The projectiles and the targets: cosmic rays, particle accelerators

Cosmic Rays - I

Distinction between "primary" and "secondary" cosmic rays. Primaries are: protons, light Nuclei and γ . (+ others like electrons/positrons...)

Table 28.1: Relative abundances F of cosmic-ray nuclei at 10.6 GeV/nucleon normalized to oxygen ($\equiv 1$) [7]. The oxygen flux at kinetic energy of 10.6 GeV/nucleon is 3.29×10^{-2} (m² s sr GeV/nucleon)⁻¹. Abundances of hydrogen and helium are from Refs. [3,4]. Note that one can not use these values to extend the cosmic-ray flux to high energy because the power law indicies for each element may differ slightly.

Element	F	Z	Element	F
Н	540	13 - 14	Al-Si	0.19
He	26	15 - 16	P-S	0.03
Li-B	0.40	17 - 18	Cl-Ar	0.01
C-O	2.20	19 - 20	K-Ca	0.02
F-Ne	0.30	21 - 25	Sc-Mn	0.05
Na-Mg	0.22	26 - 28	Fe-Ni	0.12
	Element H Li-B C-O F-Ne Na-Mg	Element F H 540 He 26 Li-B 0.40 C-O 2.20 F-Ne 0.30 Na-Mg 0.22	Element F Z H 540 13–14 He 26 15–16 Li-B 0.40 17–18 C-O 2.20 19–20 F-Ne 0.30 21–25 Na-Mg 0.22 26–28	Element F Z Element H 540 13–14 Al-Si He 26 15–16 P-S Li-B 0.40 17–18 Cl-Ar C-O 2.20 19–20 K-Ca F-Ne 0.30 21–25 Sc-Mn Na-Mg 0.22 26–28 Fe-Ni

Figure 28.1: Fluxes of nuclei of the primary cosmic radiation in particles per energy-per-nucleus are plotted vs energy-per-nucleus using data from Refs. [2–13].

Cosmic rays - II

- At sea level cosmic rays are essentially muons. Rate ≈ 70 m⁻²
 s⁻¹ sr⁻¹ → 1 cm⁻²min⁻¹ (≈ 2 Hz/dm²) horiz. detector.
- Angular distribution: $\approx \cos^2 \theta$

Cosmic rays - III

- Many discoveries of particles have been done in the past in experiments using cosmic rays as projectiles:
 - Positron
 - Muon
 - Pion
 - Kaon
- Today, large experiments use cosmic rays for specific studies:
 - Astrophysical objects (AGN, pulsars, anisotropies, ...)
 - Fundamental phsyics phenomena (ZKP effect) profiting of the ultra high energy of the primary
 - Matter/Antimatter and Dark Matter
- Experiments located in the ground, underground (or deep in the oceans) and in the space

Present cosmic ray experiments

Experimental Elementary Particle Physics

Particle Accelerator Physics

- A new discipline, separation of the communities;
- Many byproducts:
 - Beams for medicine
 - Beams for archeology and determination of age
- Two main quantities define an accelerator: the **center of mass energy** and the **beam intensity** (normally called luminosity)
- Few general aspects to be considered (we consider colliders here):
 - The **center of mass energy** is a "design" quantity: it depends on the machine dimensions, magnets and optics.
 - The **luminosity** is a quantity that has to be reached: it depends on several parameters. In many cases it doesn't reach the "design" value. It is the key quantity for the INTENSITY frontier projects.

Colliders: "Livingston" plots

Experimental Elementary Particle Physics

30/09/16

Colliders: general aspects - I

• Storage rings:

beams are accumulated in circular orbits and are put in collisions.

- "bunches" of particles (typically $N \approx 10^{10} \cdot 10^{12}$ / bunch) in small transverse dimensions (σ_X , σ_Y down to < mm level) and higher longitudinal dimensions (σ_Z at cm level) like *needles* or *ribbons*.
- the bunches travel along a \approx circular trajectory (curvilinear coordinate *s*)
 - magnetic fields to bend them (dipoles) and to focalize them (quadrupoles or higher order)
 - electric fields to increase their energies (RadioFrequency cavities)
- Multi-bunch operation n_b (increase of luminosity BUT reduction of inter-bunch time)
- One or more interaction regions (with experiments or not..)
- History:
 - e⁺e⁻: Ada, Adone, Spear, ... Lep, flavour-factories
 - pp: ISR, LHC
 - ppbar: SpS, Tevatron
 - ep: HERA
 - muon colliders are considered today (never built)
- Linear colliders:

ambituous projects aiming to reach higher electron energies without the large energy loss due to synchrotron radiation.

