STATUS OF THE ART OF THE NEW GENERATION OF MPGD DETECTORS

CESARE BINI Sapienza università and infn roma

03/04/17

PREMISE

- A wide variety of Micro Pattern Gas Detectors (MPGD) is today on the market, many developments are in progress, thanks to the improvements of the photolithographic technologies.
- **RD-51** is the "forum" for this kind of developments
- **COMPASS** has been and is a pioneer under several aspects.
- In this talk **>** prospects for the **LHC experiments upgrades**
 - Quest for large dimensions ($\approx m^2$) detectors
 - Time resolutions at the "ns" level
 - Space resolutions at the "100 µm" level
 - Rate capability up to $10 \text{ kHz/cm}^2 \rightarrow \text{MHz/cm}^2$.

OUTLINE

- Introduction
 - The MPGD and the LHC experiments
 - The upgrades of the LHC experiments
- GEM
 - The CMS muon spectrometer upgrade
 - The new detector for the ALICE large TPC
 - Possible new developments in LHCb
- MicroMegas
 - The New Small Wheel upgrade of the ATLAS muon spectrometer
 - The Large Eta Tagger upgrade
- Recent developments
 - Fast Time MicroPattern (FTM) concept
 - µRWell concept
- Summary

INTRODUCTION - I

- First MPGD in the '90s: precision det. for high-rate applications
- At that time not mature enough to provide large area detectors for LHC experiments, with 2 "small" exceptions:
 - LHCb M1 (20x20 cm² triple-GEMs for large-η muon trigger)
 - **TOTEM T2** (half-circles triple-GEMs 14 cm radius)

INTRODUCTION - II

- LHC upgrades: luminosity beyond baseline value → higher rates are expected in the forward muon detectors.
 - From p-p collisions: $O(100 \text{ kHz/cm}^2)$ expected in the hottiest regions
 - Heavy-ions collisions: bunch X-ing frequency up to 50 kHz (1 evt/20 μ s)
- **MPGD** now considered BUT \rightarrow extension to large dimensions

INTRODUCTION - III

- Upgrade projects involving MPGDs
- ALICE TPC Read-Out chambers
 - Quadruple- GEMs: 72 chambers $0.2 \div 0.6 \text{ m}^2$ each (phase-I)
- ATLAS forward muon spectrometer
 - NEW SMALL WHELL: MicroMegas: 128 Q-plets 2÷3 m² area each (phase-I)
 - LARGE ETA TAGGER: Pad MicroMegas Concept OR µPIC OR µRWELL
- CMS forward muon spectrometer
 - GE1/1: 72 Triple-GEMs chambers 0.35 ÷ 0.4 m² each (phase-I)
 - ME0 + GE2/1: options considered (phase-II)
 - Triple-GEM with X-Y read-out
 - Fast Time MicroPattern new concept MPGD
 - µRWELL new concept MPGD
- LHCb forward muon spectrometer
 - Still under discussion, probably small MPGDs ($30x30 \text{ cm}^2$) for triggering in a huge rate environment OR μ RWELL

GAS ELECTRON MULTIPLIERS: GEM

MULTIPLE-GEM: PRINCIPLE OF OPERATION - I

GEM foil: high-quality polymer foil coated on both sides with thin metal layers; \rightarrow shaped holes with a large electrical field inside

- \rightarrow Amplification avalanche in the hole region
- \rightarrow Mostly "transparent" for electrons
- \rightarrow Very small percentage of ions backflow
 - \rightarrow reduced space charge effect
 - \rightarrow reduced field distortion

F. Sauli, Nucl. Instr. and Meth. A386(1997)531

MULTIPLE-GEM: PRINCIPLE OF OPERATION - II

- The technique has been extended to $\approx m^2$ foils thanks to the *single-mask technology* \rightarrow large area applications are possible
- Then go to Multiple-GEM allowing:

03/04/17

- High gain obtained with electrodes at "low voltages" → less prone to discharges (Raether limit hard to be reached)
- Freedom in the choice of the electrical fields → optimization of the IBF (*Ion Back Flow*) → reduction of field distortions

Requirements:

See CMS-TDR-013 CERN-LHCC-2015-012

 \rightarrow Maximum geometric acceptance within the given CMS envelope

- \rightarrow Rate capability up to 100's kHz/cm²; no gain loss due to aging after 3000 fb⁻¹
- \rightarrow Single-chamber efficiency > 98 % for mips; gain uniformity of < 10%
- \rightarrow High angular (<300 µrad) and good time resolution (<10 ns)

