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Capitolo 1

Necessity of a Theory of Fields

1.1 Introduction

Non-relativistic Quantum Mechanics (NRQM), developed from the beginning of last century untill
∼ 1926 is a theory devoted to the study of a single particle. To the particle is associated a wave
function, ψ(x, t), whose time evolution is determined by the wave equation:

i~
∂

∂t
ψ(x, t) = H ψ(x, t) , (1.1)

that, in the case in which H = p2

2m + V , represents the well known non relativistic Schrödinger’s
equation for a particle moving in a potential V . The modulus squared of the wave function, |ψ(x, t)|2,
is interpreted as the probability density of finding the particle in x at the time t. Such a Theory leaves
the concept of classic determinism in favor of a treatment of the microscopic physical phenomena
that is intrinsically statistical. However, this theory is not yet completely satisfactory, since it is not
so general to include the possibility that the particle’s speed is close to the speed of light. In other
words, it does not include Special Relativity and it is therefore valid for velocities much smaller than c.
Another crucial point is that, in NRQM it is possible to study only transition amplitudes that do not
involve a different number of particles in the initial and final state (for instance a scattering process in
which two particles that collide have an energy which is sufficient to produce particles in the final state
that are different from the ones in the initial state). This is a characteristic that a relativistic theory
must have, because of the correspondence energy-mass. We have, therefore, to find a theory which is
much more flexible and general than NRQM, that include more known processes and that has, as a
non relativistic limit, Schrödinger’s theory.

The first attempt to include Special Relativity in quantum mechanics regarded the search of a
relativistically “correct” evolution equation and it brought to the so-called Klein-Gordon equation
(Schrödinger himself worked to such equation in the same years or even before to write his famous
article on wave mechanics). If we consider the fact that Eq. (1.1) can be derived from the non-relativistic
energy-momentum relation

E =
p2

2m
, (1.2)

with the correspondences

E → i~
∂

∂t
, p→ −i~∇ , (1.3)

we can try to include Special Relativity in quantum mechanics using the correct relativistic energy-
momentum relation

E2

c2
= p2 +m2c2 , (1.4)
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finding the following differential equation:

(

~
2

c2
∂2

∂t2
− ~

2∇2 +m2c2
)

φ(x, t) = 0 . (1.5)

In the case in which one would like to interpret Eq. (1.5) as a wave equation, (“à la Schrödinger”),
he would face many problems. As we will se in the next chapters, first of all the probability density
connected to the field φ(x, t) is not positive definite. This put immediately in troubles the probabilistic
interpretation. Moreover, Eq. (1.5) admits plane-wave solutions with positive energy E =

√

p2 +m2

but also with negative energy, E = −
√

p2 +m2. While classically this would not cause particular
issues1, from a quantum mechanical point of view, this would mean that a particle can jump from
a positive-energy state to a negative-energy one emitting a photon (for instance) and then, since the
spectrum is unbounded from below, it would keep on emitting and jumping to bigger and bigger
negative energies.

These two issues made in such a way that the Klein-Gordon theory was temporarly abandoned.
A successful step forward was instead done by Dirac in 1927. Dirac realized that the non positivity

of the probability density in the KG equation was due to the fact that the derivative with respect to
the time is of the second order and postulated the following first order (in time and, as required by
special relativity, also in space) differential equation describing the wave equation of an electron2:

i
∂

∂t
ψ(x, t) = (−iα · ∇+ βm)ψ(x, t) . (1.6)

Eq. (4.248) is such that the probability density, ρ = |ψ|2, is actually positive definite. However, Dirac’s
equation still admits positive as well as negative-energy plane-wave solutions, but if we can for some
reason neglect the contribution of negative-energy solutions we can solve the equation for the Hydrogen
atom, finding a spectrum in very good agreement with the experimental measurements. Finally, Dirac’s
equation includes the description of the spin, that emerges in a natural way from the theory and does
not need an ad hoc contruction, and its non-relativistic limit is the Pauli equation, as we would expect.

In order to physically interpret negative-energy solutions, Dirac introduced the so-called “holes
theory”, that predict a particle with the same mass of the electron but with negative charge, the
electron “antiparticle” (or “positron”). This explaination was again a success, since the positron was
actually detected in cosmic rays by Anderson in 1932.

In this context is inserted also the problem of the quantization of the elecctromagnetic field, that
in non relativistic Schrödinger’s theory is still considered as a classical field. The quantization of this
field would consists in finding a method to describe the corpuscular nature of the field, i.e. the photon.
In this sense, there is an asymmetry between the treatment of the Dirac electron or the Klein-Gordon
scalar particle and the electromagnetic field.

While for the former we look for an equation that starts already from the corpuscular nature of the
field, which is evident from the classical limit, for the latter the problem is faced differently: we have
the field equations (Maxwell’s eqs) that involve a classical field and show the wave nature of the light
and we want to quantize them to describe the microscopic quantum nature of the field.

Quantum field theory makes the procedure uniform. We consider the relativistic equations of Dirac
and Klein-Gordon as “classic equations” for the relative fields. Then, we quantize them to describe
the particle nature of those fields. Since this is the philosophy, the name “second quantization” is not
appropriate anymore. The so-called “first quantization” is nothing else than the identification of the
correct relativistic equation that the field has to satisfy.

1The two energy solutions are separated by a finite gap that classically will never be overcome. Moreover, classically
one can always discart negative energy solutions on the basis of the fact that they are non-physical.

2We use natural units ~ = c = 1.
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1.2 Summary of the quantization procedure

On the basis of what so far discussed, we can summarize point-by-point the quantization procedure
that we will follow in constructing the theory:

• Firstly we find the field equations. We will study the Klein-Gordon, Dirac and Maxwell’s equa-
tions. All the equations will be considered as classical equations that the different fields have to
satisfy.

• The field equations are the Euler-Lagrange equations derived from a Lagrangian density. We
introduce the lagrangian formalism. We look for conserved quantities, via the Nöther’s theorem,
that will play the role of observables in the quantum theory.

