Short introduction

In short which is the main purpose of the EEPP and few numbers that every experimental particle physicist should have in his/her hands.

Experimental Elementary Particle Physics

Introduction

- The "Question to Nature" in EPP: it is the quest for the "fundamental" aspects of the Nature: not single phenomena but the common grounds of all physics phenomena.
- Historical directions of the EPP:
 - Atomic physics → Nuclear Physics → Subnuclear Physics: the ∞ly small; Nature = point-like particles interacting through forces..
 - Look at the ∞ ly large: connections with cosmology, cosmic rays, etc..
 - Paradigm: unification of forces, theory of everything.
- What shall we do in this course ?
 - We concentrate on subnuclear physics and will select few experiments
 - We review some "basic statistics" and then will extend it to more "advanced" methods for data analysis EPP experiments

The EPP experiment

- Something present through all the 20° century and continuing in 21° : the best way to understand the elementary particles and how do they interact, is to send *projectiles* on *targets*, or, more generally, "to make things collide". And look at the *final state*: $a+b \rightarrow X$
- "Mother-experiment" (Rutherford): 3 main elements:
 - a projectile
 - a target
 - a detector
- Main rule: the higher the momentum *p* of the projectile, the smaller the size δ_x I am able to resolve. $\delta x \approx \frac{\hbar c}{pc} \Rightarrow \delta x(fm) \approx \frac{197}{p(MeV/c)}$

The scale: $\hbar c = 197 MeV \times fm$

• From Rutherford, a major line of approach to nuclear and nucleon structure using electrons as projectiles and different nuclei as targets.

The Rutherford experiment

7

Key elements in the Rutherford experiment – physical quantities

- Energy of the collision (driven by the kinetic energy of the α particles) the meaning of \sqrt{s}
- Beam Intensity (how many α particles /s)
- Size and density of the target (how many gold nuclei encountered by the α particles);
- Deflection angle θ
- Probability/frequency of a given final state (fraction of α particles scattered at an angle θ);
- **Detector efficiency** (do I see all scattered α particles ?)
- **Detector resolution** (how well do I measure θ ?)

Break: the Rutherford experiment only ?

- Actually more than the Rutherford experiment
- Particle Physics without beams
 - \rightarrow cosmic ray based experiments
 - In space
 - In Underground Laboratories
 - In DeepSea Detectors
 - \rightarrow Search for very rare or forbidden decays of ordinary matter
 - Mostly in underground detectors
- Examples during the course
- NOW: let's concentrate on EPP with beams

Energy: what is \sqrt{s} ?

- This is a fundamental quantity to define the "effective energy scale" you are probing your system. It is how much energy is available for each collision in your experiment.
- It is relativistically invariant.
- If the collision is $a+b \rightarrow X$

$$s = (\tilde{p}_{a} + \tilde{p}_{b})^{2} = M_{a}^{2} + M_{b}^{2} + 2\tilde{p}_{a} \bullet \tilde{p}_{b}$$
$$= M_{a}^{2} + M_{b}^{2} + 2[E_{a}E_{b} - \vec{p}_{a} \bullet \vec{p}_{b}]$$

- M_X cannot exceed \sqrt{s} .
- What about Rutherford experiment ? $a=\alpha$, b=Au, X=a+b $s = M_{\alpha}^{2} + M_{Au}^{2} + 2E_{\alpha}M_{Au} =$ $\sqrt{s} = 188.5 GeV$ Maybe Rutherford produced a Higgs ??

Experimental Elementary Particle Physics

Development along the years

- WARNING: Not only Rutherford: in the meantime EPP developed several other lines of approaches.
- More was found: It was seen that going up with the projectile momentum something unexpected happened: more particles and also new kinds of particles were "**created**".
- → high energy collisions allow to create and study a sort of "Super-World". The properties and the spectrum of these new particles can be compared to the theory of fundamental interactions (the Standard Model).
- Relation between projectile momentum and "creation" capability:
- \rightarrow Colliding beams are more effective in this "creation" program.
 - ep colliders (like HERA)
 - e⁺e⁻ storage rings
 - p-pbar or pp colliders

