Quantities to measure in EPP

Quantities to measure in EPP

- *Physics quantities* (to be compared with theory expectations)
 - Cross-section
 - Branching ratio
 - Asymmetries
 - Particle Masses, Widths and Lifetimes
- *Quantities related to the experiment* (BUT to be measured to get physics quantities)
 - Efficiencies
 - Luminosity
 - Backgrounds

Cross-section - I

- Suppose we have done an experiment and obtained the following quantities for a given final state:
 - $N_{cand}, N_b, \varepsilon, \phi$
- What is ϕ ? It is the "flux", something telling us how many collisions could take place per unit of time and surface.
 - Consider a "fixed-target" experiment (transverse size of the target >> beam dimensions): $\phi = \dot{N}_{proj} N_{tar} \delta x = \frac{\dot{N}_{proj} \rho \delta x}{A m_N} = \frac{\dot{N}_{proj} \rho (g / cm^3) N_A \delta x (cm)}{A}$
 - Consider a "colliding beam" experiment

$$\phi = f_{coll} \frac{N_1 N_2}{4\pi \Sigma_X \Sigma_Y} = L$$

(head-on beams: N_1 and N_2 number of particles per beam, Σ_X , Σ_Y beam transverse gaussian areas, f_{coll} collision frequency) In this case we normally use the word "Luminosity". Flux or luminosity are measured in: cm⁻²s⁻¹

Cross-section - II

• In any case, the rate of events due to final state *X* is:

$$\dot{N}_X = \phi \sigma_X$$

- σ_X is the cross-section, having the dimension of a surface.
 - it doesn't depend on the experiment but on the process only
 - can be compared to the theory
 - for a given σ_X , the higher is ϕ , the larger the event rate
 - given an initial state, for every final state *X* you have a specific cross-section
 - the "total cross-section" is obtained by adding the cross-sections for all possible final states: the cross-section is an additive quantity.
 - The unit is the "barn". 1 barn = 10^{-24} cm².

Cross-section - III

• Suppose we have taken data for a time Δt : the total number of events collected will be:

 $N_X = \sigma_X \times \int_{\Delta t} \phi \, dt$

The flux integral over time is the *Integrated Flux* or (in case of colliding beams) *Integrated Luminosity*. Integrated luminosity is measured in: b⁻¹

• How can we measure this cross-section?

$$\sigma_X = \frac{N_X}{\int \phi dt} = \frac{1}{\int \phi dt} \frac{N_{cand} - N_b}{\varepsilon}$$

• Sources of uncertainty: we apply the uncertainty propagation formula. We assume no correlations btw the quantities in the formula (L_{int} = integral of flux)

$$\left(\frac{\sigma(\sigma_X)}{\sigma_X}\right)^2 = \left(\frac{\sigma(L_{\text{int}})}{L_{\text{int}}}\right)^2 + \left(\frac{\sigma(\varepsilon)}{\varepsilon}\right)^2 + \frac{\sigma^2(N_{cand}) + \sigma^2(N_b)}{(N_{cand} - N_b)^2}$$

Branching ratio measurement

• Given an unstable particle a, it can decay in several (say N) final states, k=1,...,N. If Γ is the **total width** of the particle ($\Gamma=1/\tau$ with τ particle lifetime), for each final state we define a "partial width" in such a way that

$$\Gamma = \sum_{k=1}^{N} \Gamma_k$$

• The *branching ratio* of the particle *a* to the final state *X* is

$$BR(a \to X) = \frac{\Gamma_X}{\Gamma}$$

• To measure the B.R. the same analysis as for a cross-section is needed. In this case we need the number of decaying particles N_a (not the flux) to normalize:

$$BR.(a \to X) = \frac{N_{cand} - N_b}{\varepsilon} \frac{1}{N_a}$$
08/11/17

Differential cross-section - I

- If we want to consider only final states with a given kinematic configuration (momenta, angles, energies,...) and give the cross-section as a function of these variables
- Experimentally we have to divide in bins and count the number of events per bin.
- Example: diferential cross-section vs. scattering angle

$$\left(\frac{d\sigma}{d\cos\theta}\right)_{i} = \frac{1}{\int \phi dt} \left(\frac{N_{cand}^{i} - N_{b}^{i}}{\varepsilon_{i}}\right) \frac{1}{\Delta\cos\theta_{i}}$$

• NB: N_{cand} , N_{b} and ε as a function of θ are needed.