• In order to formulate the procedure of quantization of a field, i.e. of a system with infinite degrees
of freedom, we look at a peculiar system: the vibrating string. This system can be thought of as
the continuum limit of a one-dimensional distribution of harmonic oscillators, that we know how
to treat and quantize in the discrete.

• We find the momenta conjugated to the fields and then we move to the Hamiltonian description
of the system. The fields are promoted to time-dependent operators (in the Heisenberg picture)
that act on a Hilbert space3. We then impose the commutation relations among fields and
conjugated momenta, performing the so-called canonical quantization.

• We apply canonical quantization first of all to the free (non interacting) fields. In order to
construct a coherent picture, we will be able to include spin-statistics in the quantization, treating
consistently particles that obey Bose-Einstein statistics with commutation relations, while the
particles that obey Fermi-Dirac statistics have to be quantized using anticommutation relations.

• Probably the most interesting part, since it is the one that regards directly our experiments, is
the treatment of interacting fields. To consider the interactions, we will have to find a suitable
Lagrangian (for example by minimal substitution, in the case of electromagnetic interactions),
and Hamiltonian and extend to this case the canonical quantization rules. the conserved current
does not contain time derivatives of the fields and, therefore, for

• The formalism so developed, will give the possibility to study transition processes from n-particle
initial states to m-particle final states ...

Before starting, in the next Chapter, with the introduction of the various fields treated in the
theory, we lay the foundations for their definition.

First of all, we study the vibrating string in order to understand what can be intended as a field,
just to have a concrete idea linked to a very well understood mechanical system). Then we will use
this system to explain quantization.

The theory we are trying to build has as its main feature the invariance under Poincaré transforma-
tions, in the sense that Physics studied in two different inertial frames must be the same. Consequently
the action will have to be invariant under Poincaré transformations and the various fields will have a
well defined behavior under these transformations.

We will, therefore, briefly recap the main features of the Lorentz and Poincaré groups.

3Actually we will see that, since the numer of particles is not anymore a conserved quantity, we need a peculiar space,
tensor product of a variable numer of Hilbert spaces, called the Fock space.
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1.3 One-dimensional chain

One of the key points of Quantum Field Theory is the fact that we have to construct a formalism with
infinite degrees of freedom, in order to be able to adjust the treatment of a system with a variable
number of particles. Since our intuition is connected to the one-particle case (analytical mechanics,
non relativistic quantum mechanics) we will start with a discontinuus system and we will define a sort
of limit to the continuum to move from the one-particle description to the “many particles” description
that will be connected to the field.

The field describes, in this treatment, the fluctuations with respect to a certain state (for instance
the equilibrium state or the vacuum state) and the particles will be connected to the quanta of the
modes (Fourier modes) of these fluctuations.

In order to understand the transition to the continuum and the quantization of a continuus system,
we study the case of the linear chain of harmonic oscillators. Let us consider, then, a system of (N+1)
material points, all of them with mass m, interacting through an harmonic potential (springs with
same constant k) as in the figure:

m m m m mk k k k

a

At the equilibrium, the particles are separated by a distance a and therefore the lenght of the chain
is L = aN . Let us consider for simplicity N even (this is not a big constraint since then we want to
take the limit N →∞).

Let us also consider m = 1.
In the excited situation the n-th particle oscillates around the equilibrium configuration of a

quantity that we will call qn(t).

x1 x2 x3 · · · xn

q2 q3 qn

a
x

Let us make another assumption: the interaction of the n-th particle is limited to the nearest
particles, in such a way that the potential energy of the system can be written as follows:

V =
1

2
ω2

N
∑

n=1

(qn − qn+1)
2 (1.7)

and therefore the equations of motions are

q̈n = − ∂V
∂qn

= −ω2 [(qn − qn+1)− (qn−1 − qn)] = ω2(qn+1 + qn−1 − 2qn) . (1.8)

This means that the n-th particle feels a force which is decomposed in two parts: the force of the
spring on the left and the force of the spring on the right.

Since we are dealing with a chain, we have to choose what happens at the end of the chain, i.e.
boundary conditions. We can impose two kinds of boundary conditions: i) chain with fixed end-points
q1 = qN+1 = 0, or ii) chain with periodic boundary conditions qn = qn+N . Since in the end we want
to take also the limit L→∞, both cases bring to the same conclusions.
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We will chose the case of periodic boundary conditions4

qn = qn+N , (1.9)

studying basically the case of a ring of particles connected by springs. In this situation we have N
particles and N springs, so the sums over n go from 1 to N .

The kinetic energy of the chain is

T =
1

2

N
∑

n=1

q̇2n (1.10)

and therefore we can write down the lagrangian and the hamiltonian of the system as

L = T − V =
1

2

N
∑

n=1

q̇2n −
1

2
ω2

N
∑

n=1

(qn − qn+1)
2 , (1.11)

H = T + V =
1

2

N
∑

n=1

q̇2n −
1

2
ω2

N
∑

n=1

(qn − qn+1)
2 . (1.12)

We notice that the equations of motion (1.8) and the hamiltonian (4.107) are not diagonalized.
We can diagonalize them moving to the normal modes, i.e. looking for a solution in Fourier series. In
order to do that, we look for the following solution

q(j)n (t) = cj(t)e
ikjxn =

∣

∣

∣ since xn = na
∣

∣

∣ = cj(t)e
ikjna , (1.13)

anticipating what will come from the imposition of the boundary conditions, that kj is indeed enume-
rable.