$$\sqrt{s} = \sqrt{M_1^2 + M_2^2 + 2E_1M_2} \approx \sqrt{2E_1M_2}$$

 $\sqrt{s} = 2\sqrt{E_1E_2}$

Units - I

- $\Delta E_k = q \Delta V$
- Joule "=" C×V in MKS
- Suppose we have an electron $q = e = 1.602 \times 10^{-19} \text{ C}$ and a $\Delta V = 1 \text{ V}$: $\Rightarrow \Delta E_k = 1.6 \times 10^{-19} \text{ J} = = 1 \text{ eV}$
- Particularly useful for a linear accelerator
 - Electrons are generated through cathodes by thermoionic effect;
 - Protons and ions are generated through ionization of atoms;
 - Role of "electric field": how many V/m can be provided ?
 - Present limit $\approx 30 \div 50 \text{ MV/m} (100 \text{ MV/m} \text{ CLIC})$
 - → 1 km for $30 \div 50$ GeV electrons !

Units - II

- Unit system
 - By posing **c** = **1**, **energy**, **momentum** and **mass** can all be expressed in terms of a single fundamental unit. All can be expressed using the eV.

$$E^{2} = (pc)^{2} + (mc^{2})^{2} - - > E^{2} = p^{2} + m^{2}$$

c=1 implies also the following dimensional equation:
[L] = [T]

Lengths and times have the same units

- Then we also pose ħ=1, this have implications on energy vs. l and t
 [E] = [L]⁻¹ = [T]⁻¹
 - \rightarrow time and length are (energy)⁻¹
- Numerically we need few conversion factors:
 - 1 MeV == 0.00506 fm^{-1} == 1.519 ns^{-1}

Energy scales

- In the following we try to see which scales of energy correspond to different phenomenologies. We consider equivalently space and energy scales (since we know it is somehow the same..)
- This quantity is one of the driving element to design HEP experiments: you need to know first of all at which energy you have to go.

Energy scales in the ∞ ly small - l

• Electromagnetic interactions have not a length scale

$$V = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r}$$

• $[V \times r] = [E][L] = [\hbar c] \rightarrow$ we can define an adimensional quantity α :

 $\frac{e^2}{4\pi\varepsilon_0\hbar c} = \alpha = \frac{(1.610^{-19}C)^2}{4\pi 8.8510^{-19}F/m1.0510^{-34}Js310^8m/s} = \frac{1}{137} = 0.0073$

• α sets the scale of the *intensity* of the electromagnetic interactions. In natural units ($\hbar = c = \varepsilon_0 = \mu_0 = 1$) *e* is also adimensional: $e = \sqrt{4\pi\alpha}$

Energy scales in the ∞ ly small - II

- Electromagnetic scales:
 - 1. Classical electron radius: The distance *r* of two equal test charges e such that the electrostatic energy is equal to the rest mass mc^2 of the charges

$$r_e = \frac{e^2}{4\pi\varepsilon_0 m_e c^2} = \frac{\alpha}{m_e} \frac{\hbar}{c} \rightarrow \frac{\alpha}{m}$$
 In natura

d units

• Electron Compton wavelength: which wavelength has a photon whose energy is equal to the electron rest mass.

$$\lambda_e = \frac{\hbar}{m_e c} = \frac{r_e}{\alpha} \longrightarrow \frac{1}{m_e}$$

• **Bohr radius**: radius of the hydrogen atom orbit

$$a_{\infty} = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2} = \frac{r_e}{\alpha^2} \to \frac{1}{\alpha m_e}$$

Energy scales in the ∞ ly small - III

• Weak interactions: Fermi theory introduces the constant G_F with dimensions [E]⁻² (making the theory non-renormalizable). In the electroweak theory G_F is:

$$\frac{G_F}{\sqrt{2}} = \frac{g_W^2}{8m_W^2}$$

- Where g_W is the "fundamental" adimensional coupling directly related to e through the Weinberg angle: $e = g_W \sin \theta_W$
- The "Electroweak scale" is the scale at which the electroweak unification is at work. By convention it is given by *v*, the Higgs vacuum expectation value:

$$v = \frac{1}{\sqrt{\sqrt{2}G_F}} = 246 GeV$$
 $r_{EW} \approx \sqrt{\sqrt{2}G_F} (\hbar c)$