Differential cross-section - II

- Additional problems appear.
 - Efficiency is required per bin (can be different for different kinematic configurations).
 - Background is required per bin (as above).
 - The migration of events from one bin to another is possible:

Folding - Unfolding

- In case there is a substancial migration of events among bins (resolution larger than bin size), this affects the comparison btw exp.histo (n_i^{exp}) and theory (n_i^{th}) . This can be solved in two different ways:
 - **Folding** of the theoretical distribution: the theoretical function $f^{th}(x)$ is "smeared" through a smearing matrix M based on our knowledge of the resolution; $n_i^{th} \rightarrow \tilde{n}_i^{th}$

$$n_i^{\prime th} = \sum_{j=1}^N n_j^{th} M_{i,j}$$

$$n_i^{th} = \int_{x_i}^{x_{i+1}} dx f^{th}(x)$$

 $n_i^{th} = \int_{x_i}^{x_{i+1}} dx f^{th}(x)$ • **Unfolding** of the experimental histogram: $n_i^{exp} \rightarrow n_i^{exp}$. Very difficult procedure, mostly unstable, inversion of *M* required

$$n_i^{'\exp} = \sum_{j=1}^{N} n_j^{\exp} M_{i,j}^{-1}$$

Asymmetry measurement

• A very useful and powerful observable:

$$A = \frac{N^+ - N^-}{N^+ + N^-}$$

- $A = \frac{N^+ N^-}{N^+ + N^-}$ It can be "charge asymmetry", Forward-Backward asymmetry",...
 - Independent from the absolute normalization
 - (+) and (-) could have different efficiencies, but most of them could cancel:

$$A = \frac{N^{+} / N^{-} / \varepsilon^{-}}{N^{+} / \varepsilon^{+} + N^{-} / \varepsilon^{-}}$$

Statistical error ($N=N^++N^-$) (proof on blackboard):

$$\sigma(A) = \frac{1}{\sqrt{N}} \sqrt{1 - A^2}$$

Particle properties

- Once a particle has been identified (either directly or through its decay products), it is interesting to measure its properties:
 - \bullet Mass M
 - ullet Total Decay Width $oldsymbol{\Gamma}$
 - LifeTime τ
 - Couplings g
- If the particle is identified through its decay, all these parameters can be obtained through a dedicated analysis of the kinematics of its decay products.

Invariant Mass - I

• Suppose that a particle *X* decays to a number of particles (*N*), and assume we can measure the quadri-momenta of all them. We can evaluate the Invariant Mass of X for all the candidate events of our final sample:

$$M_{imw}^2 = \left(\sum_{k=1}^N \tilde{p}_k\right)^2$$

• It is a relativistically invariant quantity. In case of N=2

$$M_{inv}^2 = m_1^2 + m_2^2 + 2(E_1 E_2 - \vec{p}_1 \cdot \vec{p}_2)$$

• If N=2 and the masses are 0 or very small compared to p

$$M_{inv}^2 = 2E_1E_2(1-\cos\theta) = E_1E_2\sin^2\theta/2$$

ullet Where $oldsymbol{ heta}$ is the opening angle between the two daughter particles.

Invariant Mass - II

- Given the sample of candidates, we do the invariant mass distribution and we typically get a plot like that:
 - A peak (the signature of the particle)
 - A background (almost flat in this case) → unreducible background.
- What information can we get from this plot (by fitting it)?
- (1) Mass of particle;
- (2) Width of the particle (BUT not in this case...);
- (3) Number of particles produced (related to σ or BR)

Parenthesys: 2 kinds of background

- *Unreducible background*: same final state as the signal, no way to disentangle. The only way to separate signal from unreducible background is to fit the inv.mass spectrum
- Reducible background: a different final state that mimic the signal (e.g. because you are losing one or more particles, or because you are confusing the nature of one or more particles)
- Example:
 - Signal: $pp \rightarrow H \rightarrow ZZ* \rightarrow 41$
 - Unreducible background: pp \rightarrow ZZ* \rightarrow 41
 - Reducible backgrounds: pp \rightarrow Zbb with Z \rightarrow 2l and two leptons, one from each b-quark jet; pp \rightarrow tt with each t \rightarrow Wb \rightarrow lv"l"j

Mass and Width measurement

- Fit of the M_{inv} spectrum with a Breit-Wigner + a continuos background: BUT careful with mass resolution. It can be neglected only if $\sigma(M_{inv}) << \Gamma$
- If $\sigma(M_{inv}) \approx \Gamma$ or $\sigma(M_{inv}) > \Gamma$ there are two approaches (as we already know):
 - Folding: correct the theoretical distribution to be used in the fit:

$$\sigma_{fit}(E) = \int G_{res}(E - E_0) \sigma_{BW}(E_0) dE_0$$

- Unfolding: correct the experimental data and fit with the theoretical function.
- Use a gaussian (or a "Crystal Ball" function) neglecting completely the width.
- In many cases only the mass is accessible: the uncertainty on the mass is the one given by the fit (taking into account the statistics) + possible scale systematics.