Colliders: general aspects - II

LHC scheme: up to 7 TeV per beam

LEP scheme: up to 100 GeV per beam DELP SUPER PROTON SYNCHROTRON (20 GeV) LEP (50 GeV PER BEAM) FOCUSING MAGNETS ELECTROSTATIC SEPARATOR BENDING MAGNEE RADIO-FREQUENCY CAVITY POSITRONS ELECTRONS

Colliders: general aspects - III

- Two different operation modalities:
 - Single injection (LHC)
 - "top-up" injection, continuos mode.
- Important quantities for the experiment operation are:
 - Integrated luminosity
 - Machine background

Colliders: general aspects - IV

"Typical" LHC operation mode: single- injection

Experimental Elementary Particle Physics

		CESR (Cornell)	CESR-C (Cornell)	LEP (CERN)	ILC (TBD)	CLIC (TBD)	
	Physics start date	1979	2002	1989	TBD	TBD	
	Physics end date	2002	2008	2000	_	—	
Main	Maximum beam energy (GeV)	6	6	100 - 104.6	250 (upgradeable to 500)	1500 (first phase: 250)	
parameters	Delivered integrated luminosity per exp. (fb^{-1})	41.5	2.0	$\begin{array}{c} 0.221 \ {\rm at} \ {\rm Z} \ {\rm peak} \\ 0.501 \ {\rm at} \ 65 - 100 \ {\rm GeV} \\ 0.275 \ {\rm at} \ {>}100 \ {\rm GeV} \end{array}$	_	_	
	Luminosity $(10^{30} \text{ cm}^{-2} \text{s}^{-1})$	1280 at 5.3 GeV	76 at 2.08 GeV	24 at Z peak 100 at > 90 GeV	1.5×10^4	6×10^4	
T I	Time between collisions (μs)	0.014 to 0.22	0.014 to 0.22	22	0.55^{\dagger}	0.0005 [‡]	
Impact on	Full crossing angle (μ rad)	± 2000	± 3300	0	14000	20000	
detector	Energy spread (units 10^{-3})	0.6 at 5.3 GeV	0.82 at 2.08 GeV	0.7→1.5	1	3.4	
operation	Bunch length (cm)	1.8	1.2	1.0	0.03	0.0044	
1	$\begin{array}{c cccc} \text{Beam radius } (\mu\text{m}) & H: 460 & H: 34 \\ V: 4 & V: 6. \end{array}$		H: 340 V: 6.5	$\begin{array}{c} H\colon 200 \to 300 \\ V\colon 2.5 \to 8 \end{array}$	$H: 0.474 \ V: 0.0059$	H: 0.045 * V: 0.0009	
	Free space at interaction point (m)	$\pm 2.2 \ (\pm 0.6$ to REC quads)	$\pm 2.2 \ (\pm 0.3)$ to PM quads)	± 3.5	± 3.5	± 3.5	
	Luminosity lifetime (hr)	2–3	2–3	20 at Z peak 10 at $> 90 \text{ GeV}$	n/a	n/a	
	Turn-around time (min)	5 (topping up)	1.5 (topping up)	50	n/a	n/a	
	Injection energy (GeV)	1.8-6	1.5-6	22	n/a	n/a	
Techincal	Transverse emittance $(10^{-9}\pi \text{ rad-m})$	H: 210 V: 1	H: 120 V: 3.5	$\begin{array}{c} H:\ 20\mathchar`-45\\ V:\ 0.25 \rightarrow 1 \end{array}$	$H: 0.02 V: 7 \times 10^{-5}$	$H: 2.2 \times 10^{-4}$ $V: 6.8 \times 10^{-6}$	
parameters	β^* , amplitude function at interaction point (m)	H: 1.0 V: 0.018	$H: 0.94 \ V: 0.012$	$H: 1.5 \ V: 0.05$	$H: 0.01 V: 5 \times 10^{-4}$	H: 0.0069 $V: 6.8 \times 10^{-5}$	

