# Properties and spectroscopy of b-hadrons with the ATLAS detector

Cesare Bini

Sapienza Università and INFN Roma

on behalf of the ATLAS collaboration



#### Outline

- The ATLAS experiment at LHC
- Study of the properties of the  $\Lambda^0_{\ b}$  baryon.
  - Measurement of  $\Lambda^0_{\ b}$  lifetime and mass
  - Measurement of  $\Lambda^{0}_{\ b}$  helicity amplitudes and parity violating asymmetry parameter  $\alpha^{}_{B}$
- Observation of a new  $\chi_b$  state in radiative transitions to  $\Upsilon(1S)$  and  $\Upsilon(2S)$
- Summary and outlook

ATLAS collaboration: Phys.Rev.D **87**, 032002 (2013) ATLAS collaboration: ATLAS-CONF-2013-071 ATLAS collaboration: Phys.Rev.Lett.**108**, 152001 (2012)

#### The ATLAS experiment at LHC - I

- The ATLAS experiment has been running at LHC from 2010 to 2013 collecting 26.4 fb<sup>-1</sup> pp collisions at  $\sqrt{s} = 7$  and 8 TeV.
- The data presented here are based on the 2011 data taking:
  - $\sqrt{s} = 7 \text{ TeV}$ , Luminosity up to  $4 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

•  $L_{int} = 4.4 \div 4.9 \text{ fb}^{-1}$ , <pile-up> up to 15.



## The ATLAS experiment at LHC - II

ATLAS is a general purpose detector. For the results of this talk:

Muon detection (MS + ID) Vertexing (ID) Photon reconstruction (ECAL)





Y:  $8.0 \le M(\mu\mu) \le 12 \text{ GeV}$ 

# Study of the properties of the $\Lambda^{0}{}_{\rm b}$ baryon

- $\Lambda^0_{\ b}$  is the lightest b-baryon:
  - $I(J^P)=0(1/2^+)$
  - valence quark composition: *u d b*
  - main decay mode (weak decay):  $\Lambda^0_{\ b} \rightarrow J/\psi(1S) \Lambda^0$
- Produced in the fragmentation of the b-quark at hadron colliders
   measurement of properties:

• Mass

- Lifetime (including ratio  $\tau_{\Lambda b}/\tau_{Bd})$
- helicity amplitudes  $\rightarrow$  parity violating asymmetry  $\alpha_{\rm B}$ .
- Comparison with several HF models
  - heavy quark expansion (predictions on  $\tau_{\Lambda b}/\tau_{Bd})$
  - pQCD vs. HQET (predictions on  $\alpha_B$ )

# $\Lambda^0_{\ b}$ selection and reconstruction

Cascade topology  $\rightarrow$  2 vertices, 4 tracks. Trigger:

single-muon, dimuon and J/ψ mostly 2muons p<sub>T</sub>> 4 GeV M≈M<sub>J/ψ</sub> Pre-selection:

 $J/\psi$  and  $\Lambda$  vertices loosely selected Reconstruction:

kinematic fit with mass and vertex constraints ( $N_{dof} = 6$ ) Final selection:

 $\chi^2/N_{dof} < 3$  $p_{T,\Lambda} > 3.5 \text{ GeV}; L_{xy,\Lambda} > 10 \text{ mm}$ 

5.38 GeV 
$$< m_{J/\psi\Lambda} < 5.90$$
 GeV  
 $P_{\Lambda b} - P_{Bd} > 0.05$   
4074  $\Lambda_{b}^{0}$  and 4081  $\overline{\Lambda}_{b}^{0}$  candidates



# $\Lambda^{0}_{h}$ mass and lifetime fit

Candidates / 17 MeV For each event:  $m_{\mathrm{I}/\psi\Lambda}$  and  $oldsymbol{ au}$  $\tau = \frac{L_{xy}m^{PDG}}{1}$  $p_{T}$  $L_{_{XV}}$  distance from PV (the one closest to  $\Lambda^{_0}_{\ b}$  trajectory) Unbinned maximum likelihood combined fit to the mass and lifetime distributions Background components: prompt (J/ $\psi$  from pp + accidental  $\Lambda$  vertex)  $\cong$ nonprompt  $(J/\psi \text{ from b and } K_s \text{ misidentified}) \overset{\text{W}}{\circ}$ 

Free parameters:

Candidates  $m_{\Lambda b}, t_{\Lambda b}, f_{sig}$  for the signal  $S_m, S_\tau$  error scale factors 7 parameters describing the background shapes