Energy scales in the ∞ ly small - IV

Strong interaction: Yukawa potential

$$V(r) = \frac{g^2}{4\pi} \frac{1}{r} \exp(-\frac{r}{\lambda})$$

 λ is 1/m(pion)

• Strong Interaction scale: α_s depends on q². There is a natural scale given by the "confinement" scale, below which QCD predictions are not reliable anymore.

$$r_{QCD} = \frac{1}{\Lambda_{QCD}} \approx \left\langle r_{proton} \right\rangle$$

Energy scales in the ∞ ly small - V

• Gravitational Interaction scale: the "problem" of the gravity is that the coupling constant is not adimensional, to make it adimensional you have to multiply by m^2 . The adimensional quantity here is

 $\frac{Gm^2}{\hbar c}$

depending on the mass. For typical particle masses it is << 1. The mass for which it is equal to 1 is the "Planck Mass" M_{Planck} . λ_{Planck} is the "Planck scale" (Compton wavelength of a mass M_{Planck})

$$M_{Planck} = \sqrt{\frac{\hbar c}{G}} \quad \lambda_{Planck} = \sqrt{\frac{\hbar G}{c^3}}$$

 M_{planck} is $\approx 20 \ \mu g$, a "macroscopic" quantity.

Experimental Elementary Particle Physics

The Planck scale

- When you increase a mass
 - → you are reducing its Compton wavelength (that is the scale at which quantum effects are relevant)
 - → you increase the Schwarzschild radius (that is the radius of the event horizon of the black hole with that mass)
- The mass for which Compton wavelength = Schwarzschild radius is the Planck Mass → is the domain of the quantum gravity

Energy scales in the ∞ ly small - VI

 Grand Unification Scale. From the observation that weak, em and strong coupling constants are "running" coupling constants, if we plot them vs. q² we get:

Experimental Elementary Particle Physics Around 10¹⁶ GeV meeting point ??

Energy scales in the ∞ly small - Summary

quantity	value	Energy
Bohr radius	0.53×10 ⁻¹⁰ m (0.5 Å)	3.7 keV
Electron Compton wavelength	3.86×10 ⁻¹³ m (386 fm)	0.51 MeV
Electron classical radius	2.82×10 ⁻¹⁵ m (2.8 fm)	70 MeV
Proton radius – QCD confinement scale	0.82×10 ⁻¹⁵ m (0.8 fm)	240 MeV
Fermi scale	$7 \times 10^{-19} \mathrm{m}$	250 GeV
"New Physics" scale		1 TeV
GUT Scale		10 ¹⁶ GeV
Planck scale	$1.62 \times 10^{-35} \mathrm{m}$	$1.2 \times 10^{19} \text{GeV}$

The TeV scale is the maximum reachable with the present accelerator technology

Energy scales in the ∞ ly small - VII

- Why LHC is concentrate on the O(TeV) scale ?
- There is an intermediate scale around the TeV. It is motivated by the "naturalness" – "fine tuning" – "hierarchy" problem connected to the properties of the Higgs Mass. Mass parameter in the

 $\frac{g^2}{(4\pi)^2}M^2$

SM lagrangian

Quantum corrections

- The Higgs mass m_H is UV sensitive (its value depends on quantum corrections)

- *M* is the scale up to which we have the UV theory.

- If no other scale is there btw Higgs and Planck, $M = M_{Planck}$, so that strong cancellations are needed between $-2\mu^2$ and $g^2M^2/(4\pi)^2$ to give the observed Higgs Mass

- This is un-natural..

- If $M \approx O(\text{TeV})$ all becomes natural, e.g. MSSM, Technicolor, . . .

 $m_H^2 \sim (-2\mu^2)$ +

 $\Delta \gtrsim \left(\frac{m_{\rm NP}}{0.5\,{
m TeV}}
ight)^2$

More in detail

- m_H is the Higgs mass; μ is the Higgs "bare" mass (the parameter in the lagrangian). $m_H = \mu + RC$ " (radiative corrections due to fermion and boson loops). If "RC">> m_H it means that also $|\mu| > m_H$ and a cancellation btw RC and μ is needed.
- Structure of "RC". For every particle p in the loop it is = $g_p^2(\Lambda^2 + m_p^2)$. Λ is the "cut-off" of the integration, it is the next scale that nature gives to us.
- Supersymmetric solution. In "RC" N particle-antiparticle pairs with opposite sign couplings enter = $N_p g_p^2 (\Lambda^2 + m_p^2) - N_{antip} g_{antip}^2 (\Lambda^2 + m_{antip}^2) = N_p g_p^2 (m_p^2 - m_{antip}^2)$; Λ is cancelled

