Quantities to measure in EPP

Quantities to measure in EPP

- Physics quantities (to be compared with theory expectations)
- Cross-section
- Branching ratio
- Asymmetries
- Particle Masses, Widths and Lifetimes
- Quantities related to the experiment (BUT to be measured to get physics quantities)
- Efficiencies
- Luminosity
- Backgrounds

Cross-section - I

- Suppose we have done an experiment and obtained the following quantities for a given final state:
- $N_{\text {cand }}, N_{b}, \varepsilon, \phi$
- What is $\boldsymbol{\phi}$? It is the "flux", something telling us how many collisions could take place per unit of time and surface.
- Consider a "fixed-target" experiment (transverse size of the target >> beam dimensions):

$$
\phi=\dot{N}_{p r o j} N_{\text {tar }} \delta x=\frac{\dot{N}_{p r o j} \rho \delta x}{A m_{N}}=\frac{\dot{N}_{p r o j} \rho\left(\mathrm{~g} / \mathrm{cm}^{3}\right) N_{A} \delta x(\mathrm{~cm})}{A}
$$

- Consider a "colliding beam" experiment

$$
\phi=f_{\text {coll }} \frac{N_{1} N_{2}}{4 \pi \Sigma_{X} \Sigma_{Y}}=L
$$

(head-on beams: \boldsymbol{N}_{1} and \boldsymbol{N}_{2} number of particles per beam, $\boldsymbol{\Sigma}_{X}, \boldsymbol{\Sigma}_{Y}$ beam transverse gaussian areas, $f_{\text {coll }}$ collision frequency) In this case we normally use the word "Luminosity". Flux or luminosity are measured in: $\mathbf{c m}^{-2} \mathbf{s}^{-1}$

Cross-section - II

- In any case, the rate of events due to final state X is:

$$
\dot{N}_{X}=\phi \sigma_{X}
$$

- σ_{X} is the cross-section, having the dimension of a surface.
- it doesn't depend on the experiment but on the process only
- can be compared to the theory
- for a given σ_{X}, the higher is $\boldsymbol{\phi}$, the larger the event rate
- given an initial state, for every final state X you have a specific cross-section
- the "total cross-section" is obtained by adding the crosssections for all possible final states: the cross-section is an additive quantity.
- The unit is the "barn". 1 barn $=10^{-24} \mathrm{~cm}^{2}$.

Cross-section - III

- Suppose we have taken data for a time Δt : the total number of events collected will be:

$$
N_{X}=\sigma_{X} \times \int_{\Delta t} \phi d t
$$

The flux integral over time is the Integrated Flux or (in case of colliding beams) Integrated Luminosity. Integrated luminosity is measured in: \mathbf{b}^{-1}

- How can we measure this cross-section ?

$$
\sigma_{X}=\frac{N_{X}}{\int \phi d t}=\frac{1}{\int \phi d t} \frac{N_{c a n d}-N_{b}}{\varepsilon}
$$

- Sources of uncertainty: we apply the uncertainty propagation formula. We assume no correlations btw the quantities in the formula ($\boldsymbol{L}_{\text {int }}=$ integral of flux)

$$
\left(\frac{\sigma\left(\sigma_{X}\right)}{\sigma_{X}}\right)^{2}=\left(\frac{\sigma\left(L_{\mathrm{int}}\right)}{L_{\mathrm{int}}}\right)^{2}+\left(\frac{\sigma(\varepsilon)}{\varepsilon}\right)^{2}+\frac{\sigma^{2}\left(N_{\text {cand }}\right)+\sigma^{2}\left(N_{b}\right)}{\left(N_{\text {cand }}-N_{b}\right)^{2}}
$$

Branching ratio measurement

- Given an unstable particle \boldsymbol{a}, it can decay in several (say N) final states, $k=1, \ldots, N$. If Γ is the total width of the particle $(\Gamma=1 / \tau$ with τ particle lifetime), for each final state we define a "partial width" in such a way that

$$
\Gamma=\sum_{k=1}^{N} \Gamma_{k}
$$

- The branching ratio of the particle a to the final state X is

$$
\text { B.R. }(a \rightarrow X)=\frac{\Gamma_{X}}{\Gamma}
$$

- To measure the B.R. the same analysis as for a cross-section is needed. In this case we need the number of decaying particles \boldsymbol{N}_{a} (not the flux) to normalize:

$$
B . R .(a \rightarrow X)=\frac{N_{c a n d}-N_{b}}{\varepsilon} \frac{1}{N_{a}}
$$

