The Logic of an EPP experiment

Go back to Rutherford and the logical steps of his experiment (slide 8)

Experimental Elementary Particle Physics

45

15/10/17

"Logic" of an EPP experiment - I

- Collision or decay: → process to look at
 - Initial state (proj. + target) OR (decaying particle);
 - Final state X = all particles produced
- Quadri-momentum conservation should always be at work
- In principle there is no need to measure ALL final state particles: a final state could be: $\rightarrow \mu^+\mu^- + X$ ("inclusive" search)
- Possible final states:
 - $a + b \rightarrow a + b$: elastic collision (e.g. pp \rightarrow pp)
 - $a + b \rightarrow X$: inelastic collision (e.g. $pp \rightarrow pp\pi^0$)
- The experimentalist should set-up an experimental procedure to select the final state he/she searches. First of all he should be able to count the number N_X of final states X.

Why count ? – I

- Why count ?
- Because QFT based models allow to predict quantities (like *cross-sections*, *decay widths* and *branching ratios*, see later) that are proportional to "*how probable is*" a given final state.

Why count ? – II

- Given a collision or a decaying particle you have several possibilities, several different final states.
- So: if I have produced N initial states (either a+b collisions or decaying particles), and out of them n times I observe the final state I am looking for, I can access this probability that should be $\approx n/N$
- Let me introduce the concept of **Event**:
 - The collection of all the particles of the final state from a single collision.
 - It is a collection of particles with their quadri-momenta.
 - Be careful not to overlap particles from different collisions.

Binomial or Poissonian ?

- *N* initial states prepared *n* final states observed \rightarrow inference on *p*. So binomial ?Yes BUT:
- *N* is not known exactly
- If N → ∞ and p → 0 → n follows a poissonian distribution (easy to prove)

Event: a "photo" of a collision/decay Exclusive Event: measure the electron only

15/10/17

"Logic" of an EPP experiment - II

- An *ideal detector* allows to measure the quadri-momentum of each particle involved in the reaction.
 - Direction of flight;
 - Energy *E* and/or momentum modulus | *p* | ;
 - Which particle is (e.g. from independent measurements of *E* and $|p|, m^2 = E^2 |p|^2$) \rightarrow Particle ID
- BUT for a *real detector*:
 - Not all quadri-momenta are measured: some particles are out of acceptance, or only some quantities are accessible, there are unavoidable **inefficiencies**;
 - Measurements are affected by **resolution**
 - Sometimes the particle nature is "confused"

"Logic" of an EPP experiment - III

• Selection steps:

1. TRIGGER SELECTION

- Retain only "interesting events": from bubble chambers to electronic detectors
- → "logic-electronic" eye: decides in a short time O(µs) if the event is interesting or not.
- In some cases (e.g. pp), it is crucial since interactions are so probable...
- LHC: every 25 ns is a bunch crossing giving rise to interactions: can I write 40 MHz on "tape"? A tipical event has a size of 1 MB → 40 TB/s. Is it conceivable? And how many CPU will be needed to analyze these data? At LHC from 40 MHz to 200 Hz ! Only one bunch crossing every 200000 !
- "pre-scale" is an option
- e⁺e⁻: the situation is less severe but a trigger is in any case necessary.

"Logic" of an EPP experiment - IV

- 2. **EVENT RECONSTRUCTION**: Once you have the final event sample, for each trigger you need to reconstruct at your best the kinematic variables.
- **3. OFFLINE SELECTION**: choice of a set of discriminating variables on which apply one of the following:
 - cut-based selection
 - discriminating variables selection
 - multivariate classifier selection

4. **PHYSICS ANALYSIS**: analysis of the sample of *CANDIDATES*

The selection strategy is a crucial part of the experimentalist work: defined and optimized using *simulated data samples*.

"Logic" of an EPP experiment - V

- Simulated samples of events: the Montecarlo.
 - "Physics" simulation: final state with correct kinematic distributions; also dynamics in some cases is relevant.
 - "Detector" simulation: the particles are traced through the detector, interactions, decays, are simulated.
 - "Digitization": based on the particle interactions with the detector, signals are simulated with the same features of the data.
- → For every interesting final state MC samples with the same format of a data sample are built. These samples can be analyzed with the same program. In principle one could run on a sample without knowing if it is data or MC.
- To design a "selection" strategy for a given searched signal one needs: *signal MC samples* and *background MC samples*.