If we substitute (1.13) into the equations of motion (1.8) we find

c̈j(t)e
ikjxn = ω2

[

eikj(n+1)a + eikj(n−1)a − 2eikjna
]

cj(t) , (1.14)

= ω2
[

eikja + e−ikja − 2
]

cj(t)e
ikjxn , (1.15)

= −ω2 [2− 2 cos (kja)] cj(t)e
ikjxn , (1.16)

= −4ω2 sin2
(

kja

2

)

cj(t)e
ikjxn . (1.17)

Defining

ω2
j = 4ω2 sin2

(

kja

2

)

, (1.18)

we find that cj(t) has to be the solution of the equation of an harmonic oscillator of frequency ωj

c̈j(t) + ω2
j c(t) = 0 . (1.19)

Eq. (1.18) is the dispersion relation that link the frequency ωj to the wave number kj . The cj(t) are
the normal modes, that decouple the system. The relation (1.18) is periodic. If we consider kj and
kj +

2π
a m, with m ∈ Z, we get the same value for ωj. Therefore, we can restrict our analysis to the

so-called “first Brillouin zone”, i.e.
|kj | ≤

π

a
. (1.20)

Imposing the boundary conditions in Eq. (1.9), we find

eikj(n+N)a = eikjna , (1.21)

4For fixed end-point conditions see for instance ....
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or

kj =
2π

aN
j =

2π

L
j . (1.22)

In the first Brillouin zone we have to impose Eq. (1.20), therefore
∣

∣

∣

∣

2π

aN
j

∣

∣

∣

∣

≤ π

a
⇒ |j| ≤ N

2
. (1.23)

We then find N +1 modes. However, the solution j = 0 gives kj = 0, then ωj = 0 and finally qn linear
in time. This corresponds to a rigid translation of the chain, that we are not going to consider (we
want to study the vibrations only). Therefore

kj =
2π

L
j , j = ±1,±2, ...,±N

2
. (1.24)

The general solution can be cast in the following form

qn(t) =

N/2
∑

j=−N/2
q(j)n =

N/2
∑

j=−N/2
eikjan

Qj(t)√
N

=

N/2
∑

j=−N/2
ei

2π
N
njQj(t)√

N
, (1.25)

where we put
Qj(t) =

√
Ncj(t) , (1.26)

that, again, are solutions of the following differential equation:

Q̈j + ω2
jQj = 0 . (1.27)

Since qn(t) has to be a real quantity (it is the physical displacement of the n-th particle), we have
to impose q∗n = qn and then

N/2
∑

j=−N/2
e−i

2π
N
nj
Q∗
j (t)√
N

=

N/2
∑

j=−N/2
ei

2π
N
njQj(t)√

N
. (1.28)

Puting j → −j in the r.h.s. of Eq. (1.28), we find that the following relation must hold:

Q−j(t) = Q∗
j(t) . (1.29)

Using the following representation of the Kronecker delta5

N
∑

n=1

ei
2π
N

(j−j′)n = N δjj′ , (1.31)

we can write the lagrangian in terms of the normal modes (for the moment we leave unexpressed the
potential energy V ):

L =
1

2

N
∑

n=1

q̇2n − V =
1

2

N
∑

n=1

N/2
∑

j,j′=−N/2
ei

2π
N

(j+j′)n Q̇jQ̇j′

N
− V ,

5This formula can be justified easily as follows. If j = j′, this is trivially N . If, instead, j 6= j′ we have

N
∑

n=1

ei
2π
N

(j−j′)n =

N
∑

n=0

[

ei
2π
N

(j−j′)
]n

− 1 =
1− ei 2πN (j−j′)(N+1)

1− ei 2πN (j−j′)
− 1 ,

=
ei

2π
N

(j−j′) − ei2π(j−j′)ei
2π
N

(j−j′)

1− ei 2πN (j−j′)
= ei

2π
N

(j−j′) 1− ei2π(j−j′)

1− ei 2πN (j−j′)
= 0 . (1.30)
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=
∣

∣with j′ → −j′
∣

∣ =
1

2

N/2
∑

j,j′=−N/2
Nδjj′

Q̇jQ̇−j′

N
− V ,

=
1

2

N/2
∑

j=−N/2
Q̇jQ̇−j − V =

1

2

N/2
∑

j=−N/2
Q̇∗
jQ̇j − V . (1.32)

Moreover, since Q̇∗
jQ̇j = Q̇−jQ̇∗

−j we have

1

2

N/2
∑

j=−N/2
Q̇∗
jQ̇j =

N/2
∑

j=1

Q̇∗
jQ̇j =

N/2
∑

j=1

∣

∣

∣
Q̇j

∣

∣

∣

2
. (1.33)

Therefore, we can define the momenta conjugated to Qj as

Pj =
∂L

∂Q̇j
= Q̇∗

j . (1.34)

On the other hand, we have the momenta conjugated to qn defined as follows

pn(t) =
∂L

∂q̇n(t)
= q̇n(t) =

N/2
∑

j=−N/2
ei

2π
N
nj Q̇j(t)√

N
= |j → −j| ,

=

N/2
∑

j=−N/2
e−i

2π
N
nj Q̇−j(t)√

N
=

N/2
∑

j=−N/2
e−i

2π
N
nj
Q̇∗
j (t)√
N

=

N/2
∑

j=−N/2
e−i

2π
N
njPj(t)√

N
, (1.35)

where we used the fact that also pn(t) must be real, and then p∗n = pn, that implies

Q̇−j(t) = Q̇∗
j(t) , (1.36)

or, in terms of Pj(t),
P−j(t) = P ∗

j (t) . (1.37)

For later use, we can write Qj and Pj in terms of qn and pn, using the representation of the delta
in Eq. (1.31). In fact

N
∑

n=1

qn(t)e
−i 2π

N
jn =

N
∑

n=1

N/2
∑

j′=−N/2
ei

2π
N

(j′−j)nQj′(t)√
N

=

N/2
∑

j′=−N/2
Nδjj′

Qj′(t)√
N

=
√
NQj(t) . (1.38)

Therefore

Qj(t) =

N
∑

n=1

e−i
2π
N
jn qn(t)√

N
. (1.39)

In the same way, we find

Pj(t) =

N
∑

n=1

ei
2π
N
jn pn(t)√

N
. (1.40)

Now, let us write the hamiltonian of the system in terms of normal modes. We have