Probability/Frequency of a final state: the cross-section and the decay width

- The **cross-section** measures the "probability" of a given final state in a collision (actual definition will be in a later lecture). It is a [L]².
- The **decay width** and the **branching ratio** measure the "probability" of a given final state in a deca. The decay width is the inverse of the lifetime so that it is a [T]⁻¹. The branching ratio is an adimensional quantity
- If we include **cross-sections** and **decay widths**, we enter in the quantum field theories where the normalized Planck constant enters in the game.
- In the "natural system" the units are
 - **cross-section** is a $(length)^2$ so an $(energy)^{-2}$.
 - **decay width** is a (time)⁻¹ so an (energy)
 - 1 GeV⁻² = 3.88×10^{-4} barn

 $\hbar = c = 1$

Cross-section scales

 Relation between an experimental cross-section and the theory (same applies for branching ratios)

Two ingredients in the theory calculations:

 \rightarrow dynamics (amplitude from lagrangian, Feynman diagrams... mainly the coupling constants);

 \rightarrow phase space $d\phi$

NB: the integration on the phase space DEPENDS in general on the experiment details (accessible kinematic region) \rightarrow Montecarlo

Cross-section order of magnitude estimates

- Based on dimensional arguments and few numbers (neglects phase-space and more...)
 - Electromagnetic processes: $e^+e^- \rightarrow \mu^+\mu^-$, $\gamma\gamma$
 - Weak processes: νN scattering
 - Hadron strong interaction scattering: pp scattering

α	1/137	$\sigma(e^+e^- \rightarrow \mu^+\mu^- \nu\nu) \approx \frac{\alpha^2}{2}$	$S=(1 \text{ GeV})^2$	$S=(100 \text{ GeV})^2$
Gr	10 ⁻⁵ GeV ⁻²	$O(CC \mu \mu \gamma)^{1/2}$	20 nb	2 pb
r	1 fm	$\sigma(\nu e \to \nu e) \approx G_F^2 2m_e E_{\nu}$	40 fb	4 pb
		$\sigma(pp) \approx \pi r_p^2$	30 mb	30 mb
1 GeV ⁻²	3.88 ×10⁻⁴ b			

28

LifeTime (or Width) of a particle vs. theory

- As for the cross-section the value depends on two ingredients:
 - Decay type (weak, em, strong) through decay matrix element
 - Volume of the available phase space
- The Width Γ is an additive quantity: you have to add the *partial widths* of the single decays to get the *total width*
- Useful formulas: two-body decay phase-space (rest system)

$$\Gamma = \frac{1}{8\pi} \frac{p}{M^2} |\mathfrak{M}|^2.$$
 NB Dimensions: If Γ is [E] \Rightarrow |M| is also [E]
$$|\vec{p_1}| = |\vec{p_2}| = \frac{[(M^2 - (m_1 + m_2)^2)(M^2 - (m_1 - m_2)^2)]^{1/2}}{2M},$$

Experimental Elementary Particle Physics

Width (LifeTime) order of magnitude estimates

• The amplitude square has the dimensions of E^2 .

- Weak \rightarrow |Ampl|² \approx G_F² \times M⁶
- E.m. \rightarrow |Ampl|² $\approx \alpha^2 \times M^2$
- Strong \rightarrow |Ampl|² $\approx \alpha_s(M)^2 \times M^2$

• Examples of estimates (wrong by factor ≈10 maximum):

Interaction	Decay	Phase space (MeV ⁻¹)	Ampl ² (MeV ²)	Г (MeV)	τ (s)
Weak	$\pi^{\pm} \rightarrow \mu^{\pm} \nu$	6.0×10^{-5}	6.0×10^{-10}	3.6×10^{-14}	1.8×10^{-8} (2.6 × 10 ⁻⁸)
e.m.	π ⁰ → γγ	1.5×10^{-4}	0.97	1.4×10^{-4}	4.6×10^{-18} (8.5 × 10 ⁻¹⁷)
strong	$\rho^0 \rightarrow \pi^+ \pi^-$	2.4×10^{-5}	6.0×10^{5}	13 (150)	5.0×10^{-23}
30 Experime	ental Elementary Partic	le Physics			22/09/17