"Logic" of an EPP experiment - VI

- End of the selection: CANDIDATES sample *N*_{cand}
- Which relation is there between N_{cand} and N_X ?
 - *Efficiency*: not all searched final states are selected and go to the candidates sample.(Trigger efficiencies are particularly delicate to treat.) Efficiency includes also the **acceptance**.
 - **Background**: few other final states are faking good ones and go in the candidates sample.

$$\varepsilon N_X = N_{cand} - N_b$$

• where:

- $\varepsilon = \text{efficiency} \ (0 < \varepsilon < 1); \ \varepsilon = A \times \varepsilon_d$
- N_b = number of background events
- Estimate ε and N_b is a crucial work for the experimentalist and can be done either using simulation (this is tipically done before the experiment and updated later) or using data themselves.

Quantities to measure

- In order to estimate N_X we need to measure:
 - N_{cand}
 - E
 - N_b
- We already know that each of these variables have a fluctuation model:
 - N_{cand} is described by a Poisson process
 - ε is described by a Bernoulli process
 - N_b ??

N_{cand}: a Poisson variable

- If events come in a random way (without any time structure) the event count *N* is a Poisson variable.
- \rightarrow if I count N, the best estimate of λ is N itself (or better N +1) and the uncertainty is \sqrt{N} (see previous lectures)
- If N is large enough (N>20) Poisson \rightarrow Gaussian. $\rightarrow N \pm \sqrt{N}$ is a 68% probability interval for N.
- If *N* is small (close to 0) the Gaussian limit is not ok, a specific treatment is required (see later in the course).

Efficiency: a binomial variable - I

• Bernoulli process: success/failure N proofs, 0 < n < N, p = success probability. $p == \varepsilon$

$$P(n / N, p) = \binom{N}{n} p^n (1 - p)^{N - n}$$
$$E[n] = Np$$
$$var[n] = Np(1 - p)$$

• Inference: given n and N which is the best estimate of p? And its uncertainty ? *(see previous lectures)*

$$\begin{split} \varepsilon &= \hat{p} = \frac{n+1}{N+2} \\ \sigma \left(\varepsilon \right) &= \frac{\sigma \left(n \right)}{N} = \frac{1}{\sqrt{N+2}} \sqrt{\hat{p}(1-\hat{p})} \end{split}$$

Experimental Elementary Particle Physics

15/10/17

Efficiency: a binomial variable - II

- How measure it ?
 - From data: Sample of *N* true particles and I measure how many, out of these give rise to a signal in my detector
 - From MC: I generate N_{gen} "signal" events. If I select N_{sel} of these events out of N_{gen} , the efficiency is (assume N_{gen} and N_{sel} large numbers):

$$\varepsilon = \frac{N_{sel}}{N_{gen}}$$

$$\sigma(\varepsilon) = \frac{\sigma(N_{sel})}{N_{gen}} = \frac{1}{\sqrt{N_{gen}}} \sqrt{\frac{N_{sel}}{N_{gen}}} \left(1 - \frac{N_{sel}}{N_{gen}}\right)$$

15/10/17

Background N_b

- Simulation of N_{gen} "bad final states"; N_{sel} are selected. What about N_b ?
- We define the "rejection factor" $R = N_{gen} / N_{sel} > 1$
- We also need a correct normalization in this case: we need to know N_{exp} = total number of expected "bad final states" in our sample (N_{exp} related to luminosity and cross-section).

$$\begin{split} N_b &= N_{sel} \frac{N_{exp}}{N_{gen}} = \frac{N_{exp}}{R} \\ \sigma(N_b) &= \sigma(N_{sel}) \frac{N_{exp}}{N_{gen}} = \sqrt{N_{sel}} \frac{N_{exp}}{N_{gen}} = \frac{N_{exp}}{\sqrt{RN_{gen}}} \end{split}$$

Statistical Errors

- In alla cases there is an unreducible error on N_X given by limited statistics. It is a random error, coming from the procedure of "sampling" that is intrinsic in our experiments.
- In all cases increasing the statistics, the error decreases

$$\frac{\sigma(N_{cand})}{N_{cand}} = \frac{1}{\sqrt{N_{cand}}}$$
$$\sigma(\varepsilon) \approx \frac{1}{\sqrt{N_{gen}}}$$
$$\sigma(N_b) \approx \frac{1}{\sqrt{N_{gen}}}$$

Summarizing

- N_{cand} : poissonian process \rightarrow the higher the better
- $\boldsymbol{\varepsilon}$: binomial process \rightarrow high N_{gen} and high $\boldsymbol{\varepsilon}$
- N_b : normalized \approx poissonian process \Rightarrow high *R* and high N_{gen} , low N_{exp}
- Moreover: unfortunately efficiency and background cannot be both improved simultaneously...