H =
1

2

N
∑

n=1

q̇2n +
1

2
ω2

N
∑

n=1

(qn − qn+1)
2 =

1

2

N
∑

n=1

p2n +
1

2
ω2

N
∑

n=1

(qn − qn+1)
2 ,
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=
1

2

N
∑

n=1







N/2
∑

j,j′=−N/2
e−i

2π
N

(j+j′)nPjPj′

N
+ ω2





N/2
∑

j=−N/2
ei

2π
N
jnQj(t)√

N
−

N/2
∑

j=−N/2
ei

2π
N
j(n+1)Qj(t)√

N





2




,

=
1

2

N
∑

n=1







N/2
∑

j,j′=−N/2
e−i

2π
N

(j+j′)nPjPj′

N
+ ω2





N/2
∑

j=−N/2
(1− ei 2πN j)ei

2π
N
jnQj(t)√

N





2




,

=
1

2

N
∑

n=1







N/2
∑

j,j′=−N/2
e−i

2π
N

(j+j′)nPjPj′

N
+ ω2





N/2
∑

j,j′=−N/2
(1− ei 2πN j)(1− ei 2πN j′)ei

2π
N

(j+j′)nQjQj′

N











,

=
∣

∣

∣
we put j → −j in the kinetic energy and j′ → −j′ in the potential energy

∣

∣

∣
,

=
1

2

N
∑

n=1







N/2
∑

j,j′=−N/2
ei

2π
N

(j−j′)nP−jPj′

N
+ ω2





N/2
∑

j,j′=−N/2
(1− ei 2πN j)(1− e−i 2πN j′)ei

2π
N

(j−j′)nQjQ−j′

N











,

=
∣

∣

∣
using Eq. (1.31)

∣

∣

∣
,

=
1

2

N/2
∑

j,j′=−N/2

{

Nδjj′
P ∗
j Pj′

N
+ ω2

[

(1− ei 2πN j)(1− e−i 2πN j′)Nδjj′
QjQ

∗
j′

N

]}

,

=
1

2

N/2
∑

j=−N/2

{

|Pj |2 + ω2
(

2− ei 2πN j − e−i 2πN j)
)

|Qj|2
}

,

=
∣

∣

∣
since ω2

j = 4ω2 sin2
( π

N
j
) ∣

∣

∣
,

=
1

2

N/2
∑

j=−N/2

{

|Pj |2 + ω2
j |Qj|2

}

. (1.41)

Since

|Pj |2 = P ∗
j Pj = P−jP

∗
−j = |P−j |2 , (1.42)

|Qj|2 = Q∗
jQj = Q−jQ

∗
−j = |Q−j |2 , (1.43)

ω2
j = ω2

−j , (1.44)

we can write the hamiltonian as follows:

H =

N/2
∑

j=1

{

|Pj |2 + ω2
j |Qj|2

}

. (1.45)

Looking at Eq. (1.45) is clear that the system is equivalent to a system composed by N decoupled
harmonic oscillators (Qj and Pj are complex quantities).

1.3.1 Limit to the continuum

In order to move to the continuum, let us write the displacement qn(t) as a funcion of xn as follows:

u(xn, t) = qn(t) . (1.46)

In this way, u(xn, t) represents the displacement from the equilibrium of the n-th massive point-like
particle (i.e. a function that for each xn gives the displacement from xn of that massive point). We
can then rewrite the equations of motion (1.8) in terms of u(xn, t) geting

ü(xn, t) = ω2 [(u(xn+1, t)− u(xn, t))− (u(xn, t)− u(xn−1, t))] . (1.47)
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Let us consider the limit in which the massive points become denser and denser, N → ∞ and
a→ 0, keeping the lenght of the string finite, Na = L = const. We have also to consider the fact that
puting more and more point in the chain we add masses. However, we want to keep the mass of the
chain finite, therefore we may also keep the ratio m/a = µ constant (constant mass density over the
string). Note that for simplicity we kept m = 1 from the beginning, so we will have to rescale the field
by a factor 1/

√
a to keep the energy of the string finite.

We can interpret this limit considering the propagation of acoustic waves with a wave lenght λ >> a.
In this limit we have

lim
a→0

u(xn+1, t)− u(xn, t)
a

= u′(x, t) , (1.48)

where x ∈ [xn+1, xn] and where xn+1 → x, xn → x. In the same way we have

lim
a→0

u′(x1, t)− u′(x2, t)
a

= u′′(x, t) , (1.49)

where x ∈ [x1, x2]. In the end, Eq. (1.47) becomes

ü(x, t) = ω2a2u′′(x, t) , (1.50)

which is a wave equation and ω2a2 = v2 is the velocity of propagation of the waves throught the string.
It is clear that ω2a2 should be a constant since

ω2
j = 4ω2 sin2

(

kja

2

)

∼ 4ω2

(

kja

2

)2

= ω2a2 k2j (1.51)

and therefore in the limit a → 0, ω should go like 1/a to give a finite frequency and wave number of
the j-th mode. Then we find

ü(x, t) = v2u′′(x, t) , (1.52)

with the usual D’Alambert solution u(x, t) = f(x+ vt) + g(x− vt) ...
Let us see what happens to the hamiltonian. In terms of u(xn, t) we can write

H =
1

2

N
∑

n=1

(̇u)2(xn, t) +
1

2
ω2

N
∑

n=1

[u(xn, t)− u(xn−1, t)]
2 . (1.53)

In the limit to the continuum, we have6

N
∑

n=1

∼ 1

a

∫ L

0
dx (1.55)

and therefore

H =
1

2a

∫ L

0

[

u̇2(x, t) + v2u′2(x, t)
]

dx . (1.56)

The fact that H has a factor 1/a depends on having set m = 1 at the beginning. So, in order to have
a finite energy on the string we have to impose that the function u(x, t) goes to 0 as

√
a. We then

6We can understand recalling the way we define the integral

∫ L

0

f(x) dx = lim
N→∞
a→0

N
∑

n=1

a fn , (1.54)

where fn is the value of the function f(x) in x = xn = na.
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redefine the field7

φ(x, t) =
u(x, t)√

a
, (1.61)

in terms of which we have

H =
1

2

∫ L

0

[

φ̇2(x, t) + v2φ′2(x, t)
]

dx (1.62)

and the equations of motion
φ̈(x, t) = v2φ′′(x, t) . (1.63)

In the limiting procedure, we do not change the boundary conditions. In fact the relation

u(xn+N , t) = u(xn, t) , (1.64)

corresponds to
u(x+ L, t) = u(x, t) , (1.65)

and this in any case gives rise to a wave number which is enumerable:

eikj(x+L) = eikjx , (1.66)

tha implies

kj =
2π

L
j , j ∈ Z . (1.67)

