back to Home


Programma dettagliato della Settimana dal 26/02/2024 al 1/03/2024:

-- Analisi Complessa



LEZ 1-2 -- Lunedì 26/02/2024 - 2h Bonciani    10:00-12:00  Amaldi

Presentazione del corso.
Numeri complessi. Cenni storici. Unita' immaginaria. Rappresentazione con Parte Reale e Parte Immaginaria. Somma, prodotto e proprieta' di queste operazioni. Insieme dei complessi come Campo.
Modulo, complesso coniugato e applicazioni. Radice quadrata di un numero complesso. Rappresentazione geometrica (piano di Argand). Rappresentazione sul piano della somma, del prodotto e del coniugato. 


LEZ 3-4 -- Martedì 27/02/2024 - 2h - Bonciani    13:00-15:00  Amaldi

Rappresentazione polare dei numeri complessi. Prodotto e rapporto in rappresentazione polare. Formula di Eulero e giustificazione. Potenza ennesima. Radice ennesima. Esempi. Rappresentazione della radice ennesima di un numero complesso sul piano di Argand. Radici dell'unita'. Disuguaglianza triangolare.
Definizione di spazio metrico. C come spazio metrico con la distanza Euclidea. Disco aperto e disco chiuso. Sottoinsieme aperto di C. Unione e intersezione di aperti. Punti di frontiera, punti interni e chiusura di U in C. Unione e intersezione di sottoinsiemi chiusi. Sottoinsieme limitato. Segmento di retta e poligonale. Insiemi aperti connessi.


LEZ 5-6 -- Mercoledì 28/02/2024 - 2h - Bonciani    8:00-10:00  Amaldi

Funzioni complesse di variabile complessa (da C in C). Parte reale e parte immaginaria. Esempi. Definizione di limite in C. Limite di f(z) e implicazioni per il limite della parte reale e immaginaria. Limite della somma, del profotto e del quoziente. Definizione di continuita' e implicazioni per la continuita' della parte reale e della parte immaginaria. . Continuita' della somma, prodotto e quoziente di funzioni continue. Funzioni analitiche. Derivabilita' in un punto. Se f(z) e' derivabile in z e' continua in z. Derivata della somma, del prodotto, del quoziente di funzioni derivabili. Derivata della funzione composta e della funzione inversa. Derivabilita' e condizioni di Cauchy-Riemann.


LEZ 7   --
Giovedì 29/02/2024 - 1h Bonciani    11:00-12:00  Amaldi

Funzioni analitiche. Funzioni intere. Funzioni analitiche e armonicita' della parte reale e della parte immaginaria. Data una funzione armonica u(x,y) trovare v(x,y) armonica tale che f(z)=u+iv sia analitica. Esempi: analiticita' di funzioni semplici. Polinomi. Funzioni razionali. Zeri di una funzione analitica. Singolarita' isolate. Poli.


LEZ 8-9   --
Venerdì 1/03/2024 - 2h Bonciani    13:00-15:00  Amaldi

Successioni. Successioni convergenti, di Cauchy. Successioni di funzioni. Serie di funzioni. Serie di potenze. Serie convergente, assolutamente convergente. Serie geometrica. Teorema: se la serie e' conv. per z0 allora converge unif. per |z|<|z0|; se non converge per z0, non congerge per |z|>|z0|. Raggio di convergenza. Teorema di Cauchy-Hadamard. Criterio del rapporto. Teorema: una serie di potenze e la serie ottenuta derivando la prima termine a termine hanno lo stesso raggio di convergenza. Teorema: se una serie di potenze converge a f(z) nel raggio di convergenza R>0, allora f(z) e' analitica in D(0,R) e f'(z) e' data dalla serie che si ottiene derivando termine a termine la serie data. Se cosi' e', f(z) e' derivabile infinite volte e vale la formula di Taylor in D(0,R).