Gaussian vs. Crystal Ball

• Gaussian: 3-parameters, A, μ, σ . Integral $= A\sigma\sqrt{2\pi}$

$$f(m/A,\mu,\sigma) = A \exp(-\frac{(m-\mu)^2}{2\sigma^2})$$

• Crystal-Ball: 5-parameters, m, σ , α , n, N

$$f_{CB}(m, \bar{m}, \sigma, \alpha, n) = N \cdot \begin{cases} e^{\frac{-(m - \bar{m})^2}{2\sigma^2}} & \text{per } \frac{m - \bar{m}}{\sigma} > -\alpha \\ A \cdot (B - \frac{m - \bar{m}}{\sigma})^{-n} & \text{per } \frac{m - \bar{m}}{\sigma} \leq -\alpha \end{cases}$$

$$A = \left(\frac{n}{|\alpha|}\right)^n e^{-\frac{\alpha^2}{2}}, B = \frac{n}{|\alpha|} - |\alpha|$$

Essentially takes into account energy losses, useful in many cases.

Template fits: not functions but histograms

In this case the fit is not done with a function with parameters BUT it is a "template" fit:

 $F = aHIST1(m_H,...) + bHIST2$ a, b and m_H are free parameters The method requires the knowledge (from MC) of the expected distributions. Such a knowledge improves our uncertainties.

NB: HIST1 and HIST2 take into acco experimental resolution: so it is directly the folding method An example: Higgs mass in the 4l channel.

Effect of the mass resolution on the significativity of a signal

- Let's consider now the case in which we look for a process and we expect a peak in a distribution at a definite mass: when may we say that we have observed that process?
- Method of assessment: simple fit S+B (e.g. template fit). $S\pm\sigma(S)$ away from 0 at least 3 (5) standard deviations.
- Ingredients:

• Mass resolution;
$$\sigma^2(S) = \sigma^2(N) + \sigma^2(B) = N + \sigma^2(B)$$

- Background $\approx N = S + B = S + 6\sigma_M b$
- Effect of mass resolution negligible if:

$$\sigma_{M} \ll \frac{S}{6b}$$

H $\rightarrow \gamma \gamma$ ATLAS: is the resolution negligible?

Numbers directly from the plot:

S≈1000 b≈5000/2 GeV = 2500/GeV σ_{M} ≈10 GeV/6 =1.7 GeV

 \rightarrow S/6b = 0.07 GeV << $σ_M$

Lifetime measurement - I

→ In the first decades of EPP, bubble-chambers and emulsions allowed to see directly the decay length of a particle either neutral or charged (see Kaons);

The decay length l is related to the lifetime through the $l = \beta \gamma \tau c \rightarrow \tau = 1 / \beta \gamma c$

→ For a sample of particles produced we expect an exponential distribution

08/11/17

Lifetime measurement - II

• Example: pions, kaons, c and b-hadrons in the LHC context (momentum range $10 \div 100 \, \text{GeV}$).

	π	K	D	В
Mass (GeV)	0.140	0.494	1.869	5.279
Life Time (s)	2.6×10^{-8}	1.2×10^{-8}	1.0×10^{-12}	1.6×10^{-12}
Decay length (m) p = 10 GeV	557	72.8	1.6×10^{-3}	9.1×10^{-4}
Decay length (m) p = 100 GeV	5570	728	0.016	0.0091

NBWhen going to c or b quarks, decay lengths O(<mm) are obtained

→ Necessity of dedicated "vertex detectors"

Lifetime measurement - III

Candidates / 0.46 ps

For low-τ particles
(e.g. B-hadrons, τ, ...):