CMS GE1/1: LARGE SIZE TRIPLE-GEM

Major features of the GE1/1, design are:

- Single-mask tehnology exploited
- The three GEM foils: gap config (3/1/2/1)
- Readout board with strips (3072 per chamber) with fixed ϕ pitch (463 µrad)
- Internal frame with lateral stretching screws
- External frame

72 trapezoidal triple-GEM Superchambers $0.22 \div 0.45 \text{ m}^2$ size 1.28 m maximum length Read-out through VFAT3

Exploded view of a long GE1/1 triple-GEM:

COVER

03/04/17

DRIFT BOAR

1283 mm

GEM FOIL

CMS GE1/1: IMPACT ON TRIGGER

CMS: PERFORMANCE OF LARGE PROTOTYPES

1.E+05

1.E+04

gas gain

Effective g

1.E+02

Hit rate in Ar/CO₂/CF₄ (45:15:40)
 Hit rate in Ar/CO₂ (70:30)

Gas gain in Ar/CO₂/CF₄

Gas gain in Ar/CO₂

Ar/CO₂ (70:30)

T°: 21.1°C

P: 954 hPa

Hum.: 31%

4000

3500

3000

²⁵⁰⁰ [ZH]

1000

500

Ar/CO₂/CF₄ (45:15:40)

T°: 21.9°C P: 959 hPa

Hum : 32%

2000 at

₁₅₀₀ 불

- Test-beam results on prototypes with two different gas mixtures
- → At gains ≈ 10⁴ efficiency plateau and high rate operations
- \rightarrow Time resolution \approx 7 ns
- ➔ Triple-GEM technology perfectly meets the requirements imposed by the HL-LHC

CMS: TRIPLE-GEM FOR ME0

ME0 extends muon coverage down to $\eta = 3$ to take advantage of the pixel extension

Main requirements:

- -- High granularity and spatial segmentation
- -- Multi-layered structure to reduce fakes

-- Precision Timing

- P_{T} assignment through $\Delta \phi$ measurement
- Discriminate muon (segment) against neutrons (uncorr hits).
- Reduce in-time PileUp, help vertex association

ME0 baseline layout consists of 216 triple-GEM chamber arranged in 36 20⁰ super-module wedge each consist of 6 layers of triple GEMs (3 back-to-back), covering $2 < |\eta| < 3$

Alternative technology $\rightarrow \mu RWell$

03/04/17

ALICE TPC READOUT

- Heavy Ion collisions during Run3: 500 Hz → 50 kHz collisions (1 crossing / 20 μs)
- Important impact on the large ALICE TPC operation

ALICE QUADRUPLE-GEM - I

• **Quadruple-GEM** optimized to reduce IBF < 1% with high gain:

- Ne-based gas mixture:
 → Ne-CO₂-N₂ (90-10-5)
- Standard and Large-Pitch GEMs
- Most of the gain in the last stage
- Few mm pads → drift time and charge measurement

ALICE QUADRUPLE-GEM - II

- 72 Large area chambers: 0.6 m², 0.2 m²
 - Single-mask technology exploited
- Results on first prototypes:
 - Gain ≈ 2000
 - $\sigma_{\rm x} \approx \sigma_{\rm y} \approx 1 \text{ mm}$, $\sigma_{\rm z} \approx 3 \text{ mm}$

U_{GEM3}/U_{GEM4}=0.95

2.5

IBF (%)

3.0

- $\sigma(dE/dx) \approx 12\%$ ⁵⁵Fe
- IBF < 1%

U_{GEM3}/U_{GEM4}=0.8

- U_{GEM2}=255 V

U_{GEM2}=285 V

03/04/17

0.5

1.0

1.5

2.0

σ (%)

15

10

0.0

LHCB PROSPECTS

- Still under discussion in the collaboration
- Main points:
 - Probably remove M1 chambers
 - Additional small chambers (30x30 cm²) for triggering in the huge rate regions (up to 0.5 MHz/cm²) M2
 - Time resolutions below 5 ns required
 - \rightarrow GEM with CF₄ based gas mixtures
 - \rightarrow µRWell also is a possible choice to exploit the optimal time resolution for triggering purposes.

BUT the very high rate is in conflict with high resistivity.

