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Quantities to measure in EPP 
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�  Physics quantities (to be compared with theory 
expectations) 
� Cross-section 
�  Branching ratio 
� Asymmetries 
�  Particle Masses, Widths and Lifetimes 

�  Quantities related to the experiment (BUT to be 
measured to get physics quantities) 
�  Efficiencies 
�  Luminosity 
�  Backgrounds 



Cross-section - I 
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�  Suppose we have done an experiment and obtained the following 
quantities for a given final state: 
�  Ncand, Nb, ε, φ	

�  What is φ ? It is the “flux”, something telling us how many 
collisions could take place per unit of time and surface. 
�  Consider a “fixed-target” experiment (transverse size of the target >> beam 

dimensions): 
 
�  Consider a “colliding beam” experiment  

 
(head-on beams: N1 and N2 number of particles per beam, ΣX, ΣY beam transverse gaussian 
areas, fcoll collision frequency) In this case we normally use the word 
“Luminosity”. Flux or luminosity are measured in: cm-2s-1 

φ = !NprojNtarδx =
!Nprojρδx
AmN

=
!Nprojρ(g / cm

3)NAδx(cm)
A

φ = fcoll
N1N2

4πΣXΣY
= L



Cross-section - II 
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�  In any case, the rate of events due to final state X is: 

�  σX is the cross-section, having the dimension of a surface. 
�  it doesn’t depend on the experiment but on the process only 
�  can be compared to the theory 
�  for a given σX, the higher is φ, the larger the event rate 
�  given an initial state, for every final state X you have a specific 

cross-section 
�  the “total cross-section” is obtained by adding the cross-

sections for all possible final states: the cross-section is an additive 
quantity. 

� The unit is the “barn”. 1 barn = 10-24 cm2. 

€ 

˙ N X = φσX



Cross-section - III 
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�  Suppose we have taken data for a time Δt: the total number of events collected 
will be: 

    The flux integral over time is the Integrated Flux or (in case of colliding 
beams) Integrated Luminosity. Integrated luminosity is measured in: b-1 

�  How can we measure this cross-section ? 

�  Sources of uncertainty: we apply the uncertainty propagation formula. We 
assume no correlations btw the quantities in the formula (Lint = integral of 
flux) 

 

NX =σ X × φ dt
Δt
∫
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Branching ratio measurement 
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�  Given an unstable particle a, it can decay in several (say N) final 
states, k=1,…,N. If Γ is the total width of the particle (Γ=1/τ 
with τ particle lifetime), for each final state we define a “partial 
width” in such a way that 

�  The branching ratio of the particle a to the final state X is 

 
�  To measure the B.R. the same analysis as for a cross-section is 

needed. In this case we need the number of decaying particles Na 
(not the flux) to normalize: 

€ 

Γ = Γk
k=1

N

∑

€ 

B.R. a→ X( ) =
ΓX
Γ

€ 

B.R.(a→ X) =
Ncand − Nb

ε
1
Na



Differential cross-section - I 
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�  If we want to consider only final states with a given kinematic 
configuration (momenta, angles, energies,…) and give the 
cross-section as a function of  these variables 

�  Experimentally we have to divide in bins and count the 
number of events per bin.  

�  Example: diferential cross-section vs. scattering angle 

�  NB: Ncand, Nb and ε as a function of θ are needed. 
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Differential cross-section - II 
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�  Additional problems appear. 
�  Efficiency is required per bin (can be different for different 

kinematic configurations). 
�  Background is required per bin (as above). 
� The migration of events from one bin to another is possible: 

need of smearing procedures to take into account this. Black: “true” distribution 
Red: expected distribution 

 if σ=0.1 
Blue: expected distribution 

 if σ=0.2 



Folding - Unfolding 
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�  In case there is a substancial migration of events among bins 
(resolution larger than bin size), this affects the comparison btw 
exp.histo (ni

exp) and theory (ni
th). This can be solved in two 

different ways: 
�  Folding of the theoretical distribution: the theoretical function 

fth(x) is “smeared” through a smearing matrix M based on our 
knowledge of the resolution; ni

th à n’i
th 

 
 