Now j can go from −∞ to +∞ (always except 0).
Since aN = L we can define the field φ in normal modes

φ(x, t) =

∞
∑

j=−∞
ei

2π
L
jxQj(t)√

L
(1.68)

and the dispersion relation becomes

ω2
j → 4ω2

(

kja

2

)2

= v2k2j , (1.69)

typical of a wave equation.
The normal modes Qj still satisfy a single harmonic oscillator differential equation

Q̈j(t) + v2k2j Qj(t) = 0 (1.70)

7We can look at the same procedure keeping m and setting m/a = µ = const in the limit to the continuum. In these
terms, we have

T =
1

2
m

∑

n

q̇2n →
1

2a

∫ L

0

dxmu̇2(x, t)→ µ

2

∫ L

0

dx u̇2(x, t) , (1.57)

V =
1

2
k
∑

n

(qn+1 − qn)2 → 1

2a

∫ L

0

dx ka2 u′2(x, t)→ τ

2

∫ L

0

dxu′2(x, t) , (1.58)

Na = L ,
m

a
= µ , ka = τ , (1.59)

where τ is the tension of the string and τ/µ = v2. Then

L =
µ

2

∫ L

0

[

u̇2(x, t)− v2u′2(x, t)
]

=
1

2

∫ L

0

[

φ̇2(x, t)− v2φ′2(x, t)
]

, (1.60)

where we defined the field φ(x, t) =
√
µu(x, t).
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and in terms of Qj(t) and Pj(t) we can express the hamiltomnian as follows:

H =
1

2

∫ L

0

[

φ̇2(x, t) + v2φ′2(x, t)
]

dx ,

=
1

2

∫ L

0
dx





∑

jj′

ei
2π
L
(j+j′)x Q̇jQ̇j′

L
− v2kjkj′

∑

jj′

ei
2π
L
(j+j′)xQjQj′

L



 ,

=
∣

∣

∣j′ → −j′
∣

∣

∣ ,

=
1

2

∫ L

0
dx





∑

jj′

ei
2π
L
(j−j′)x Q̇jQ̇−j′

L
− v2kjk−j′

∑

jj′

ei
2π
L
(j−j′)xQjQ−j′

L



 ,

=
∣

∣

∣
since

∫ L

0
ei

2π
L
(j−j′)xdx = Lδjj′

∣

∣

∣
,

=
1

2

∑

jj′

[

Lδjj′
Q̇jQ̇−j′

L
− v2kjk−j′Lδjj′

QjQ−j′

L

]

,

=
1

2

∞
∑

j=−∞

[

Q̇jQ̇
∗
j + v2k2jQjQ

∗
j

]

,

=

∞
∑

j=1

[

∣

∣

∣Q̇
∣

∣

∣

2
+ v2k2j |Q|2

]

, (1.71)

since, as before, Q̇jQ̇∗
j = Q̇∗

−jQ̇−j, QjQ∗
j = Q∗

−jQ−j and k2j = k2−j . Again, we find that the system
is equivalent to an infinite sum of harmonic oscillators. The fact that the various frequencies are
enumerable is due to the finite lenght of the ring and the boundary conditions imposed. In the case in
which also the lenght L goes to infinity, we would have to deal with a Fourier transform instead of a
series.

The quantization of the system is done by the quantization of these harmonic oscillators.

1.3.2 Quantization of the vibrating string

We are in a situation in which our continuous system, the vibrating string, is solved in terms of normal
modes, diagonalizing the hamiltonian that can be written as an infinite sum of decoupled harmonic
oscillators. This pattern gives rise to a “simple” procedure for the quantization of the system. This
can be done through the canonical quantization of the harmonic oscillators.

In the discrete system we have

H =

N/2
∑

j=1

[

|Pj |2 + ω2
j |Qj|2

]

, (1.72)

ω2
j = 4ω2 sin2

(

kja

2

)

, (1.73)

kj =
2π

L
j , |j| = 1, 2, ...,

N

2
. (1.74)

In the continuum case

H =

∞
∑

j=1

[

|Pj |2 + ω2
j |Qj |2

]

, (1.75)

ω2
j = v2k2j , (1.76)
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kj =
2π

L
j , j ∈ Z . (1.77)

In both cases, in order to quantize the single harmonic oscillators, we will have to promote Qj and
Pj to operators. Consequently, the relations (1.29,1.37) will become

Q̂†
j = Q̂−j , P̂ †

j = P̂−j . (1.78)

Let us start with the discrete case. We can introduce annihilation and creation operators8, âj and â†j ,
such that

âj =

√

ωj
2
Q̂j +

i
√

2ωj
P̂ †
j , (1.81)

â†j =

√

ωj
2
Q̂†
j −

i
√

2ωj
P̂j , (1.82)

where ωj = 2ω| sin (kja/2)|. Starting from the quantization relations9 on the hermitian operators q̂n
and the conjugated momenta p̂n

[q̂n, p̂m] = iδnm , [q̂n, q̂m] = [p̂n, p̂m] = 0 , (1.83)

we find that also the operators Q̂j and P̂j obey similar commutation relations10:

[Q̂j , P̂j′ ] = iδjj′ , [Q̂j , Q̂j′ ] = [P̂j , P̂j′ ] = 0 , (1.87)

Finally, we find (we will omit from now on the hat for simplicity of notation, but we are speaking
about operators)

[aj , a
†
k] =

1
√

4ωjωk
[ωjQj + iP †

j , ωkQ
†
k − iPk] , (1.88)

=
1

√

4ωjωk

{

−iωj[Qj , Pk] + iωk[P
†
j , Q

†
k]
}

, (1.89)

=
1

√

4ωjωk
{−iωj[Qj , Pk]− iωk[Q−k, P−j ]} , (1.90)

8We can write Q̂j and P̂j in terms of âj and â†j as follows:

Q̂j =
1√
2ωj

(

âj + â†−j

)

, P̂j = −i
√

ωj

2

(

â−j − â†j
)

, (1.79)

where

â−j =

√

ωj

2
Q̂†

j +
i√
2ωj

P̂j , â†−j =

√

ωj

2
Q̂j −

i√
2ωj

P̂ †
j . (1.80)

We have, then, [a−j , a
†
−k] = −δjk and [a−j , a−k] = [a†−j , a

†
−k] = 0.