MICROMEGAS

MICROMEGAS: PRINCIPLE OF OPERATION - I First proposed by Y.Giomataris, NIMA 376 1 (1996) 25 -300 V (1) Drift Cathode (2)Pillars Micro Mesh 0 V(3) (4)+550 V(5) PCB P.L 20:09 Read-out electrodes Detector components (the quoted numbers refer to the ATLAS project): (1) Planar metallic cathode (2) Gas gap (5 mm) with low electric field (0.6 kV/cm): conversion and electron drift (3) Thin metallic mesh standing on "pillars" (128 µm high) (4) 128 μ m gap with high electric field (40÷50 kV/cm): avalanche (5) Segmented anode with read-out strips ($\approx 400 \,\mu\text{m}$ pitch) on Printed Circuit Board (PCB).

Maximum drift time = gap size / v(drift) = 5 mm / 50 μ m/ns = 100 ns

Huge electric field ratio:

 \rightarrow The mesh is "transparent" for drift electrons

Avalanche ions almost fully collected by the mesh (within ≈ 100 ns); negligible IBF Gain "Plateau" ($10^4 \div 10^5$) around d = 100 µm

03/04/17

Status of the art of the new generation of

MICROMEGAS: PROTOTYPES PERFORMANCE - THE MTPC

10x10 cm² prototypes built and tested at CERN (MAMMA collaboration)

ATLAS: MUON FORWARD UPGRADE

ATLAS NSW - MOTIVATIONS

Let's consider the ATLAS forward muon case

Endcap muon trigger dominated by *fake muons* \Rightarrow R(p_T>20 GeV)=60 kHz (@ 3×10³⁴,14 TeV) A factor >3 reduction \Rightarrow "pointing trigger" allows to elimate 90% of the fakes \Rightarrow R(p_T>20 GeV)=21 kHz (@ 3×10³⁴,14 TeV) Compatible with allowed bandwidth

MICROMEGAS FOR ATLAS NSW - II

The ATLAS MicroMegas chambers are organized in Q-plets: 5 panels 1 cm thick 2 m² surface (planarity RMS<40µm)

2 RO panels (with RO PCB)

3 Drift panels + tensioned mesh

Stereo configuration to get the second coordinate at O(mm)

Operate in a moderate magnetic field (<0.3 T)

SM1 MODULE0 – THE TEST-BEAM

Measurements done on a 180 GeV beam in "standard" conditions -- Gas Mixture Ar/CO₂ (93%-7%) @ 20 l/hr -- HV(ampl) = 580 V, HV(drift) = 300 V

-- FE electronics APV25

Aim: validation of the first 2 m² Q-plet

04/04/17

FIRST LARGE PROTOTYPE PERFORMANCE

Preliminary results obtained for perpendicular tracks (charge centroid method)

LARGE ETA TAGGER

Very large $-\eta \rightarrow 2.7 < |\eta| < 4$ Hit rates up to 9 MHz/cm² (a) highest L of HL-LHC ($\mu = 200$) Resolution of few 100 μ m Crucial points: Hit granularity down to 1 mm level Multi-layer 2D reconstruction Small-pads resistiv

Three options are considered:

- 1. Small-pads resistive Micromegas
- 2. Micro Pixel Chamber (µ-PIC)
- 3. Micro-Resistive Well (µRWell)

Pads with rectangular shape 0.82.8 mm² R&D in progress, first test-beam recently

RECENT DEVELOPMENTS

NEW DIRECTIONS

- MPGD principle of operation to obtain "triggering" and "tracking" detectors with, at the same time:
 - Stability of operation at high rates
 - Good space resolution O(100 µm)
 - Improved time resolution O(ns)
 - Simplified construction/assembly procedures
- Recent ideas:
 - Micro-Resistive Well (simplicity of construction)
 - Fast Time Micropattern (exploiting the possibility to reach O(1 ns) time accuracy)

MICRO-RESISTIVE-WELL

FAST TIME MICROPATTERN

The time resolution in a MPGD depends on the fluctuation of the arrival time of the first electron

$$\sigma_t = 1/(\lambda v_d)$$

This can be reduced by a factor N_D , N_D being the number of independent drift-amplification stages. Resistive layers \rightarrow structure transparent to signals that can be extracted at every amplification stage

M. Maggi, A. Sharma, R. De Oliveira

arXiv:1503.05330v1

SUMMARY AND CONCLUSIONS

- Starting from LHC Run3 (>2020) large area MPGD will be used by the LHC experiments to support the expected large particle rates.
- **GEM technology** will be widely used (Alice, CMS, LHCb)
- **MicroMegas technology** will be used by ATLAS reaching the largest dimensions (up to 3 m² chambers)
- This is a challange under several points of view
- In the meantime **new MPGD concepts** are developed