Efficiency vs. background

15/10/17

Efficiency-background relation

Combining uncertainties

- Given the uncertainties on N_{cand} , \mathcal{E} and N_b , how can we estimate the uncertainty on N_X ?
- Uncertainty Propagation. General formulation (see proof on blackboard)

$$\left(\frac{\sigma(N_X)}{N_X}\right)^2 = \left(\frac{\sigma(\varepsilon)}{\varepsilon}\right)^2 + \frac{\sigma^2(N_{cand}) + \sigma^2(N_b)}{\left(N_{cand} - N_b\right)^2}$$

Assumption: three indipendent contributions NB: if $N_{cand} \approx N_b$ the relative uncertainty becomes very large (the Formula cannot be applied anymore... Can we say we have really observed a signal ???

Or we are simply observing some fluctuation of the background ?

Have we really observed the final state X ? - I

- We need a criterium to say ok, we have seen the signal or our data are compatible with the background.
- Which statistical uncertainty have we on N_X ?
 - Assume a Poisson statistics to describe N_{cand} negligible uncertainty on \mathcal{E} . We call (using more "popular" symbols):
 - $N = N_{cand}$ • $B = N_b$ • S = N - B $\begin{pmatrix} \sigma(N_X) \\ N_X \end{pmatrix}^2 = \frac{\sigma^2(N) + \sigma^2(B)}{S^2} = \frac{N + \sigma^2(B)}{S^2}$ • $\frac{N_X}{\sigma(N_X)} = \frac{S}{\sigma(S)} = \frac{S}{\sqrt{N + \sigma^2(B)}} = \frac{S}{\sqrt{S + B}}$

Additional assumption: $\sigma^2(B) \le N$ $\sigma(S)/S$ is the relative uncertainty on S, its inverse is "how many st.devs. away from 0" $\rightarrow S/\sqrt{B}$ when low signals on top of large bck

Have we really observed the final state X ? - II

- This quantity is the "significativity" of the signal. The higher is $S/\sigma(S) = S/\sqrt{S+B}$, the larger is the number of std.dev. away from 0 of my measurement of S
 - $S/\sqrt{S+B} < 3$ probably I have not osserved any signal (my candidates can be simply a fluctuation of the background)
 - $3 < S/\sqrt{S+B} < 5$ probably I have observed a signal (probability of a background fluctuation very small), however no definite conclusion, more data needed. \rightarrow *evidence*

• $S/\sqrt{S+B} > 5$ observation is accepted. \rightarrow observation

- NB1: All this is "conventional" it can be discussed
- NB2: $S/\sqrt{S+B}$ is an approximate figure, it relies on some assumptions (*see previous slide*).

How to optimize a selection ? - I

- The perfect selection is the one with
 - *ε* = 1
 - $N_b = 0$
- Intermediate situations ? Assume a given $\boldsymbol{\varepsilon}$ and a given N_b .

$$N_X = \frac{N_{cand} - N_b}{\varepsilon}$$

- By moving the cut we change each single ingredient. We want to see for which choice of the cut we get the lower statistical error on N_X .
 - Again: if we assume a Poisson statistics to describe N_{cand} , negligible uncertainty on \mathcal{E} and on N_b we have to minimize the uncertainty on $S=N_{cand}-N_b$
 - S/sqrt(S+B) ≈ S/sqrt(B) is the good choice: the higher it is the higher is our sensitivity to the final state X. It is the "score function".

Normalization

- In order to get quantities that can be compared with theory, once we have found a given final state and estimated N_X with its uncertainty we need to normalize to "how many collisions" took place.
- Measurement of:
 - Luminosity (in case of colliding beam experiments);
 - Number of decaying particles (in case I want to study a decay);
 - Projectile rate and target densities (in case of a fixed target experiements).
- Several techniques to do that, all introducing additional uncertainties (discussed later in the course).
- *Absolute* vs. *Relative* measurements.