Differential cross-section - I

- If we want to consider only final states with a given kinematic configuration (momenta, angles, energies, ...) and give the cross-section as a function of these variables
- Experimentally we have to divide in bins and count the number of events per bin.
- Example: diferential cross-section vs. scattering angle

$$
\left(\frac{d \sigma}{d \cos \theta}\right)_{i}=\frac{1}{\int \phi d t}\left(\frac{N_{c a n d}^{i}-N_{b}^{i}}{\varepsilon_{i}}\right) \frac{1}{\Delta \cos \theta_{i}}
$$

- NB: $N_{\text {cand }}, N_{b}$ and ε as a function of θ are needed.

Differential cross-section - II

- Additional problems appear.
- Efficiency is required per bin (can be different for different kinematic configurations).
- Background is required per bin (as above).
- The migration of events from one bin to another is possible:

Folding - Unfolding

- In case there is a substancial migration of events among bins (resolution larger than bin size), this affects the comparison btw exp.histo $\left(\boldsymbol{n}_{i}{ }^{\text {exP }}\right)$ and theory $\left(\boldsymbol{n}_{\boldsymbol{i}}{ }^{\text {th }}\right)$. This can be solved in two different ways:
- Folding of the theoretical distribution: the theoretical function $f^{t h}(x)$ is "smeared" through a smearing matrix \boldsymbol{M} based on our knowledge of the resolution; $\boldsymbol{n}_{\boldsymbol{i}}^{\text {th }} \boldsymbol{\rightarrow} \boldsymbol{n}_{\boldsymbol{i}}{ }^{\text {th }}$

$$
\begin{aligned}
& n_{i}^{\text {th }}=\sum_{j=1}^{N} n_{j}^{t h} M_{i, j} \\
& n_{i}^{t h}=\int_{x_{i+1}}^{x_{i+1}} d x f^{t h}(x)
\end{aligned}
$$

- Unfolding of the experimental histogram: $\boldsymbol{n}_{\boldsymbol{i}}{ }^{\text {exp }} \rightarrow \boldsymbol{n}_{\boldsymbol{i}}{ }^{\text {exp }}$. Very difficult procedure, mostly unstable, inversion of \boldsymbol{M} required

$$
n_{i}^{\prime \exp }=\sum_{j=1}^{N} n_{j}^{\exp } M_{i, j}^{-1}
$$

Asymmetry measurement

- A very useful and powerful observable:

$$
\mathrm{A}=\frac{N^{+}-N^{-}}{N^{+}+N^{-}},
$$

- It can be "charge asymmetry", Forward-Backward asymmetry",...
- Independent from the absolute normalization
- $(+)$ and (-) could have different efficiencies, but most of them could cancel:

$$
\mathrm{A}=\frac{N^{+} / \varepsilon^{+}-N^{-} / \varepsilon^{-}}{N^{+} / \varepsilon^{+}+N^{-} / \varepsilon^{-}}
$$

- Statistical error $\left(\boldsymbol{N}=\mathbf{N}^{+}+\mathbf{N}^{-}\right)$(proof on blackboard):

$$
\sigma(\mathrm{A})=\frac{1}{\sqrt{N}} \sqrt{1-\mathrm{A}^{2}}
$$

Particle properties

- Once a particle has been identified (either directly or through its decay products), it is interesting to measure its properties:
- Mass \boldsymbol{M}
- Total Decay Width Γ
- LifeTime τ
- Couplings g
- If the particle is identified through its decay, all these parameters can be obtained through a dedicated analysis of the kinematics of its decay products.

Invariant Mass - I

- Suppose that a particle X decays to a number of particles (\mathbf{N}), and assume we can measure the quadri-momenta of all them. We can evaluate the Invariant Mass of X for all the candidate events of our final sample:

$$
M_{\text {jiem }}^{2}=\left(\sum_{k=1}^{N} \tilde{p}_{k}\right)^{2}
$$

- It is a relativistically invariant quantity. In case of $\mathrm{N}=2$

$$
M_{i n v}^{2}=m_{1}^{2}+m_{2}^{2}+2\left(E_{1} E_{2}-\vec{p}_{1} \cdot \vec{p}_{2}\right)
$$

- If $\mathrm{N}=2$ and the masses are 0 or very small compared to p

$$
M_{i n v}^{2}=2 E_{1} E_{2}(1-\cos \theta)=E_{1} E_{2} \sin ^{2} \theta / 2
$$

- Where $\boldsymbol{\theta}$ is the opening angle between the two daughter particles.