�  Unfolding of the experimental histogram: ni

exp à n’i
exp. Very 

difficult procedure, mostly unstable, inversion of M required 

 

ʹni
th = nj

thMi, j
j=1

N

∑

ni
th = dxf th (x)

xi

xi+1∫

ʹni
exp = nj

expMi, j
−1

j=1

N

∑



Asymmetry measurement 
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�  A very useful and powerful observable: 

�  It can be “charge asymmetry”, Forward-Backward 
asymmetry”,…  
�  Independent from the absolute normalization 
�  (+) and (-) could have different efficiencies, but most of them 

could cancel: 

�  Statistical error (N=N++N-) (proof on blackboard): 

Α =
N + − N −

N + + N −

Α =
N +

ε+
− N

−

ε−

N +

ε+
+ N

−

ε−

σ Α( ) = 1
N

1−Α2



Particle properties 
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�  Once a particle has been identified (either directly or 
through its decay products), it is interesting to measure its 
properties: 
� Mass M 
� Total Decay Width Γ	
�  LifeTime τ	
� Couplings g 

�  If the particle is identified through its decay, all these 
parameters can be obtained through a dedicated analysis of 
the kinematics of its decay products. 



Invariant Mass - I 
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�  Suppose that a particle X decays to a number of particles (N), and 
assume we can measure the quadri-momenta of all them. We can 
evaluate the Invariant Mass of X for all the candidate events of our 
final sample: 

�  It is a relativistically invariant quantity. In case of N = 2 

�  If N=2 and the masses are 0 or very small compared to p 

�  Where θ is the opening angle between the two daughter particles. 
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Invariant Mass - II 
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�  Given the sample of candidates, we do the invariant mass 
distribution and we typically get a plot like that: 
- A peak (the signature of the  
particle) 
-  A background (almost flat  
in this case) è unreducible 
background. 

�  What information can we 
get from this plot (by fitting it) ? 
(1)  Mass of particle;  
(2)  Width of the particle (BUT not in this case…);  
(3)  Number of particles produced (related to σ or BR) 



Parenthesys: 2 kinds of background 
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�  Unreducible background: same final state as the signal, no 
way to disentangle. The only way to separate signal from 
unreducible background is to fit the inv.mass spectrum  

�  Reducible background: a different final state that mimic the 
signal (e.g. because you are losing one or more particles, or 
because you are confusing the nature of one or more 
particles) 

�  Example:  
�  Signal: ppàHàZZ*à4l 
� Unreducible background: ppà ZZ*à4l 
� Reducible backgrounds: ppàZbb with Zà2l and two leptons, 

one from each b-quark jet; ppà tt with each tàWbàlν”l”j 



Invariant Mass - III 
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�  Which is the expected invariant mass distribution for an “unstable” 
particle ? How is the “peak” done ? 

�  We consider the wave function of a decaying particle and its 
Fourier transform: 

�  Γ=1/τ: the higher is τ the smaller is Γ 

�  Relativistic formula (Breit-Wigner): 
  

ψ t( ) =ψ 0( )e−iWt =ψ 0( )e−iMt−Γt/2

χ E( ) = ψ t( )∫ e−iEtdt =ψ 0( ) e−t (Γ/2+i(M−E )) dt∫ ∝
1

E −M( )− iΓ / 2

σ E( ) = χ E( )
2
=σmax

Γ2 / 4
E −M( )2 +Γ2 / 4

σ E( ) =σmax
M 2Γ2

E 2 −M 2( )
2
+M 2Γ2

NB: the Γ is NOT the σ of an equivalente gaussian 



Mass and Width measurement 
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�  Fit of the Minv spectrum with a Breit-Wigner + a continuos background: 
BUT careful with mass resolution. It can be neglected only if 
σ(Minv)<<Γ 

�  If σ(Minv) ≈ Γ or σ(Minv)>Γ there are two approaches (as we already 
know): 
�  Folding: correct the theoretical distribution to be used in the fit: 

 
�  Unfolding: correct the experimental data and fit with the theoretical 

function.  
�  Use a gaussian (or a “Crystal Ball” function) neglecting completely the width. 