Collider parameters - I

122

Collider	parameters	-
----------	------------	---

		KEKB (KEK)	PEP-II (SLAC)	SuperKEKB (KEK)
Physics start date		1999	1999	2015
	Physics end date	2010	2008	_
Main	Maximum beam energy (GeV)	e^{-} : 8.33 (8.0 nominal) e^{+} : 3.64 (3.5 nominal)	$e^{-}: 7-12$ (9.0 nominal) $e^{+}: 2.5-4$ (3.1 nominal)	$e^{-}: 7$ $e^{+}: 4$
parameters	Delivered integrated lumi- nosity per exp. (fb ⁻¹)	1040	557	_
	Luminosity $(10^{30} \text{ cm}^{-2} \text{s}^{-1})$	21083	12069 (design: 3000)	8×10^5
T ,	Time between collisions (μs)	0.00590 or 0.00786	0.0042	0.004
Impact on	Full crossing angle (μ rad)	$\pm 11000^{\dagger}$	0	± 41500
detector	Energy spread (units 10^{-3})	0.7	$e^-/e^+: 0.61/0.77$	$e^-/e^+: 0.64/0.81$
operation	Bunch length (cm)	0.65	e^-/e^+ : 1.1/1.0	$e^-/e^+: 0.5/0.6$
operation	Beam radius (μ m)	H: 124 (e^-) , 117 (e^+) V: 1.9	$H: 157 \ V: 4.7$	e^{-} : 11 (H), 0.062 (V) e^{+} : 10 (H), 0.048 (V)
	Free space at interaction point (m)	+0.75/-0.58 (+300/-500) mrad cone	$\pm 0.2,$ $\pm 300 \text{ mrad cone}$	$e^-:+1.20/-1.28, e^+:+0.78/-0.73 \ (+300/-500) ext{ mrad cone}$
	Luminosity lifetime (hr)	continuous	continuous	continuous
Turn-around time (min) Injection energy (GeV)		continuous continuous		continuous
		$e^{-}/e^{+}: 8.0/3.5 \text{ (nominal)}$	$e^{-}/e^{+}: 9.0/3.1 \text{ (nominal)}$	$e^{-}/e^{+}:7/4$
Tachingal	$\frac{\text{Transverse emittance}}{(10^{-9}\pi \text{ rad-m})}$	e^{-} : 24 (57*) (H), 0.61 (V) e^{+} : 18 (55*) (H), 0.56 (V)	$e^{-}: 48 (H), 1.8 (V)$ $e^{+}: 24 (H), 1.8 (V)$	$e^{-}: 4.6 (H), 0.013 (V)$ $e^{+}: 3.2 (H), 0.0086 (V)$
parameters	β^* , amplitude function at interaction point (m)	e^{-} : 1.2 (0.27 [*]) (H), 0.0059 (V) e^{+} : 1.2 (0.23 [*]) (H), 0.0059 (V)	e^{-} : 0.50 (H), 0.012 (V) e^{+} : 0.50 (H), 0.012 (V)	$e^{-:} 0.025 (H), 3 \times 10^{-4} (V)$ $e^{+:} 0.032 (H), 2.7 \times 10^{-4} (V)$