→ define the proper decay time:

$$\tau = \frac{Lm}{p}$$

At hadron colliders the proper decay time is defined on the transverse plane:

$$\tau = \frac{L_{xy}m}{p_T}$$

The fit takes into account the background and the resolution

Typical resolutions: $O(10^{-13} \text{ s}) \rightarrow \text{tens of } \mu\text{m}$

τ (ps)

Efficiency measurement - I

- Suppose you want to measure the detection efficiency of a final state X: X contains N particles e.g. $Z \rightarrow \mu\mu$ contains 2 particles and whatever else. How much is the probability to select an event containing a $Z \rightarrow \mu\mu$?
- Let's suppose that:
 - Trigger is: at least 1 muon with $p_T > 10$ GeV and $|\eta| < 2.5$
 - Offline selection is: 2 and only 2 muons with opposite charge and $M_Z\text{-}2\Gamma < M_{inv} < M_Z\text{+}2\Gamma$
- Approach for efficiency
 - ullet Full event method: apply trigger and selection to simulated events and calculate N_{sel}/N_{gen} (validation is required)
 - Single particle method: (see next slides)

Efficiency measurement - II

- Measure single muon efficiencies as a function of kinematics (p_T, η, \ldots) ; eventually perform the same "measurement" using simulated data.
 - Tag & Probe method: muon detection efficiency measured using an independent detector and using "correlated" events.
 - Trigger efficiency using "pre-scaled" samples collected with a trigger having a lower threshold.

$$\varepsilon_{trigger} = \frac{\# \mu - triggered}{\# \mu - total}$$

T&P: a "Tag Muon" in the MS and a "Probe" in the ID
Tag+Probe Inv. Mass consistent
With a Z boson

→ There should be a track in the MS

$$\varepsilon_{TP} = \frac{\# \mu - reco}{\# \mu - \exp ected}$$

Efficiency measurement - III

- Muon Efficiency ATLAS experiment.
- As a function of η and p_T comparison with simulation \Longrightarrow Scale Factors

Efficiency measurement - IV

- After that I have: $\varepsilon_T(p_T, \eta, ...)$ and $\varepsilon_S(p_T, \eta, ...)$
- From MC I get the expected kinematic distributions of the final state muons and I apply for each muon its efficiency depending on its p_T and η . The number of surviving events gives the efficiency for X
- Or I simply apply the scale factors to the MC fully simulated events to take into account data-MC differences.

Background measurement - I

- Based on simulations:
 - define all possible background processes (with known cross-sections);
 - apply trigger and selection to each simulated sample;
 - determine the amount of background in the "signal region" after weighting with known cross-sections.
- Data-driven methods:
 - "control regions" based on a different selection (e.g. sidebands);
 - fit control region distributions with simulated distributions and get weigths;
 - then export to "signal region" using "transfer-factors".
- Example: reducible background of H4l ATLAS analysis (next slides)

Background measurement - II

Table 3: Expected contribution of the $\ell\ell + \mu\mu$ background sources in each of the control regions.

	Control region			
Background	Inverted d_0	Inverted isolation	$e\mu + \mu\mu$	Same-sign
$Zbar{b}$	$32.8\pm0.5\%$	$26.5\pm1.2\%$	$0.3\pm1.2\%$	$30.6\pm0.7\%$
$Z + ext{light-flavor jets}$	$9.2 \pm 1.3\%$	$39.3\pm2.6\%$	$0.0\pm0.8\%$	$16.9\pm1.6\%$
$tar{t}$	$58.0\pm0.9\%$	$34.2\pm1.6\%$	$99.7\pm1.0\%$	$52.5\pm1.1\%$

Reducible background	yields for	4μ and	$2e2\mu$ in	reference	control region

Control region	$Zbar{b}$	Z + light-flavor jets	Total Z + jets	$t \overline{t}$
Combined fit	159 ± 20	49 ± 10	208 ± 22	210 ± 12
Inverted impact parameter Inverted isolation $e\mu + \mu\mu$ Same-sign dilepton			206 ± 18 210 ± 21 $ 198 \pm 20$	208 ± 23 201 ± 24 201 ± 12 196 ± 22

Extrapolate to "signal region" using transfer factors

→ (see next slide)

Background measurement - III

Table 5: Estimates for the $\ell\ell + \mu\mu$ background in the signal region for the full $m_{4\ell}$ mass range for the $\sqrt{s}=7$ TeV and $\sqrt{s}=8$ TeV data. The Z+ jets and $t\bar{t}$ background estimates are data-driven and the WZ contribution is from simulation. The decomposition of the Z+ jets background in terms of the $Zb\bar{b}$ and the Z+ light-flavor-jets contributions is also provided.

