
The Logic of an EPP experiment 
Go back to Rutherford and the logical steps of his experiment  
(slide 8) 
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“Logic” of an EPP experiment - I 
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�  Collision or decay: è process to look at 
�  Initial state (proj. + target) OR (decaying particle); 
�  Final state X = all particles produced 

�  Quadri-momentum conservation should always be at work 
�  In principle there is no need to measure ALL final state particles: a 

final state could be: à µ+µ- + X (“inclusive” search) 
�  Possible final states: 

�  a + b à a + b : elastic collision (e.g. ppà pp) 
�  a + b à X : inelastic collision (e.g. ppàppπ0) 

�  The experimentalist should set-up an experimental procedure to 
select the final state he/she searches. First of all he should be able 
to count the number NX of final states X. 



Why count ? – I  
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�  Why count  ? 
�  Because QFT based models allow to predict quantities (like 

cross-sections, decay widths  and branching ratios, see 
later) that are proportional to “how probable is” a given final 
state. 

Example of collision: 
X == q qbar g 

Example of decay: 
X == e νe νµ	



Why count ? – II  
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�  Given a collision or a decaying particle you have several 
possibilities, several different final states. 

�  So: if I have produced N initial states (either a+b collisions or 
decaying particles), and out of them n times I observe the 
final state I am looking for, I can access this probability that 
should be ≈ n/N 

�  Let me introduce the concept of Event: 
� The collection of all the particles of the final state from a single 

collision. 
�  It is a collection of particles with their quadri-momenta. 
�  Be careful not to overlap particles from different collisions. 



Binomial or Poissonian ? 
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�  N initial states prepared n final states observed à inference 
on p. So binomial ? Yes BUT: 

�  N is not known exactly  
�  If N à ∞ and p à 0 è n follows a poissonian 

distribution (easy to prove) 



Event: a “photo” of a collision/decay 
Inclusive Event: measure 
the electron only 

Exclusive Event: measure 
all particles to “close” the 
kinematics 
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“Logic” of an EPP experiment - II 
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�  An ideal detector allows to measure the quadri-momentum 
of each particle involved in the reaction. 
� Direction of flight; 
�  Energy E and/or momentum modulus|p|; 
� Which particle is (e.g. from independent measurements of E 

and |p|, m2=E2-|p|2) è Particle ID 
�  BUT for a real detector: 

� Not all quadri-momenta are measured: some particles are out 
of acceptance, or only some quantities are accessible, there are 
unavoidable inefficiencies; 

� Measurements are affected by resolution 
�  Sometimes the particle nature is “confused” 



“Logic” of an EPP experiment - III 
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�  Selection steps: 
1.  TRIGGER SELECTION 

�  Retain only “interesting events”: from bubble chambers to electronic 
detectors 

�  è “logic-electronic” eye: decides in a short time O(µs) if the event is 
interesting or not. 

�  In some cases (e.g. pp), it is crucial since interactions are so probable… 
�  LHC: every 25 ns is a bunch crossing giving rise to interactions: can I 

write 40 MHz on “tape” ? A tipical event has a size of 1 MB è 40 TB/s. Is 
it conceivable ? And how many CPU will be needed to analyze these data ? 
At LHC from 40 MHz to 200 Hz ! Only one bunch crossing every 
200000 ! 

�  “pre-scale” is an option 
�   e+e-: the situation is less severe but a trigger is in any case necessary.  



“Logic” of an EPP experiment - IV 
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2.  EVENT RECONSTRUCTION: Once you have the final 
event sample, for each trigger you need to reconstruct at your 
best the kinematic variables. 

3.  OFFLINE SELECTION: choice of a set of discriminating 
variables on which apply one of the following: 

�  cut-based selection 
�  discriminating variables selection 
�  multivariate classifier selection 

4.    PHYSICS ANALYSIS: analysis of the sample of      
 CANDIDATES 

The selection strategy is a crucial part of the experimentalist 
work: defined and optimized using simulated data samples. 