�  In many cases only the mass is accessible: the uncertainty on the mass is 
the one given by the fit (taking into account the statistics) + possible 
scale systematics. 

σ fit E( ) = Gres E −E0( )σ BW E0( )dE0∫



Gaussian vs. Crystal Ball 
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�  Gaussian: 3-parameters, A, µ, σ. Integral =Aσ√2π 

�  Crystal-Ball: 5-parameters, m, σ, α, n, N 

Essentially takes into account energy losses, useful in many 
cases. 

f (m / A,µ,σ ) = Aexp(− (m−µ)
2

2σ 2 )



Template fits: not functions but 
histograms 
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In this case the fit is not done 
with a function with parameters  
BUT it is a “template” fit: 
  F = aHIST1(mH,…) + bHIST2 
a, b and mH are free parameters 
The method requires the knowledge  
(from MC) of the expected  
distributions. Such a knowledge  
improves our uncertainties.  
NB: HIST1 and HIST2 take into account 
experimental resolution: so it is 
directly the folding method 

An example: Higgs mass in the  
4l channel. 



Effect of the mass resolution on the 
significativity of a signal 
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�  Let’s consider now the case in which we look for a process 
and we expect a peak in a distribution at a definite mass: 
when may we say that we have observed that process ? 

�  Method of assessment: simple fit S+B (e.g. template fit).  
 S±σ(S) away from 0 at least 3 (5) standard deviations. 

�  Ingredients: 
� Mass resolution; 
�  Background 

�  Effect of mass resolution negligible if: 

€ 

σ 2 S( ) =σ 2 N( ) +σ 2 B( ) = N +σ 2 B( )
≈ N = S + B = S + 6σMb

€ 

σM <<
S
6b



Hàγγ ATLAS: is the resolution 
negligible ? 
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Numbers directly from  
the plot: 

 S≈1000 
 b≈5000/2 GeV  
  = 2500/GeV 
	σM≈10 GeV/6 
  =1.7 GeV 

 
è S/6b  

= 0.07 GeV << σM 



Lifetime measurement - I 
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à In the first decades of EPP, bubble-chambers  
and emulsions allowed to see directly the  
decay length of a particle either neutral  
or charged (see Kaons); 
à The decay length l is related to the lifetime 
 through the l = βγτc  è τ = l /βγc 
à  For a sample of particles produced we 
expect an exponential distribution 



Lifetime measurement - II 

30/09/16 Experimental Elementary Particle Physics 96 

�  Example: pions, kaons, c and b-hadrons in the LHC context 
(momentum range 10 ÷ 100 GeV). 

π	 K D B 

Mass (GeV) 0.140 0.494 1.869 5.279 

Life Time (s) 2.6 × 10-8 1.2 × 10-8 1.0 × 10-12 1.6 × 10-12 

Decay length (m) 
p = 10 GeV 

557 72.8 1.6 × 10-3 

 
9.1 × 10-4 

 

Decay length (m) 
p = 100 GeV 

5570 728 0.016 0.0091 

NB When going to c or b quarks, decay lengths O(<mm) are obtained 
è Necessity of dedicated “vertex detectors”  



Lifetime measurement - III 
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For low-τ particles 
(e.g. B-hadrons, τ, …): 
à define the proper decay time: 

€ 

τ =
Lm
p

At hadron colliders the proper decay time  
is defined on the transverse plane: 

€ 

τ =
Lxym
pT

The fit takes into account the background and the resolution 

 Typical resolutions: O(10-13 s) è tens of µm 



Efficiency measurement - I 
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�  Suppose you want to measure the detection efficiency of a 
final state X: X contains N particles e.g. Zàµµ contains 2 
particles and whatever else. How much is the probability to 
select an event containing a Zàµµ  ? 

�  Let’s suppose that: 
� Trigger is: at least 1 muon with pT>10 GeV and |η|<2.5 
� Offline selection is: 2 and only 2 muons with opposite charge 

and MZ-2Γ < Minv < MZ+2Γ 	
�  Approach for efficiency 

�  Full event method: apply trigger and selection to simulated 
events and calculate Nsel/Ngen (validation is required) 

�  Single particle method: (see next slides) 



Efficiency measurement - II 
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�  Measure single muon efficiencies as a function of kinematics 
(pT, η, …); eventually perform the same “measurement” 
using simulated data. 