9Remember that we are using the natural units ~ = c = 1.
10We have

Q̂j =
N
∑

n=1

e−ikjan q̂n√
N
, P̂j =

N
∑

n=1

eikjan p̂n√
N

(1.84)

and therefore

[Q̂j , P̂j′ ] = Q̂jP̂j′ − P̂j′Q̂j =
∑

n,m

e−i 2π
N

jnei
2π
N

j′m 1

N
q̂np̂m −

∑

n,m

e−i 2π
N

jnei
2π
N

j′m 1

N
p̂mq̂n , (1.85)

=
∣

∣

∣
using (1.83) p̂mq̂n = q̂np̂m + iδnm

∣

∣

∣
= iδjj′ . (1.86)
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= δjk , (1.91)

[aj , ak] = [a†j , a
†
k] = 0 . (1.92)

In terms of annihilation and creation operators, the hamiltonian becomes:

H =

N/2
∑

j=1

[

|Pj |2 + ω2
j |Qj |2

]

, (1.93)

=

N/2
∑

j=1

ωj
2

[

a†jaj + aja
†
j + a†−ja−j + a−ja

†
−j

]

. (1.94)

If we use the commutation relations (1.91,1.92), we find

H =

N/2
∑

j=1

ωj

[

a†jaj + a†−ja−j + 1
]

,

=

N/2
∑

j=−N/2
ωj

[

a†jaj +
1

2

]

, (1.95)

where ωj = 2ω| sin (kja/2)|, which has the known form of the sum of N independent harmonic oscil-
lators. Note that H is independent of time (energy conservation) although in the relations (1.81,1.82)
they do depend on time. The time dependence of the operators aj and a†j are given by the Hamilton’s
equations

ȧj(t) = i[H, aj ] = −iωjaj(t) , (1.96)

ȧ†j(t) = i[H, a†j ] = iωja
†
j(t) , (1.97)

since, by derect inspection we have [H, a†j ] = ωja
†
j and [H, aj ] = −ωjaj. Then11

aj(t) = e−iωjtaj(0) , (1.100)

a†j(t) = eiωjta†j(0) . (1.101)

We can express the displacements qn(t) in terms of annihilation and creation operators:

qn(t) =

N/2
∑

j=−N/2
eikjan

Qj(t)√
N

,

=

N/2
∑

j=−N/2

1
√

N 2ωj
eikjan(aj(t) + a†−j(t)) ,

=

N/2
∑

j=−N/2

1
√

N 2ωj
eikjane−iωjtaj(0) +

N/2
∑

j=−N/2

1
√

N 2ωj
eikjaneiωjta†−j(0) ,

=
∣

∣

∣
j → −j in the second piece

∣

∣

∣
,

=

N/2
∑

j=−N/2

1
√

N 2ωj

(

e−iωjt+ikjanaj(0) + eiωjt−ikjana†j(0)
)

. (1.102)

11For a−j and a†−j we also have similar relations but with an opposite sign in the exponent

a−j(t) = eiωjta−j(0) , (1.98)

a†−j(t) = e−iωjta†−j(0) , (1.99)

due to their commutation relations with the hamiltonian.
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1.3.3 Fock space and phonons

We can now study the spectrum of the hamiltonian and give an interpretation of what we find.
The state with lowest energy is determined by the condition

aj|0〉 = 0 , ∀j . (1.103)

The corresponding eigenvalue is

E0 =
∑

j

1

2
ωj . (1.104)

For the moment we are considering the discrete case, therefore (1.104) constitutes a finite energy.
When we will move to the continuum, this term will become infinite and we will have to redefine the
energy of the vacuum state in order to “reabsorb” this infinity.

The creation operators act on the vacuum state as follows

a†j |0〉 = |j〉 , (1.105)

where |j〉 is an eigenstate of the hamiltonian with a definite energy ωj. This state is also an eigenstate
of the momentum (as we will see) and therefore corresponds to a state with a definite energy and
momentum. This quantum of excitation can be interpreted as a particle, that has a definite energy
and a brings a definite momentum. Note: it has nothing to do with the particles connected with
springs that we started with. Now we are speaking about the quantization of the vibrations of the
chain (a pure quantum description).

We can act again, n times, with a†j on the vacuum state, finding the state

(a†j)
n

√
n!
|0〉 = |nj〉 , (1.106)

which is a state with energy given by the sum of the single energies (so, in this case n times ωj) and
momentum given by the sum of the momenta. This state can be interpreted as a state in which we
have n particles with energy ωj and definite momentum. Since a†j commutes with the other a†k, the
general eigenstate of the hamiltonian che bi written as follows:

|n1, n2, ..., nN 〉 =
1√

n1!n2!...nN !
(a†1)

n1(a†2)
n2 ...(a†N )nN |0〉 . (1.107)

This state represent a state in which we have n1 particles with energy ω1, n2 particles with energy ω2,
... nN particles with energy ωN .

This interpretation is corroborated by the analogous case of the electromagnetic radiation and the
explaination of the Photoelectric effect, in which it was introduced the quantum of the electromagnetic
radiation (the photon) with a given discrete energy ~ω.

The space we have introduced with this contruction is a direct sum of a variable number of Hilbert
spaces and it is calle the Fock space.

Note the flexibility of this point of view! We can deal with a variable number of particles in our
state. We can excite a particle state with a†j from the vacuum in such a way to move, for instance from
a n-particle state to a (n+ 1)-particle state. We can destroy a particle in our state, acting with aj ...
and so on.