02/11/16

		HERA (DESY)	TEVATRON* (Fermilab)	RHIC (Brookhaven)	LHC (CERN)		
	Physics start date	1992	1987	2001	2009 2012 (expected)		nominal
	Physics end date	2007	2011	—			
	Particles collided	ep	$p\overline{p}$	pp (polarized)	pp		
Main	Maximum beam energy (TeV)	e: 0.030 p: 0.92	0.980	$\begin{array}{c} 0.25\\ 48\% \ \text{polarization} \end{array}$	3.5	4.0	7.0
parameters	Delivered integrated lumi- nosity per exp. (fb^{-1})	0.8	12	up to 0.14 at 100 GeV/n up to 0.15 at 200 GeV/n	up to 5.6	_	
	$\begin{array}{c} \text{Luminosity} \\ (10^{30} \text{ cm}^{-2} \text{s}^{-1}) \end{array}$	75	431	145 (pk) 90 (avg)	$3.7 imes 10^3$	$5 imes 10^3$	1.0×10^4
.	Time between collisions (ns)	96	396	107	49.90	49.90	24.95
Impact on	Full crossing angle (μ rad)	0	0	0	240	≈ 300	≈ 300
detector	Energy spread (units 10^{-3})	e: 0.91 p: 0.2	0.14	0.15	0.116	0.116	0.113
operation	Bunch length (cm)	e: 0.83 p: 8.5	$p: 50 \\ \bar{p}: 45$	70	9	9	7.5
	$\begin{array}{c} \text{Beam radius} \\ (10^{-6} \text{ m}) \end{array}$	e: 110(H), 30(V) p: 111(H), 30(V)	$p: 28 \\ \bar{p}: 16$	90	26	20	16.6
	Free space at interaction point (m)	± 2	± 6.5	16	38	38	38
	Initial luminosity decay time, $-L/(dL/dt)$ (hr)	10	6 (avg)	5.5	8	8	14.9
	Turn-around time (min)	e: 75, p: 135	90	200	≈ 180	≈ 180	≈ 180
	Injection energy (TeV)	e: 0.012 p: 0.040	0.15	0.023	0.450	0.450	0.450
Techincal	Transverse emittance $(10^{-9}\pi \text{ rad-m})$	e: 20(H), 3.5(V) p: 5(H), 5(V)	p: 3 $\bar{p}: 1$	15	0.7	0.6	0.5
parameters	β^* , ampl. function at interaction point (m)	e: 0.6(H), 0.26(V) p: 2.45(H), 0.18(V)	0.28	0.6	1.0	0.6	0.55

Collider parameters - III

Experimental Elementary Particle Physics

124

02/11/16

The quest for high Luminosity

- Luminosity formula:
 - *f* is fixed by the collider radius
 - High N_1 and N_2 and n_b
 - Low σ_x, σ_y
- Integrated Luminosity L_{int} : $[L_{int}] = l^{-2} \rightarrow nbarn^{-1} = 10^{33} \text{ cm}^{-2}$
- Problems:
 - Increase number of particles / bunch ? → beam-beam effects generate instabilities;
 - Increase number of bunches reduces the inter-bunch time T_{BC} ;
 - Decrease σ_x and σ_y ? (see next slides on beam dynamics).

$$L = n_b f \frac{N_1 N_2}{4\pi\sigma_x \sigma_y} = \frac{I_1 I_2}{4\pi n_b f e^2 \sigma_x \sigma_y}$$
$$L_{\text{int}} = \int_{Trun} L(t) dt$$

$$T_{BC} = \frac{1}{n_b f}$$

Beam dynamics - I

- Along *s*, the positions *x*(*s*), *y*(*s*) (*u*(*s*)) of the particles are characterized by oscillations wrt reference trajectory: "betatron" oscillations and "chromaticity" oscillations
- If we neglect momentum dispersion (δp ≈ 0) only betatron oscillations are relevant:
 - $\beta(s)$ betatron function
 - $\phi(s)$ phase advancement function
 - **A** and ϕ_0 are constants of the motion
- u'(s) is the "inclination" angle of the trajectory (α(s) is a function of β(s))
- At any given *s* the u(s) % u'(s) plane is the phasespace plot. The "area" of the plot is called **emittance** ε . $A = \sqrt{\varepsilon}$
- Emittances are conserved quantities due to the Liouville theorem → small-size beam == large angular spread and viceversa

$$u(s) = u_{\beta}(s) + \eta(s)\frac{\delta p}{p}$$
$$u_{\beta}(s) = A\sqrt{\beta(s)}\cos(\phi(s) + \phi_0)$$
$$u'_{\beta}(s) = -\frac{A}{\sqrt{\beta(s)}}\left[\sin(\phi(s) + \phi_0) + \alpha(s)\cos(\phi(s) + \phi_0)\right]$$

Beam dynamics - II

- Emittance is a length × angle (measured in mm × mrad)
- Beam dimensions and angular spread change along *s*. They depend on the emittance and on the betatron functions at the interaction point (IP): $\beta *=\beta(s_{IP})$.
- Emittance has to be as low as possible
 - In e⁺e⁻ the actual value is an equilibrium between radiation dumping and diffusion
 - In pp it depends on the way the beam is prepared (for anti-p specific cooling systems were invented)
- β^* has also to be as low as possible