Invariant Mass - II

- Given the sample of candidates, we do the invariant mass distribution and we typically get a plot like that:
- A peak (the signature of the particle)
- A background (almost flat in this case) $\boldsymbol{\rightarrow}$ unreducible background.
- What information can we get from this plot (by fitting it) ?
(1) Mass of particle;

(2) Width of the particle (BUT not in this case...);
(3) Number of particles produced (related to $\boldsymbol{\sigma}$ or $\boldsymbol{B R}$)

Parenthesys: 2 kinds of background

- Unreducible background: same final state as the signal, no way to disentangle. The only way to separate signal from unreducible background is to fit the inv.mass spectrum
- Reducible background: a different final state that mimic the signal (e.g. because you are losing one or more particles, or because you are confusing the nature of one or more particles)
- Example:
- Signal: $\mathrm{pp} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ} * \rightarrow 4 \mathrm{l}$
- Unreducible background: $\mathrm{pp} \rightarrow \mathrm{ZZ} * \rightarrow 41$
- Reducible backgrounds: pp \rightarrow Zbb with $\mathrm{Z} \rightarrow 21$ and two leptons, one from each b-quark jet; $\mathrm{pp} \rightarrow \mathrm{tt}$ with each $\mathrm{t} \rightarrow \mathrm{Wb} \rightarrow \mathrm{lv}{ }^{\prime \prime} \mathrm{l}^{\prime} \mathrm{j}$

Mass and Width measurement

- Fit of the $\boldsymbol{M}_{\text {inv }}$ spectrum with a Breit-Wigner + a continuos background: BUT careful with mass resolution. It can be neglected only if $\sigma\left(\mathrm{M}_{\mathrm{inv}}\right) \ll \Gamma$
- If $\sigma\left(\mathrm{M}_{\mathrm{inv}}\right) \approx \Gamma$ or $\sigma\left(\mathrm{M}_{\mathrm{inv}}\right)>\Gamma$ there are two approaches (as we already know):
- Folding: correct the theoretical distribution to be used in the fit:

$$
\sigma_{f i t}(E)=\int G_{r e s}\left(E-E_{0}\right) \sigma_{B W}\left(E_{0}\right) d E_{0}
$$

- Unfolding: correct the experimental data and fit with the theoretical function.
- Use a gaussian (or a "Crystal Ball" function) neglecting completely the width.
- In many cases only the mass is accessible: the uncertainty on the mass is the one given by the fit (taking into account the statistics) + possible scale systematics.

Gaussian vs. Crystal Ball

- Gaussian: 3-parameters, A, μ, σ. Integral $=A \sigma \sqrt{ } 2 \pi$

$$
f(m / A, \mu, \sigma)=A \exp \left(-\frac{(m-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- Crystal-Ball: 5-parameters, m, σ, α, n, N

$$
\begin{gathered}
f_{C B}(m, \bar{m}, \sigma, \alpha, n)=N \cdot \begin{cases}e^{\frac{-(m-\bar{m})^{2}}{2 \sigma^{2}}} & \text { per } \frac{m-\bar{m}}{}>-\alpha \\
A \cdot\left(B-\frac{m-\bar{m}}{\sigma}\right)^{-n} & \text { per } \frac{m-\bar{m}}{\sigma} \leq-\alpha\end{cases} \\
A=\left(\frac{n}{|\alpha|}\right)^{n} e^{-\frac{\alpha^{2}}{2}}, B=\frac{n}{|\alpha|}-|\alpha|
\end{gathered}
$$

Essentially takes into account energy losses, useful in many cases.

Template fits: not functions but histograms

In this case the fit is not done with a function with parameters BUT it is a "template" fit:

$$
\mathrm{F}=a \operatorname{HIST} 1\left(m_{H}, \ldots\right)+b \operatorname{HIST} 2
$$

$\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{m}_{H} are free parameters The method requires the knowledge (from MC) of the expected distributions. Such a knowledge improves our uncertainties.
NB: HIST1 and HIST2 take into acco experimental resolution: so it is directly the folding method

An example: Higgs mass in the 41 channel.

