
- → Resonance mass peaks and ID vs. MS comparisons to determine resolution and momentum scale
- → Special runs with toroid off and solenoid on to determine alignment

Reconstruction Efficiencies: high p_T muons

Measurements based on Tag&Probe using the Z resonance → high efficiency and good data-MC agreement.

 \rightarrow high efficiency for $p_T > 6$ GeV and good data-MC agreeement.

Trigger Efficiencies

Trigger efficiencies are evaluated using the Tag&Probe method on the Z with respect to combined tracks $\rightarrow \epsilon$ (Trigger / reconstruction) Results of the measurement for the single muon trigger with threshold = 18 GeV

The 80% efficiency at the plateau is due to regions with limited acceptance (clearly identified in the η distribution)

Muon Spectrometer Resolution: 2010 data

MS momentum resolution as a function of p_T for Barrel and Endcap constrained by $Z \rightarrow \mu\mu$ line-shape and by ID vs. MS measurement from $W \rightarrow \mu\nu$ events.

Improvement expected with new software release based on new alignments

Chamber alignment from toroid off data

Alignment is based on:

(1) Optical sensors on all chambers

(2) Intercalibration using straight tracks (toroid off data) with high momentum The goal is $< 50 \mu m$ all over the detector (very challenging goal)

2011 data show an alignment within 50 μm (barrel) and 100 μm (endcap) New alignment runs are expected to reduce the spread on endcap to 50 $\mu m.$

Conclusions and Outlook

Many physics results from ATLAS are based on muon detection:

- → Trigger and Reconstruction efficiencies match well the design performance;
- → Momentum resolution of ID and MS approaching design values;
- → Work in progress to define the optimal alignment all over the detector.

Backup

Dimuon invariant mass spectrum

ATLAS muon spectrometer technologies **Precision chambers Trigger chambers** (1) Monitored Drift Tubes (MDT) (1) Resistive Plate Chambers (RPC) Unit 1 Unit 2 Width: 1 2m 65 Length: 1-6 m 13 Paper honeycomb 6 Three or four drift-13 tube layers 50 Outer ground Drift-tube Polystyrene pad '3 0,39 Cathode tube multilayer -Schematic. Longitudinal strip PET foil (+glue) 12,882 2 not to scale Graphite electrode 0,05 -----2 Resistive plate 0,39 Gas gap with spacer 3 Transverse strips Anode wire High-pressure drift tubes (2) Thin Gap Chambers σ(R)≈100μm, T_{driff}≈700ns 29.970 mm Pick-up strip (2) Cathode Strip Chambers (CSC) Graphite layer Operation in high rate environment σ(R)≈60μmT_{drift}≈20ns 1.8 mm Anode wires +HV 1.4 mm 50 µm wire 0 0 ò Ó

S=d=2.5 mm

Cathode strips

1.6 mm G-10

Z mass resolution after alignment (2010 data)

Z invariant mass resolution: comparison with MC results based on perfect alignment

Inner Detector Resolution: 2010 data

Sagitta measurements of straight tracks in toroid off data: Comparison between use of nominal geometry and aligned geometry.