Background	4μ	$2e2\mu$		
$\sqrt{s} = 7 \text{ TeV}$				
Z + jets	$0.42 \pm 0.21 ({ m stat}) \pm 0.08 ({ m syst})$	$0.29 \pm 0.14 ({ m stat}) \pm 0.05 ({ m syst})$		
t ar t	$0.081 \pm 0.016 (\mathrm{stat}) \pm 0.021 (\mathrm{syst})$	$0.056 \pm 0.011 (\mathrm{stat}) \pm 0.015 (\mathrm{syst})$		
WZ expectation	0.08 ± 0.05	0.19 ± 0.10		
	Z+ jets decomposition	 1		
$Zbar{b}$	$0.36\pm0.19(\mathrm{stat})\pm0.07(\mathrm{syst})$	$0.25\pm0.13(\mathrm{stat})\pm0.05(\mathrm{syst})$		
Z + light-flavor jets	$0.06\pm0.08(\mathrm{stat})\pm0.04(\mathrm{syst})$	$0.04\pm0.06(\mathrm{stat})\pm0.02(\mathrm{syst})$		
$\sqrt{s} = 8 \text{ TeV}$				
$Z + \mathrm{jets}$	$3.11 \pm 0.46 ({ m stat}) \pm 0.43 ({ m syst})$	$2.58 \pm 0.39 ({ m stat}) \pm 0.43 ({ m syst})$		
$t ar{t}$	$0.51 \pm 0.03 ({ m stat}) \pm 0.09 ({ m syst})$	$0.48 \pm 0.03 ({ m stat}) \pm 0.08 ({ m syst})$		
WZ expectation	0.42 ± 0.07	0.44 ± 0.06		
$Z+{ m jets}$ decomposition				
$Zbar{b}$	$2.30\pm0.26(\mathrm{stat})\pm0.14(\mathrm{syst})$	$2.01\pm0.23(\mathrm{stat})\pm0.13(\mathrm{syst})$		
Z + light-flavor jets	$0.81 \pm 0.38 ({ m stat}) \pm 0.41 ({ m syst})$	$0.57 \pm 0.31 ({\rm stat}) \pm 0.41 ({\rm syst})$		

The "ABCD" factorization method

- Use two variables (var1 and var2) with these features:
 - For the background they are completely independent
 - The signal is localized in a region of the two variables
- Divide the plane in 4 boxes: the signal is on D only

For the background, due to the independence we have few relations:

$$B/D = A/C$$

$$B/A = D/C$$

So: If I count the background (in data) events in regions A,B and C I can extrapolate in the signal region D:

$$D = CB/A$$

Luminosity measurement - I

• In order to get the luminosity we need to know the "cross-section" of a candle process:

 $L = \frac{N}{\sigma}$

- In e⁺e⁻ experiments QED helps, since Bhabha scattering can be theoretically evaluated with high precision (< 1%).
- In pp experiment the situation is more difficult.
 - Two-step procedure: continuous "relative luminosity" measurement through several monitors. Count the number of "inelastic interactions";
 - time-to-time using the "Van der Meer" scan the absolute calibration is obtained by measuring the effective $\sigma_{\rm inel}$.

Luminosity measurement - II

Van der Meer scan: Measurement of the rate of inelastic interactions as a function of the bunch horizontal and vertical separations:

- \rightarrow Determine the transverse bunch dimensions Σ_x , Σ_y and the inelastic rate at 0 separation.
- → Using the known values of the number of protons per bunch from LHC monitors, one get the *inelastic cross-section* that provides the absolute normalization.

$$L = n_b f \frac{N_1 N_2}{4\pi \Sigma_x \Sigma_y} = \frac{\dot{N}_{inel}}{\sigma_{inel}}$$

$$\sigma_{inel} = \left(\frac{\dot{N}_{inel}^0}{n_b f}\right) \frac{4\pi \Sigma_x \Sigma_y}{N_1 N_2}$$

Recap

- Let's remind at this point that our aim is to learn how to design an experiment.
- We have seen:
 - Definition of the process we want to study
 - Selection of the events correponding to this process
 - Measurement of the quantities related to the process
 - Other measurements related to the physics objects we are studying.
- Now, in order to really design an experiment we need:
 - To see how projectiles and targets can be set-up
 - To see how to put together different detectors to mesure what we need to measure