“Logic” of an EPP experiment - V 
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�  Simulated samples of events: the Montecarlo. 
�  “Physics” simulation: final state with correct kinematic distributions; 

also dynamics in some cases is relevant. 
�  “Detector” simulation: the particles are traced through the detector, 

interactions, decays, are simulated. 
�  “Digitization”: based on the particle interactions with the detector, 

signals are simulated with the same features of the data. 
�  è For every interesting final state MC samples with the same 

format of a data sample are built. These samples can be analyzed 
with the same program. In principle one could run on a sample 
without knowing if it is data or MC. 

�  To design a “selection” strategy for a given searched signal one 
needs: signal MC samples and background MC samples. 



“Logic” of an EPP experiment - VI 
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�  End of the selection: CANDIDATES sample Ncand 

�  Which relation is there between Ncand and NX ? 
�  Efficiency: not all searched final states are selected and go to the candidates 

sample.(Trigger efficiencies are particularly delicate to treat.) Efficiency 
includes also the acceptance. 

�  Background: few other final states are faking good ones and go in the 
candidates sample. 

�  where:  
�  ε = efficiency (0<ε<1); ε  = A × εd 
�  Nb = number of background events 

�  Estimate ε and Nb is a crucial work for the experimentalist and can be 
done either using simulation (this is tipically done before the experiment 
and updated later) or using data themselves. 

 

€ 

εNX = Ncand − Nb



Quantities to measure 
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�  In order to estimate NX we need to measure: 
� Ncand 

�  ε	
� Nb 

�  We already know that each of these variables have a 
fluctuation model: 
� Ncand  is described by a Poisson process 
�  ε is described by a Bernoulli process 
� Nb ?? 



Ncand: a Poisson variable 
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�  If events come in a random way (without any time structure) 
the event count N is a Poisson variable. 

� è if I count N, the best estimate of λ is N itself ( or better N
+1) and the uncertainty is √N (see previous lectures) 

�  If N is large enough (N>20) Poisson à Gaussian. è N±√N 
is a 68% probability interval for N. 

�  If N is small (close to 0) the Gaussian limit is not ok, a 
specific treatment is required (see later in the course). 



Efficiency: a binomial variable - I 
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�  Bernoulli process: success/failure N proofs, 0<n<N, p = 
success probability. p == ε	

P(n / N, p) = (n
N )pn (1− p)N−n

E n[ ] = Np
var n[ ] = Np(1− p)

•  Inference: given n and N which is the best estimate of p ?  
And its uncertainty ? (see previous lectures) 

ε = p̂ = n+1
N + 2

σ ε( ) =
σ n( )
N

=
1
N + 2

p̂(1− p̂)



Efficiency: a binomial variable - II 
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�  How measure it ? 
�  From data: Sample of N true particles and I measure how many, 

out of these give rise to a signal in my detector 
�  From MC: I generate Ngen “signal” events. If I select Nsel of these 

events out of Ngen, the efficiency is (assume Ngen and Nsel large 
numbers):	

ε =
Nsel

Ngen

σ ε( ) =
σ Nsel( )
Ngen

=
1
Ngen

Nsel

Ngen

1− Nsel

Ngen
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Background Nb  
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�  Simulation of Ngen “bad final states”; Nsel are selected. What 
about Nb ?  

�  We define the “rejection factor” R = Ngen/Nsel > 1 
�  We also need a correct normalization in this case: we need to 

know Nexp = total number of expected “bad final states” in 
our sample (Nexp related to luminosity and cross-section).  

Nb = Nsel
Nexp

Ngen

=
Nexp

R

σ (Nb ) =σ (Nsel )
Nexp

Ngen

= Nsel
Nexp

Ngen

=
Nexp

RNgen



Statistical Errors 
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�  In alla cases there is an unreducible error on NX given by 
limited statistics. It is a random error, coming from the 
procedure of “sampling” that is intrinsic in our experiments. 

�  In all cases increasing the statistics, the error decreases 

σ (Ncand )
Ncand

=
1
Ncand

σ (ε) ≈ 1
Ngen

σ (Nb ) ≈
1
Ngen



Summarizing 
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�  Ncand: poissonian process è the higher the better 
�  ε: binomial process è high Ngen and high ε	
�  Nb: normalized ≈poissonian process è high R and high Ngen, 

low Nexp 

�  Moreover: unfortunately efficiency and background cannot 
be both improved simultaneously… 



Efficiency vs. background 
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MC signal events 

MC background events 

The Cut 

What happens if I move the cut ? 