Effect of the mass resolution on the significativity of a signal

- Let's consider now the case in which we look for a process and we expect a peak in a distribution at a definite mass: when may we say that we have observed that process?
- Method of assessment: simple fit $\mathrm{S}+\mathrm{B}$ (e.g. template fit). $S \pm \sigma(S)$ away from 0 at least 3 (5) standard deviations.
- Ingredients:
- Mass resolution;

$$
\begin{aligned}
& \sigma^{2}(S)=\sigma^{2}(N)+\sigma^{2}(B)=N+\sigma^{2}(B) \\
& \approx N=S+B=S+6 \sigma_{M} b
\end{aligned}
$$

- Background
- Effect of mass resolution negligible if:

$$
\sigma_{M} \ll \frac{S}{6 b}
$$

$\mathrm{H} \rightarrow \gamma \gamma$ ATLAS: is the resolution negligible?

Numbers directly from the plot:

$$
\begin{aligned}
& \mathrm{S} \approx 1000 \\
& \mathrm{~b} \approx 5000 / 2 \mathrm{GeV} \\
& \quad=2500 / \mathrm{GeV} \\
& \begin{aligned}
\sigma_{\mathrm{M}} & \approx 10 \mathrm{GeV} / 6 \\
& =1.7 \mathrm{GeV}
\end{aligned}
\end{aligned}
$$

\rightarrow S/ 6b

$$
=0.07 \mathrm{GeV} \ll \sigma_{\mathrm{M}}
$$

Lifetime measurement - I

\rightarrow In the first decades of EPP, bubble-chambers and emulsions allowed to see directly the decay length of a particle either neutral or charged (see Kaons);
\rightarrow The decay length I is related to the lifetime through the $\boldsymbol{I}=\boldsymbol{\beta} \boldsymbol{\tau}_{\boldsymbol{c}} \boldsymbol{\rightarrow} \boldsymbol{\tau}=\mathbf{1} / \boldsymbol{\beta} \boldsymbol{\gamma}_{\mathbf{c}}$ \rightarrow For a sample of particles produced we expect an exponential distribution

Lifetime measurement - II

- Example: pions, kaons, c and b-hadrons in the LHC context (momentum range $10 \div 100 \mathrm{GeV}$).

	π	K	D	B
Mass (GeV)	0.140	0.494	1.869	5.279
Life Time (s)	2.6×10^{-8}	1.2×10^{-8}	1.0×10^{-12}	1.6×10^{-12}
Decay length (m) p $=10 \mathrm{GeV}$	557	72.8	1.6×10^{-3}	9.1×10^{-4}
Decay length (m) $\mathrm{p}=100 \mathrm{GeV}$	5570	728	0.016	0.0091

NB When going to c or b quarks, decay lengths $\mathrm{O}(<\mathrm{mm})$ are obtained
\rightarrow Necessity of dedicated "vertex detectors"

Lifetime measurement - III

For low- τ particles
(e.g. B-hadrons, τ, \ldots):
\rightarrow define the proper decay time:

$$
\tau=\frac{L m}{p}
$$

At hadron colliders the proper decay time is defined on the transverse plane:

$$
\tau=\frac{L_{x y} m}{p_{T}}
$$

The fit takes into account the background and the resolution
Typical resolutions: $\mathrm{O}\left(10^{-13} \mathrm{~s}\right) \boldsymbol{\rightarrow}$ tens of $\mu \mathrm{m}$

Efficiency measurement - I

- Suppose you want to measure the detection efficiency of a final state X : X contains N particles e.g. $\mathrm{Z} \rightarrow \mu \mu$ contains 2 particles and whatever else. How much is the probability to select an event containing a $\mathrm{Z} \rightarrow \mu \mu$?
- Let's suppose that:
- Trigger is: at least 1 muon with $\mathrm{p}_{\mathrm{T}}>10 \mathrm{GeV}$ and $|\eta|<2.5$
- Offline selection is: 2 and only 2 muons with opposite charge and $\mathrm{M}_{\mathrm{Z}}-2 \Gamma<\mathrm{M}_{\mathrm{inv}}<\mathrm{M}_{\mathrm{Z}}+2 \Gamma$
- Approach for efficiency
- Full event method: apply trigger and selection to simulated events and calculate $\mathrm{N}_{\text {sel }} / \mathrm{N}_{\text {gen }}$ (validation is required)
- Single particle method: (see next slides)