1.3.4 Commutation relations in the continuum

Using the commutation relations for Qj and Pj , Eq. (1.87), we can find the commutation relations for
the fields, since

φ(x, t) =
1√
L

∑

j

ei
2π
L
jxQj(t) , (1.108)
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π(x, t) =
1√
L

∑

j

e−i
2π
L
jxPj(t) . (1.109)

We have12

[φ(x, t), π(y, t)] =
1

L

∑

j,k

ei
2π
L
(jx−ky)Qj(t)Pk(t)−

1

L

∑

j,k

ei
2π
L
(jx−ky)Pk(t)Qj(t) , (1.111)

=
∣

∣

∣
since [Qj(t), Pk(t)] = iδjk

∣

∣

∣

=
1

L

∑

j,k

ei
2π
L
(jx−ky)iδjk , (1.112)

=
i

L

∑

j

ei
2π
L
j(x−y) , (1.113)

= i δ(x − y) . (1.114)

Equivalently, we find
[φ(x, t), φ(y, t)] = [π(x, t), π(y, t)] = 0 . (1.115)

It is important to note the relationship between quantization conditions (in this case given by the
commutation relations) and statistics obeyed by the particles. Since

[aj, aj′ ] = [a†j , a
†
j′ ] = 0 , (1.116)

the two-particle state is such that

|i, j〉 = a†ia
†
j |0〉 = a†ja

†
i |0〉 = |j, i〉 , (1.117)

therefore, totally symmetric under the exchange of the particles. This is the case also for multi-particle
states. This means that we are describing bosons.

1.3.5 Normal ordering

As we already noticed, in the continuum case the energy of the vacuum state becomes infinite:

E0 =
∞
∑

j=1

ωj . (1.118)

However, we note that in general what matters is the energy of a state with respect to the energy of the
vacuum (i.e. a difference in energies). The “absolute” energy of the vacuum state is not an observable.
We can then “redefine” the energy of the vacuum in such a way that

H|0〉 = 0 , (1.119)

12We use the following representation of the Dirac delta:

1

L

∑

j,k

ei
2π
L

j(x−y) = δ(x− y) , (1.110)

that can be “proved” looking at its action on a generic function f(x) =
∑

k cke
i 2π

L
kx:

∫ L

0

1

L

∑

j

ei
2π
L

j(x−y)f(x)dx =

∫ L

0

1

L

∑

j,k

ei
2π
L

j(x−y)cke
i 2π

L
kx =

∫ L

0

1

L

∑

j,k

ei
2π
L

x(j+k)e−i 2π
L

yjck =
∣

∣

∣
j → −j

∣

∣

∣
,

=

∫ L

0

1

L

∑

j,k

ei
2π
L

x(k−j)ei
2π
L

yjck =
∣

∣

∣
since

1

L

∫ L

0

ei
2π
L

x(k−j)δjk

∣

∣

∣
=

∑

k

cke
i 2π

L
ky = f(y) .
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removing (so to say) the infinite constant value and imposing that the energy of the vacuum is simply
zero (this is also needed for Lorentz invariance).

Formally, this operation is achieved defining the “normal ordering” of the operator H. This is
indicated with the singn :H : and defined as follows:

:H : = H − 〈0|H|0〉 , (1.120)

or, as a rule, puting all the creation operators in the expression on the left of the annihilation operators
(respecting the statistics).
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Capitolo 2

Special Relativity

2.1 Notes on Special Relativity

The concept of finding a class of physical frames in which one can write physics laws in a unique formal
way goes back to Newtonian mechanics and it was introduced by Galileo with the Principle of Inertia.
It can be refrased as: In every inertial frame (IF), Physics is described by the same (in form) equation
F = ma.

This principle, with the additional constraint of the “universal time”, brings to a class of transfor-
mations, the Galilean transformations (GT)

x′(t′) = x(t)− v0 t , (2.1)

t′ = t , (2.2)

that leave unchanged the equations of motion, F = ma.
NB Galilean Relativity Principle (GRP) is adapted to Newtonian mechaniccs. It does not take into
account Classical Electrodynamics. Maxwell’s equations

(

1

c2
∂2

∂t2
−∇2

)

φ = ρ , (2.3)

(

1

c2
∂2

∂t2
−∇2

)

A =
1

c
j , (2.4)

are not invariant under GT (but under Lorentz transformations). The point lies on the fact that we see
experimentally that the speed of light, c = 1√

ǫ0µ0
≃ 3 · 108 ms−1, is a universal constant, with the same

value in every inertial frame. In Maxwell’s equations c appears explicitely! Therefore, they cannot be
invariant under galilean transformations. The composition of velocities is totally different in the two
cases.

At the beginning of XXth century physicists have to understand which one, among the following
three options, is the correct one:

1. It exists a “Relativity Principle” for Mechanics, but not for Electrodynamics, and Electrodynamics
changes in every inertial frame (System of Eather ...).

2. It exists a unique “Relativity Principle” both for Mechanics and Electrodynamics, the GRP, and
therefore Maxwell’s equations are wrong.

3. It exists a unique “Relativity Principle” both for Mechanics and Electrodynamics, and GT are
only a low-speed limit of more complex invariance transformations, and F = ma is a low-speed
limit of a formulation of Mechanics which is covariant under a new class of transformations,
Lorentz transformations.
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The third hypothesis revealed to be the correct one. Based on electromagnetism, mechanics was
reformulated throught a redefinition of the concept of time.

The theory of Special Relativity, formalized by Einstein in 1905, is based on the following two
postulates:

• Physical laws are the same in every inertial frame.

• The speed of light is the same in every inertial frame, and the relation c = 1√
ǫ0µ0

applies.

The second postulate brings to the criticism of the concept of simultaneous events, that now has
to depend on the reference system. The absolute time, à la Newton, loses meaning and it emerges the
necessity to consider time on the same ground as space coordinates.

2.1.1 Simultaneous events

In a given inertial frame, physical phenomena are analyzed in terms of events: the physical phenomenon
“happens” in a certain point x at a certain time t. The event is indicated with the following vector:
(ct,x) in Minkowski space (see later).

Definition 2.1.1 In a given IF we say that two events are simultaneous if they happen in two different
space points and two light rays moving from each point in the direction of the other meet at half of the
distance.

It is clear that, if the speed of light is the same in every IF, a pair of events that are simultaneous
in an IF cannot be the same in another IF.