	Lifetime t	Width Γ
Weak decays		
K_{s}, K_{L}	$0.89564 \times 10^{-10} \mathrm{s}, 5.116 \times 10^{-8} \mathrm{s}$	
K^{\pm}	$1.2380 \times 10^{-8} \text{ s}$	
Λ	$2.632 \times 10^{-10} \mathrm{s}$	
B-hadrons	$\approx 10^{-12} \mathrm{s}$	
Muon	$2.2 \times 10^{-6} \mathrm{s}$	
Tau-lepton	$2.9 \times 10^{-13} \mathrm{s}$	
Top-quark	$\approx 5 \times 10^{-25} \mathrm{s}$	2 GeV
e.m. decays		
π^0	$8.52 \times 10^{-17} \mathrm{s}$	8 eV
η	$\approx 10^{-19} \mathrm{s}$	1.30 keV
Strong decays		
J/ψ		92.9 keV
Υ		54.02 keV
ρ		149.1 MeV
ω		8.49 MeV
φ		4.26 MeV
Δ		114 ÷ 120 MeV

Recap - fundamental interactions

- Electromagnetic interaction:
 - Can be studied at all energies with "moderate" cross-sections;
 - Above O(100 GeV) becomes electro-weak
- Weak interactions:
 - At low energies it can be studied using decays of "stable" particles large lifetimes and small cross-sections;
 - Above O(100 GeV) becomes electro-weak
- Strong interactions:
 - At low energy (below 1 GeV) "hadronic physics" based on confinement: no fundamental theory available by now
 - At high energies (above 1 GeV) QCD is a good theory: however since partons are not directly accessible, only "inclusive" quantities can be measured and compared to theory. Importance of simulations to relate partonic quantities to observables.

Comparison between beam possibilities

- Electrons:
 - Clean, point-like, fixed (almost) energy, but large irradiation due to the low mass. "Exclusive" studies are possible (all final state particles are reconstructed and a complete kinematic analysis can be done)
 - \rightarrow e⁺e⁻ colliders less for energy frontier, mostly for precision measurements
- Protons:
 - Bunch of partons with momentum spectrum, but low irradiation. "Inclusive" studies are possible. A complete kinematic analysis is in general not possible (only in the transverse plane it is to first approximation possible)
 - → highest energies are "easily" reachable, high luminosity are reachable but problems in the interpretation of the results; very "demanding" detectors and trigger systems.
- Anti-protons:
 - Difficult to obtain high intensities and high luminosity but no problems with energies, same problems of protons (bunch of partons)
- *p*-antip limited by luminosity, e⁺e[−] limited by energy BUT perfect for
 precision studies, pp good choice for energy frontier

Implications for experiments:

- You need high energy for
 - Probe electro-weak scales, get closer to higher scales
 - Enlarge the achieveble mass spectrum (particle discoveries)
- You need high beam intensity and large/dense targets or high efficiency detectors
 - To access low probability phenomena
- You need high resolution detectors
 - To improve particle discrimination especially for rare events.

Where do we stand now.

- The EW + QCD Standard Model allows to describe reasonably well most of the "high energy" > O(10 GeV) phenomena
- However:
 - The model is unsatisfactory under several points of view
 - Hierarchy / naturalness problem
 - Large number of unpredictable parameters
 - Left behind "ununderstood areas"
 - Strong interaction phenomena below O(1 GeV)
 - Hadron spectroscopy
 - No description / no space left for dark matter
 - Still not clear picture of neutrino dynamics
 - Of course gravitation is out...

End of the Introduction

- Present prospects of Elementary Particle experiments:
 - ENERGY frontier \rightarrow LHC, HL-LHC, ILC, TLEP,....
 - INTENSITY frontier \rightarrow flavour-factories, fixed target,...
 - SENSITIVITY frontier → detectors for dark matter, neutrinos,..
- The general idea is to measure quantities for which you have a clear prediction from the Standard Model, and a hint that a sizeable correction would be present in case of "New Physics".