Efficiency-background relation 
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Example: selection of b-jets in ATLAS. 
 “b-jet” is the signal; 
 “light jet” is the background. 

MC samples of b-jets and light-jets 
Application of 5 different selection recipes 
each with a “free-parameter”. 
For each point I evaluate  

 - b-jet efficiency  
  = Nsel/Ngen (b-jet sample) 
 - light-jet rejection  
  = Ngen/Nsel (light-jet sample) 

 
Choice of a working point, “compromise”. 
Unlucky situation: if you gain in efficiency you increase your bckg and viceversa… 



Combining uncertainties 
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�  Given the uncertainties on Ncand, ε and Nb, how can we 
estimate the uncertainty on NX ? 

� è Uncertainty Propagation. General formulation (see proof 
on blackboard) 

 σ (NX )
NX
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=
σ (ε)
ε

!
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2

+
σ 2 (Ncand )+σ

2 (Nb )
(Ncand − Nb )

2

Assumption: three indipendent contributions 
NB:  if Ncand ≈  Nb the relative uncertainty becomes very large (the  
Formula cannot be applied anymore…  
Can we say we have really observed a signal ???  
Or we are simply observing some fluctuation of the background ? 



Have we really observed the final state 
X ? - I 

15/10/17 Experimental Elementary Particle Physics 66 

�  We need a criterium to say ok, we have seen the signal or our 
data are compatible with the background. 

�  Which statistical uncertainty have we on NX ?  
� Assume a Poisson statistics to describe Ncand negligible 

uncertainty on ε. We call (using more “popular” symbols): 

� N = Ncand 

�  B =Nb  
�  S=N-B 

 Additional assumption: σ2(B)<< N 
σ(S)/S is the relative uncertainty on S, its inverse is “how many 
st.devs. away from 0” à S/√B when low signals on top of large bck 
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NX
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Have we really observed the final state 
X ? - II 
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�  This quantity is the “significativity” of the signal. The higher is 
S/σ(S) = S/√S+B , the larger is the number of std.dev. away 
from 0 of my measurement of S  
�   S/√S+B < 3 probably I have not osserved any signal (my 

candidates can be simply a fluctuation of the background) 
�  3 <S/√S+B< 5  probably I have observed a signal (probability 

of a background fluctuation very small), however no definite 
conclusion, more data needed.è evidence 

�  S/√S+B> 5 observation is accepted. è observation 
�  NB1: All this is “conventional” it can be discussed 
�  NB2: S/√S+B is an approximate figure, it relies on some 

assumptions (see previous slide).  



How to optimize a selection ? - I 
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�  The perfect selection is the one with  
�  ε = 1 
�  Nb = 0 

�  Intermediate situations ? Assume a given ε and a given Nb.  
 
 
�  By moving the cut we change each single ingredient. We want to 

see for which choice of the cut we get the lower statistical error 
on NX. 
�  Again: if we assume a Poisson statistics to describe Ncand , negligible 

uncertainty on ε and on Nb we have to minimize the uncertainty on 
S=Ncand-Nb  

�  S/sqrt(S+B) ≈ S/sqrt(B) is the good choice: the higher it is the 
higher is our sensitivity to the final state X. It is the “score function”. 

€ 

NX =
Ncand − Nb

ε



Example - I 
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B=10000 
σx (B) = 15 
S=3000 
σx(S) = 5 
 



Example - II 
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B=10000 
σx (B) = 15 
S=200 
σx(S) = 5 
 



Example - III 
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B=10000 
σx (B) = 15 
S=200 
σx(S) = 1 
 



Normalization 
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�  In order to get quantities that can be compared with theory, once 
we have found a given final state and estimated NX with its 
uncertainty we need to normalize to “how many collisions” took 
place. 

�  Measurement of: 
�  Luminosity (in case of colliding beam experiments); 
�  Number of decaying particles (in case I want to study a decay); 
�  Projectile rate and target densities (in case of a fixed target 

experiements). 
�  Several techniques to do that, all introducing additional 

uncertainties (discussed later in the course). 
�  Absolute vs. Relative measurements. 