#### Fit results and systematics

| Parameter              | Value             |
|------------------------|-------------------|
| $m_{\Lambda b} (MeV)$  | $5619.7 \pm 0.7$  |
| $	au_{\Lambda b}$ (ps) | $1.449 \pm 0.036$ |
| N <sub>sig</sub>       | $2184 \pm 57$     |
| N <sub>bkg</sub>       | 5970 ± 160        |
| σ <sub>m</sub> (MeV)   | $31.1 \pm 0.8$    |
| $\chi^2/N_{dof}$       | 66.5 / 61         |



Main sources of systematic errors:

| Selection/reco. bias    | 12 fs | 0.9 MeV |
|-------------------------|-------|---------|
| Background fit models   | 9     | 0.2     |
| Bd contamination        | 7     | 0.2     |
| Residual misalignment   | 1     | -       |
| Extra material          | 3     | 0.2     |
| Tracking pT scale       | -     | 0.5     |
| → total (quadratic sum) | 17 fs | 1.1 MeV |

## B<sub>d</sub> mass and lifetime fit results

Same analysis applied to  $B_d$  decay chains:  $B_d \rightarrow J/\psi(\mu^+\mu^-) K_S(\pi^+\pi^-)$ 

Cross-check of results and denominator for the lifetime ratio.

**Results:** 

$$\begin{split} m_{Bd} &= 5279.6 \pm 0.2 (stat) \pm 1.0 (syst) \; MeV \\ \tau_{Bd} &= 1.509 \pm 0.012 (stat) \pm 0.018 (syst) \; ps \end{split}$$

To be compared to PDG  $m_{Bd} = 5279.50 \pm 0.30(stat)$  MeV  $\tau_{Bd} = 1.519 \pm 0.007(stat)$  ps



# $\Lambda^{0}_{\phantom{0}b}$ results on mass and lifetime

| Parameter                          | ATLAS result                                          | comparisons                                                                                                                                                                                                 |
|------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $m_{\Lambda b} (MeV)$              | 5619.7 ± 0.7(stat) ± 1.1(syst)                        | 5619.4 ± 0.7 <b>(PDG)</b><br>5619.19 ± 0.70(stat) ± 0.30(syst) <b>(LHCB)</b>                                                                                                                                |
| $	au_{\Lambda b}$ (ps)             | $1.449 \pm 0.036(\text{stat}) \pm 0.017(\text{syst})$ | $1.425 \pm 0.032$ (PDG)<br>$1.503 \pm 0.052$ (stat) $\pm 0.031$ (syst) (CMS)                                                                                                                                |
| $R = \tau_{\Lambda b} / \tau_{Bd}$ | 0.960 ± 0.025(stat) ± 0.016(syst)                     | $0.864 \pm 0.052(\text{stat}) \pm 0.033(\text{syst})$ (D0)<br>$1.020 \pm 0.030(\text{stat}) \pm 0.008(\text{syst})$ (CDF)<br>$0.88 \div 0.97$ (HQ expansion)<br>$0.86 \div 0.88$ ( $\pm 0.05$ ) (QCD – NLO) |

The ATLAS results on mass and lifetime are in good agreement with previous experiments;

The result on the ratio lies between D0 and CDF "conflicting" (2.3  $\sigma$ ) results and is in good agreement with Heavy Quark expansion models.

# Parity violation in $\Lambda^0_{\ b}$ decay - I

One of the first measurements of P-violation in weak decays was in the  $\Lambda^0 \rightarrow p\pi^-$  decay  $\Rightarrow \alpha_{\Lambda}$  parameter  $\approx 65\%$   $[d\Gamma(\theta)\approx(1+\alpha_{\Lambda}\cos\theta)d\cos\theta]$ The same measurement can be done for  $\Lambda^0_{\ b}$  using the decay  $\Lambda^0_{\ b} \rightarrow J/\psi\Lambda^0$ Predictions on  $\alpha_{b}$  parameter easier due to the larger energy release in b-decay: pQCD vs. HQET give different predictions.