Efficiency measurement - II

- Measure single muon efficiencies as a function of kinematics ($\mathrm{p}_{\mathrm{T}}, \eta, \ldots$); eventually perform the same "measurement" using simulated data.
- Tag \& Probe method: muon detection efficiency measured using an independent detector and using "correlated" events.
- Trigger efficiency using "pre-scaled" samples collected with a trigger having a lower threshold.
$\varepsilon_{\text {trigger }}=\frac{\# \mu-\text { triggered }}{\# \mu-\text { total }}$
T\&P: a "Tag Muon" in the MS and a "Probe" in the ID Tag+Probe Inv.Mass consistent With a Z boson
\rightarrow There should be a track in the MS

$$
\varepsilon_{T P}=\frac{\# \mu-\text { reco }}{\# \mu-\operatorname{expected}}
$$

Efficiency measurement - III

- Muon Efficiency - ATLAS experiment.
- As a function of η and p_{T} - comparison with simulation \rightarrow Scale Factors

Efficiency measurement - IV

- After that I have: $\varepsilon_{\mathrm{T}}\left(\mathrm{p}_{\mathrm{T}}, \eta, \ldots\right)$ and $\varepsilon_{\mathrm{S}}\left(\mathrm{p}_{\mathrm{T}}, \eta, \ldots\right)$
- From MC I get the expected kinematic distributions of the final state muons and I apply for each muon its efficiency depending on its p_{T} and η. The number of surviving events gives the efficiency for X
- Or I simply apply the scale factors to the MC fully simulated events to take into account data-MC differences.

Background measurement - I

- Based on simulations:
- define all possible background processes (with known cross-sections);
- apply trigger and selection to each simulated sample;
- determine the amount of background in the "signal region" after weighting with known cross-sections.
- Data-driven methods:
- "control regions" based on a different selection (e.g. sidebands);
- fit control region distributions with simulated distributions and get weigths;
- then export to "signal region" using "transfer-factors".
- Example: reducible background of H4l ATLAS analysis (next slides)

Background measurement - II

Table 3: Expected contribution of the $\ell \ell+\mu \mu$ background sources in each of the control regions.

	Control region			
Background	Inverted d_{0}	Inverted isolation	$e \mu+\mu \mu$	Same-sign
$Z b \bar{b}$	$32.8 \pm 0.5 \%$	$26.5 \pm 1.2 \%$	$0.3 \pm 1.2 \%$	$30.6 \pm 0.7 \%$
$Z+$ light-flavor jets	$9.2 \pm 1.3 \%$	$39.3 \pm 2.6 \%$	$0.0 \pm 0.8 \%$	$16.9 \pm 1.6 \%$
$t \bar{t}$	$58.0 \pm 0.9 \%$	$34.2 \pm 1.6 \%$	$99.7 \pm 1.0 \%$	$52.5 \pm 1.1 \%$

Reducible background yields for 4μ and $2 e 2 \mu$ in reference control region
$\quad Z b \bar{b} \quad Z+$ light-flavor jets Total $Z+$ jets $\quad t \bar{t}$

Control region	$Z b \bar{b}$	$Z+$ light-flavor jets	Total $Z+$ jets	$t \bar{t}$
Combined fit	159 ± 20	49 ± 10	208 ± 22	210 ± 12
Inverted impact parameter			206 ± 18	208 ± 23
Inverted isolation			210 ± 21	201 ± 24
$e \mu+\mu \mu$			-	201 ± 12
Same-sign dilepton			198 ± 20	196 ± 22

Extrapolate to "signal region" using transfer factors \rightarrow (see next slide)

Background measurement - III

Table 5: Estimates for the $\ell \ell+\mu \mu$ background in the signal region for the full $m_{4 \ell}$ mass range for the $\sqrt{s}=7 \mathrm{TeV}$ and $\sqrt{s}=8 \mathrm{TeV}$ data. The $Z+$ jets and $t \bar{t}$ background estimates are data-driven and the $W Z$ contribution is from simulation. The decomposition of the $Z+$ jets background in terms of the $Z b \bar{b}$ and the $Z+$ light-flavor-jets contributions is also provided.