The simplest case: rate measurement 
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�  Rate: r = counts /unit time (normally given in Hz). We 
count N in a time Δt (neglect any possible background) and 
assume a Poisson process with mean λ  

�  NB: the higher is N, the larger is the absolute uncertainty on 
r but the lower the relative uncertainty. 

 
�  Only for large N (N>20) it is a 68% probability interval. 

r = λ
Δt

=
N
Δt
±

N
Δt

σ (r)
r

=
1
N



Cosmic ray “absolute” flux 
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�  Rate in events/unit surface and time 
�  My detector has a surface S, I take data for a time Δt with a 

detector that has an efficiency ε  and I count N events (again with 
no background). The absolute rate r is: 

�  Uncertainty: I combine “in quadrature” all the potential 
uncertainties.  

�  Distinction between “statistical” and “systematic” uncertainty 

r = N
εΔtS
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Combination of uncertainties 
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�  Back to the previous formula. 

1.  Suppose we have a certain “unreducible” uncertainty on S 
and/or on ε (the uncertainty on Δt we assume is anyhow 
negligible..). Is it useful to go on to take data ? Or there is a 
limit above which it is no more useful to go on ? 

2.  Suppose that we have a limited amount of time to take data 
N is fixed: is it useful to improve our knowledge on ε ? 
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Not only event counting 
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�  Once the candidate sample is obtained many quantities can 
be measured (particle properties, e.g. particle mass). 

�  BUT in most cases they are obtained from a FIT to a data 
distribution. So, you divide events in bins and extract the 
quantity as a fit parameter è the event counting is still one 
major source of uncertainty è the uncertainty on the 
parameter depends on the statistics ≈ √Ni. 

�  Example: 
� Measure the mass of a “imaginary” particle of M=5 GeV. 
� Mass spectrum, gaussian peak over a uniform background 
�  FIT in three different cases: 103, 104 and 105 events selected 



Mass uncertainty  
due to statistics 
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Observations: 
 à Poissonian uncertainty on each bin 
 à Reduce bin size for higher statistics 
 à Fit function = A+B*Gauss(M) 
 à Free parameters: A,B,M (fixed width) 
 à The fit is good for each statistics 

Results 
    N=103 events:  
 Mass = 5.22±0.22 GeV,  χ2 =  28 / 18 dof 
    N=104 events:  
 Mass = 5.01±0.06 GeV,  χ2 =  38 / 48 dof 
    N=105 events:  
 Mass = 5.02±0.02 GeV,  χ2 =  83 / 98 dof 

Ev
en

ts
 

Mass (GeV) 

20 bins 

50 bins 

100 bins 



Where could be a systematic 
uncertainty here ? 
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�  Absolute mass scale: this can be measured using a candle of 
known mass. Not always it is available. e.g. Z for the Higgs 
mass at the LHC. 

�  Mass resolution: in most cases the width of the peak is given 
by the experimental resolution that sometimes is not 
perfectly gaussian, giving rise to possible distortion to the 
curve. 

�  Physics effects: knowledge of the line-shape, interference 
with the background… 

�  In general: M = central value ± stat.uncert. ± syst.uncert. 



Uncertainty combination 
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 central value ± stat.uncert. ± syst.uncert. 
Can we combine stat. and syst. ? If yes how ? 
The two uncertainties might have different probability 
meaning: typically one is a gaussian 68% C.L., the other is a 
“maximum” uncertainty, so in general it is better to hold them 
separate. 
If needed better to add in quadrature rather than linearly. 



Summarizing 
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�  Steps of an EPP experiment (assuming the accelerator and 
the detector are there): 
� Design of a trigger  
� Definition of an offline selection 
�  Event counting and normalization (including efficiency 

and background evaluation) 
�  Fit of “candidate” distributions 

�  Uncertainties 
�  Statistical due to Poisson fluctuations of the event counting 
�  Statistical due to binomial fluctuations in the efficiency 

measurement 
�  Systematic due to non perfect knowledge of detector effects. 