## Parity violation in $\Lambda^0_{h}$ decay - II

Event selection: same as in the main  $\Lambda^0_{\ b}$  analysis plus specific requirements aiming to reduce background (cleaner sample):

 $B^0_d$  veto:  $P(\Lambda^0_b) \ge P(B^0_d)$  $\tau(\Lambda_{\rm b}^0) > 0.35 \, \rm ps$  $5560 \le M(J/\psi \Lambda^0) \le 5680 \text{ MeV}$ → 1548  $\Lambda_{\rm b}^0$  (and  $\overline{\Lambda}_{\rm b}^0$ ) candidates



#### Results on parity violation - I

P=0 in pp collisions  $\rightarrow$  only 5 amplitudes survive: F<sub>i</sub>, i=1,5 Distributions of these functions from data compared to results of the fit.



#### Results on parity violation - II

• Fit results:

 $\alpha_{b} = 0.28 \pm 0.16 \pm 0.06$  $|a_{+}| = 0.17^{+0.12}_{-0.17} \pm 0.06$  $|a_{-}| = 0.59^{+0.06}_{-0.07} \pm 0.04$  $|b_{+}| = 0.79^{+0.04}_{-0.05} \pm 0.02$  $|b_{-}| = 0.08^{+0.13}_{-0.08} \pm 0.05$ 

- A parity violation of 28% is observed (less than 2  $\sigma$  from 0)
- Decay dominated by the  $a_1$  and  $b_+$  amplitudes (h( $\Lambda^0$ )=-1/2)
- Comparison with theory:
  - pQCD  $\rightarrow \alpha_b = -(0.14 \div 0.18)$   $\approx 2.5 \sigma$  discrepancy
  - HQET  $\rightarrow \alpha_{\rm b} = 0.78$   $\approx 2.9 \,\sigma$  discrepancy
- Agreement with recent LHCb result:  $\alpha_{\rm b} = 0.05 \pm 0.17 \pm 0.07$

#### Observation of a New $\chi_b$ state - I

- $\chi_b = b\overline{b}$  states with parallel spins and P-wave  $\rightarrow J=0,1,2$ .
- The first two radial excitations  $\chi_b(1P)$  and  $\chi_b(2P)$  well identified.
- A third radial excitation  $\chi_b$  (3P) expected to be close to the  $B\overline{B}$  threshold ( $M_{exp} \approx 10.52 \text{ GeV}$ )
- Unique insight into the nature of QCD close to the strong decay threshold.
- Search of  $\chi_b$  (nP) in radiative transitions:
  - $\chi_b(nP) \rightarrow \Upsilon(1S)\gamma$
  - $\chi_b(nP) \rightarrow \Upsilon(2S)\gamma$

looking for  $\Upsilon(1S) \rightarrow \mu^+ \mu^-$  and a photon (converted or not).

#### Observation of a New $\chi_b$ state - II



Step-2: photon reconstruction

→ converted photons ( $|\eta| < 2.30$ ): 2 ID oppositely charged tracks with a vertex constrained to have 0 angle.

→ unconverted photons ( $|\eta| < 2.36$ ): deposits in the ECAL not matched to any track; vertex constraint.

For each candidate event:  $\Delta m = m(\mu^+\mu^+\gamma) - m(\mu^+\mu^-)$ 



Separate fits of the unconverted and converted photon mass distributions.

| $\chi_{b}(1P)$ 9910 ± 6(stat) ± 11(syst) fixed: $\chi_{b1}$ = 9892.78; $\chi_{b2}$    | =9912.21  |
|---------------------------------------------------------------------------------------|-----------|
| $\chi_{b}(2P)$ 10246 ± 5(stat) ± 18(syst) fixed: $\chi_{b1} = 10255.46$ ; $\chi_{b2}$ | =10268.65 |
| $\chi_{b}(3P)$ 10541 ± 11(stat) ± 30(syst) 10530 ± 5(stat) =                          | ± 8(syst) |

# Summary and outlook

#### $\Lambda^0_{\ b}$ physics:

mass and lifetime aligned with PDG values and HQET predictions

parity violation parameter  $\alpha_{b}$  interesting new analysis on higher statistics to reduce error Study of exclusive decays in progress Deserved bottomonium radiative decays in ATLAS, L = 4.4 fb<sup>2</sup> 010.6 $\alpha$ 10.6 $\alpha$ 10.6

#### $\chi_b$ physics:

New state  $\chi_b(3P)$  observed

production cross-section measurement in progress extension to 2012 data to improve error on mass and discriminate J=0,1,2 states.

Several other published/ongoing analyses:

b-hadrons production cross-section from  $D^*\mu X$  final states Inclusive B<sup>+</sup> production cross-section @  $\sqrt{s}=7 \text{ TeV}$  9 Excited B meson spectroscopy