Beam dynamics - III

- Q is phase advancement, the number of oscillations per turn: it is the "**tune**". If integer, at any passage in the same point the bias is the same and there are instabilities.
- Q has to be far from an "integer number"
- The beam-beam effect gives rise to a *"tune shift"* If, for small tune shifts, we have instabilities we have to reduce N₁ and N₂
- So the luminosity can be expressed in terms of β_{y}^{*} and of the maximum "acceptable" tune shift ξ

$$L = \pi \left(\frac{\gamma}{r_e}\right)^2 f_R \varepsilon \left(1 + \kappa\right) \frac{\xi^2}{\beta_y^*}$$

$$Q = \frac{1}{2\pi} \oint_{L} \phi(s) \, ds$$

The pile-up

- How many interactions take place per bunch crossing ? It depends on:
 - Interaction rate that in turns depends on:
 - Luminosity
 - Total Cross-section
 - Bunch crossing rate that depends on
 - Bunch frequency
 - Number of bunches circulating
- Pile-up μ = average number of interactions per bunchcrossing

$$\mu = \frac{L\sigma_{tot}}{fn_b}$$

Comparison: e⁺e⁻ vs pp

- DAFNE: e^+e^- @ 1 GeV c.o.m. energy, $\sigma_{tot} = 5 \mu b$, L=10³³cm⁻²s⁻¹, n_b=120, f=c/100 m = 3 MHz \rightarrow TBC=, μ =
- LHC: pp @ 13 TeV c.o.m. energy, $\sigma_{tot} = 70$ mb, L=10³⁴cm⁻²s⁻¹, n_b=3000, f=c/27 km = 10 kHz \rightarrow TBC=, μ =

Colliders: power needed

- Circulating beams loose energy
 - Synchrotron radiation;
 - Beam-gas and beam-beam interactions
 - → finite beam lifetime → need of RF to "push" beams.
- Comparison btw LEP and LHC (consider only synchrotron radiation loss)

$$Power = n_b \times N \times \frac{\delta E}{turn} \times \frac{c}{2\pi R}$$
$$\frac{\delta E}{turn} = \frac{4\pi}{3} \frac{e^2}{4\pi\epsilon_0} \frac{1}{R} \beta^3 \gamma^4 \propto \frac{E^4}{Rm^4}$$
$$Power(W) = n_b \times N \times 0.5 \cdot 10^{-19} \frac{\gamma^4}{R(m)^2}$$
$$\gamma(LHC) = 7 \cdot 10^3$$
$$\gamma(LEP) = 2 \cdot 10^5$$
$$R = 4300m$$
$$\Rightarrow Power(LHC) \approx 10kW$$
$$\Rightarrow Power(LEP) \approx 10MW$$

Experimental Elementary Particle Physics

02/11/16

Heavy Ion collisions.

- Lead nuclei @ LHC:
 - Z=82, A=208, M ≈ 195 GeV
 - $\Delta E_{K} = ZeV (proton \times Z)$
 - $p = ZeRB (proton \times Z)$
 - $\Rightarrow E_{Pb} = 574 \text{ TeV} = 82 \times 7$ TeV
 - $\Rightarrow E_{Pb}/Nucleon = 574/A = 2.77 \text{ TeV}$
 - $\sqrt{s_{NN}} = 5.54 \,\text{TeV}$
- Luminosity: $\approx 10^{27}$ cm⁻²s⁻¹
- $n_b = 600$
- $N_1 = N_2 = 7 \times 10^7$ ions/bunch

- Heavy ions program @ RHIC
 - Au, Cu, U ions up to 100 GeV/nucleon
 - Luminosity $\approx 10^{28} \div 10^{29}$ cm⁻²s⁻¹
- Cross-sections:
 - $\sigma_{pp} \approx 70 \text{ mb}$
 - $\sigma_{\rm pPb} \approx \sigma_{\rm pp} \times A^{2/3}$
 - $\sigma_{\text{PbPb}} \approx \sigma_{\text{pp}} \times N_{\text{coll}} \approx 10$ barn!
- How much is the pile-up ?

02/11/16