�  Tag & Probe method: muon detection efficiency measured using an 
independent detector and using “correlated” events. 

�  Trigger efficiency using “pre-scaled” samples collected with a trigger 
having a lower threshold. 

εtrigger =
#µ − triggered
#µ − total

T&P: a “Tag Muon” in the 
MS and a “Probe” in the ID 
Tag+Probe Inv.Mass consistent 
With a Z boson 
è There should be a track 
in the MS  

εTP =
#µ − reco

#µ − expected



Efficiency measurement - III 
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�  Muon Efficiency – ATLAS experiment. 
�  As a function of η and pT – comparison with simulation è 

Scale Factors 



Efficiency measurement - IV 
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�  After that I have: εT(pT, η, …) and εS(pT, η, …) 
�  From MC I get the expected kinematic distributions of the 

final state muons and I apply for each muon its efficiency 
depending on its pT and η. The number of surviving events 
gives the efficiency for X 

�  Or I simply apply the scale factors to the MC fully simulated 
events to take into account data-MC differences. 



Background measurement - I 
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�  Based on simulations: 
�  define all possible background processes (with known cross-sections); 
�  apply trigger and selection to each simulated sample; 
�  determine the amount of background in the “signal region” after 

weighting with known cross-sections. 
�  Data-driven methods: 

�  “control regions” based on a different selection (e.g. sidebands); 
�  fit control region distributions with simulated distributions and get 

weigths; 
�  then export to “signal region” using “transfer-factors”. 

�  Example: reducible background of H4l ATLAS analysis (next 
slides) 



Background measurement - II 
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Extrapolate to “signal region” 
using transfer factors 
è (see next slide) 



Background measurement - III 

26/10/16 Experimental Elementary Particle Physics 104 



The “ABCD” factorization method 
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�  Use two variables (var1 and var2) with these features: 
�  For the background they are completely independent 
� The signal is localized in a region of the two variables 

�  Divide the plane in 4 boxes: the signal is on D only 
 For the background, due to the independence 

we have few relations: 
 B/D = A/C 
 B/A = D/C 

So: If I count the background (in data) events 
in regions A,B and C I can extrapolate in the 
signal region D: 

 D = CB/A 



Luminosity measurement - I 
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�  In order to get the luminosity we need to know the “cross-
section” of a candle process: 

�  In e+e- experiments QED helps, since Bhabha scattering can 
be theoretically evaluated with high precision (< 1%). 

�  In pp experiment the situation is more difficult.  
� Two-step procedure: continuous “relative luminosity” 

measurement through several monitors. Count the number of 
“inelastic interactions”; 

�  time-to-time using the “Van der Meer” scan the absolute 
calibration is obtained by measuring the effective σinel. 

 

€ 

L =
˙ N 
σ



Luminosity measurement - II 
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L = nb f
N1N2

4πΣxΣy
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!Ninel

σ inel

σ inel =
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nb f

"

#
$

%

&
'
4πΣxΣy

N1N2

Van der Meer scan: Measurement of the rate of inelastic interactions as a function of the  
bunch horizontal and vertical separations: 
 
 
 
 
 
 
 
è Determine the transverse bunch dimensions Σx, Σy and the inelastic rate at 0 separation.  
è Using the known values of the number of protons per bunch from LHC monitors, one get the 
inelastic cross-section that provides the absolute normalization. 
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R(δx) = ρ1(x,y)ρ2(x + δx,y)dxdy ∝exp − x 2
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Recap 
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�  Let’s remind at this point that our aim is to learn how to design an 
experiment. 

�  We have seen: 
�  Definition of the process we want to study 
�  Selection of the events correponding to this process 
�  Measurement of the quantities related to the process 
�  Other measurements related to the physics objects we are studying. 

�  Now, in order to really design an experiment we need: 
�  To see how projectiles and targets can be set-up 
�  To see how to put together different detectors to mesure what we 

need to measure 