Background	4μ	$2 e 2 \mu$
$\sqrt{s}=7 \mathrm{TeV}$		
$Z+$ jets	0.42 ± 0.21 (stat) ± 0.08 (syst)	0.29 ± 0.14 (stat) ± 0.05 (syst)
$t \bar{t}$	0.081 ± 0.016 (stat) ± 0.021 (syst)	0.056 ± 0.011 (stat) ± 0.015 (syst)
$W Z$ expectation	0.08 ± 0.05	0.19 ± 0.10
$Z+$ jets decomposition		
$Z b \bar{b}$	0.36 ± 0.19 (stat) ± 0.07 (syst)	0.25 ± 0.13 (stat) ± 0.05 (syst)
$Z+$ light-flavor jets	0.06 ± 0.08 (stat) ± 0.04 (syst)	0.04 ± 0.06 (stat) ± 0.02 (syst)
$\sqrt{s}=8 \mathrm{TeV}$		
$Z+$ jets	3.11 ± 0.46 (stat) ± 0.43 (syst)	2.58 ± 0.39 (stat) ± 0.43 (syst)
$t \bar{t}$	0.51 ± 0.03 (stat) ± 0.09 (syst)	0.48 ± 0.03 (stat) ± 0.08 (syst)
$W Z$ expectation	0.42 ± 0.07	0.44 ± 0.06
$Z+$ jets decomposition		
$Z b \bar{b}$	2.30 ± 0.26 (stat) ± 0.14 (syst)	2.01 ± 0.23 (stat) ± 0.13 (syst)
$Z+$ light-flavor jets	0.81 ± 0.38 (stat) ± 0.41 (syst)	0.57 ± 0.31 (stat) ± 0.41 (syst)

The "ABCD" factorization method

- Use two variables (var1 and var2) with these features:
- For the background they are completely independent
- The signal is localized in a region of the two variables
- Divide the plane in 4 boxes: the signal is on D only

For the background, due to the independence we have few relations:

$$
\begin{aligned}
& \mathrm{B} / \mathrm{D}=\mathrm{A} / \mathrm{C} \\
& \mathrm{~B} / \mathrm{A}=\mathrm{D} / \mathrm{C}
\end{aligned}
$$

So: If I count the background (in data) events in regions A, B and C I can extrapolate in the signal region D :

$$
\mathrm{D}=\mathrm{CB} / \mathrm{A}
$$

normalisation
region signal region

model regions

Luminosity measurement - I

- In order to get the luminosity we need to know the "crosssection" of a candle process:

$$
L=\frac{\dot{N}}{\sigma}
$$

- In $\mathrm{e}^{+} \mathrm{e}^{-}$experiments QED helps, since Bhabha scattering can be theoretically evaluated with high precision $(<1 \%)$.
- In pp experiment the situation is more difficult.
- Two-step procedure: continuous "relative luminosity" measurement through several monitors. Count the number of "inelastic interactions";
- time-to-time using the "Van der Meer" scan the absolute calibration is obtained by measuring the effective $\sigma_{\text {inel }}$.

Luminosity measurement - II

Van der Meer scan: Measurement of the rate of inelastic interactions as a function of the bunch horizontal and vertical separations:

$$
R(\delta x)=\int \rho_{1}(x, y) \rho_{2}(x+\delta x, y) d x d y \propto \exp \left(-\frac{x^{2}}{2 \Sigma_{x}^{2}}\right)
$$

\rightarrow Determine the transverse bunch dimensions Σ_{x}, Σ_{y} and the inelastic rate at 0 separation.
\rightarrow Using the known values of the number of protons per bunch from LHC monitors, one get the inelastic cross-section that provides the absolute normalization.

$$
\begin{aligned}
& L=n_{b} f \frac{N_{1} N_{2}}{4 \pi \Sigma_{x} \Sigma_{y}}=\frac{\dot{N}_{\text {inel }}}{\sigma_{\text {inel }}} \\
& \sigma_{\text {inel }}=\left(\frac{\dot{N}_{\text {inel }}^{0}}{n_{b} f}\right) \frac{4 \pi \Sigma_{x} \Sigma_{y}}{N_{1} N_{2}}
\end{aligned}
$$

Recap

- Let's remind at this point that our aim is to learn how to design an experiment.
- We have seen:
- Definition of the process we want to study
- Selection of the events correponding to this process
- Measurement of the quantities related to the process
- Other measurements related to the physics objects we are studying.
- Now, in order to really design an experiment we need:
- To see how projectiles and targets can be set-up
- To see how to put together different detectors to mesure what we need to measure