The simplest case: rate measurement

• Rate: r = counts / unit time (normally given in Hz). We count *N* in a time Δt (neglect any possible background) and assume a Poisson process with mean λ

$$r = \frac{\lambda}{\Delta t} = \frac{N}{\Delta t} \pm \frac{\sqrt{N}}{\Delta t}$$

• NB: the higher is *N*, the larger is the absolute uncertainty on *r* but the lower the relative uncertainty.

$$\frac{\sigma(r)}{r} = \frac{1}{\sqrt{N}}$$

• Only for large N ($N \ge 20$) it is a 68% probability interval.

Cosmic ray "absolute" flux

- Rate in events/unit surface and time
- My detector has a surface *S*, I take data for a time Δt with a detector that has an efficiency ε and I count *N* events (again with no background). The absolute rate *r* is:

$$r = \frac{N}{\varepsilon \Delta t S}$$

• Uncertainty: I combine "in quadrature" all the potential uncertainties.

$$\frac{\sigma(r)}{r} = \sqrt{\frac{1}{N} + \left(\frac{\sigma(\varepsilon)}{\varepsilon}\right)^2 + \left(\frac{\sigma(\Delta t)}{\Delta t}\right)^2 + \left(\frac{\sigma(S)}{S}\right)^2}$$

• Distinction between "*statistical*" and "*systematic*" uncertainty

Combination of uncertainties

• Back to the previous formula.

$$\frac{\sigma(r)}{r} = \sqrt{\frac{1}{N} + \left(\frac{\sigma(\varepsilon)}{\varepsilon}\right)^2 + \left(\frac{\sigma(\Delta t)}{\Delta t}\right)^2 + \left(\frac{\sigma(S)}{S}\right)^2}$$

- 1. Suppose we have a certain "unreducible" uncertainty on S and/or on $\boldsymbol{\varepsilon}$ (the uncertainty on Δt we assume is anyhow negligible..). Is it useful to go on to take data ? Or there is a limit above which it is no more useful to go on ?
- 2. Suppose that we have a limited amount of time to take data N is fixed: is it useful to improve our knowledge on $\boldsymbol{\varepsilon}$?

Not only event counting

- Once the candidate sample is obtained many quantities can be measured (particle properties, e.g. particle mass).
- BUT in most cases they are obtained from a FIT to a data distribution. So, you divide events in bins and extract the quantity as a *fit parameter* → the event counting is still one major source of uncertainty → the uncertainty on the parameter depends on the statistics ≈ √N_i.
- Example:
 - Measure the mass of a "imaginary" particle of M=5 GeV.
 - Mass spectrum, gaussian peak over a uniform background
 - FIT in three different cases: 10^3 , 10^4 and 10^5 events selected

Mass uncertainty due to statistics

Observations:

→ Poissonian uncertainty on each bin
→ Reduce bin size for higher statistics
→ Fit function = A+B*Gauss(M)
→ Free parameters: A,B,M (fixed width)
→ The fit is good for each statistics

Results

N=10³ events:
Mass = 5.22±0.22 GeV,
$$\chi^2$$
 = 28 / 18 dof
N=10⁴ events:
Mass = 5.01±0.06 GeV, χ^2 = 38 / 48 dof
N=10⁵ events:
Mass = 5.02±0.02 GeV, χ^2 = 83 / 98 dof

Where could be a systematic uncertainty here ?

- Absolute mass scale: this can be measured using a candle of known mass. Not always it is available. e.g. Z for the Higgs mass at the LHC.
- Mass resolution: in most cases the width of the peak is given by the experimental resolution that sometimes is not perfectly gaussian, giving rise to possible distortion to the curve.
- Physics effects: knowledge of the line-shape, interference with the background...
- In general: $M = central value \pm stat.uncert. \pm syst.uncert.$

Uncertainty combination

central value ± stat.uncert. ± syst.uncert.

Can we combine stat. and syst. ? If yes how ?

The two uncertainties might have different probability meaning: typically one is a gaussian 68% C.L., the other is a "maximum" uncertainty, so in general it is better to hold them separate.

If needed better to add in quadrature rather than linearly.

Summarizing

- Steps of an EPP experiment (assuming the accelerator and the detector are there):
 - Design of a **trigger**
 - Definition of an offline selection
 - Event counting and normalization (including efficiency and **background** evaluation)
 - Fit of "candidate" distributions
- **Uncertainties**
 - Statistical due to Poisson fluctuations of the event counting
 - Statistical due to binomial fluctuations in the efficiency measurement
 - Systematic due to non perfect knowledge of detector effects.