Suppose that in a given IF, S, a light signal is emitted from P1 = (x1, y1, z1) at t1 and reaches
P2 = (x2, y2, z2) at t2. Since the speed of light is c, we will have

(x1 − x2)2 + (y1 − y2)2 + (z1 + z2)
2 = c2(t1 − t2)2 . (2.5)

If S′ is another IF in which at t1 P1 coincides with P ′
1 and P2 with P ′

2, since c is the same in both IF
we will have

(x′1 − x′2)2 + (y′1 − y′2)2 + (z′1 + z′2)
2 = c2(t′1 − t′2)2 . (2.6)

Definition 2.1.2 The expression

∆s212 = c2(t1 − t2)2 − (x1 − x2)2 − (y1 − y2)2 − (z1 + z2)
2 , (2.7)

can be taken as the interval between the two events in S and it is a relativistic invariant.

If ∆s212 = 0 in S, we have ∆s′12
2 = 0 in S′.

Definition 2.1.3 The infinitesimal interval will be

ds2 = c2 dt2 − dx2 − dy2 − dz2 . (2.8)

Property 2.1.4 ds2 is a relativistic invariant.

Since ds2 = 0 implies ds′2 = 0, it means that they are infinitesimals of the same order. We can put

ds2 = a ds′2 . (2.9)

Since we want the space-time to be homogeneous and isotropic, a cannot depend on Xµ, and neither
on the vector v, relative velocity of the frame S′ with respect to S. It could depend on v = |v|,
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modulus of the relative velocity. However, let us consider three reference systems, S1, S2 and S3. S2
moves with respect to S1 with velocity v2 and S3 moves with respect to S1 with velocity v3. S3 will
move with respect to S2 with velocity v23. Therefore, we have

ds21 = a(v2) ds
2
2 , ds21 = a(v3) ds

2
3 , ds22 = a(v23) ds

2
3 . (2.10)

Taking the ratio of the first two equations we have that

ds22 =
a(v3)

a(v2)
ds23 , (2.11)

but also (considering the third one)
ds22 = a(v23) ds

2
3 . (2.12)

Therefore
a(v3)

a(v2)
= a(v23) . (2.13)

The r.h.s. depends on v2, v3 but also on the directions of v2 and v3 (v23 is the modulus of the relative
velocity), while the l.h.s. doers not depend on the directions, it means that they should be constants
and that therefore a = 1. In the end

ds2 = ds′2 . (2.14)

NOTE: the interval ∆s2 is not positive definite (as it is instead in the Euclidean case) but it can be
> 0, < 0 or = 0.

1. If there exists an inertial frame in which the two events happen at the same spatial point, but
at subsequent times, in that frame we must have

∆s′2 = c2∆t′2 > 0 . (2.15)

Since ∆s2 is a relativistic invariant, in another frame we will have, in any case,

∆s2 = c2∆t2 −∆l2 = ∆s′2 > 0 . (2.16)

We call this interval a time-like interval. In this case the two events can be connected by a
causal-effect relationship.

2. If there exists an inertial frame in which the two events happen at two different spatial points,
but at the same time, in that frame we must have

∆s′2 = −∆l′2 < 0 . (2.17)

Since ∆s2 is a relativistic invariant, in another frame we will have, in any case,

∆s2 = c2∆t2 −∆l2 = ∆s′2 < 0 . (2.18)

We call this interval a space-like interval. In this case the two events cannot be causally
connected.

3. Finally, an interval for which ∆s2 = 0 is called light-like.

The property to be time-like, space-like or light-like is a characteristic of the vector and does not
depend on the inertial frame.
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X1

X0 = ct

X2 = 0

O

P1

P2

P3

Figura 2.1: Minkowski space and the light cone.

2.1.2 Causal structure of the Space-Time

Let us consider an event O in the space-time as the origin of our frame (for simplicity of representation
we consider a 1+1 dimensional Minkowski space) as in Fig. 2.1. The events for which c2∆t2 = ∆l2,
reported as X2 = 0, are represented in the diagram as streight lines at 45◦ and they are characteristic
of the propagation of light. This means that an event on one of these streight lines is connected to
the origin O by a signal that travels at the speed of light. The region between the two lines at 45◦

is called the light cone (“cone” because in more dimensions is a cone). Events within the light cone,
like P1 or P3, have time-like distance from O and, therefore, they can be in causal relationship with
O. P3 “happens” before O, while P1 after. We can make a Lorentz transformation to a frame in which
P3 and O happens in the same spatial place but at two subsequent instants. In the same way we can
find a frame in which O and P1 happens in the same spatial place but at two subsequent instants. The
region outside the light cone cannot be connected causally with events within the light cone. In fact, a
signal from P3, for instance, in order to reach O would have to travel at a speed bigger than the speed
of light and this is not possible. We can find a frame in which O and P3 happen simultaneously in two
separate space points (Note: in the case of space-like separations, we can also find a frame in which
the temporal succession of the two events is inverted).

2.1.3 Lorentz transformations: Boosts

Let us consider two inertial frames, S and S′. S′, for instance, will move with respect to S with
constant velocity v. Knowing the coordinates of one event in S, say (ct, x, y, z), we would like to find
the transformation laws that allow us to represent the same event in S′, (ct′, x′, y′, z′).

Let us suppose for simplicity that S′ moves with respect to S with a translation in the x direction

v
S

O x

y

z

S′

O′ x′

y′

z′
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and that the axis x and x′ coincide. If an event has coordinates Xµ in S, its coordinates X ′µ in S′

will be:






















X ′0 = γX0 − βγX1

X ′1 = −βγX0 + γX1

X ′2 = X2

X ′3 = X3

(2.19)

where β = v
c and γ = 1√

1−β2
. Eq. (2.19) can be written in the following way:

X ′µ = Λµν X
ν , (2.20)

where we used the Lorentz transformation Λµν , that can be written in matrix form as follows:

Λ =









γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1









. (2.21)

Another way to parametrize Λ is through hyperbolic functions. In fact, we know that γ2(1− β2) = 1.
Therefore, we can define an imaginary angle φ, such that

γ = coshφ , e γβ = sinhφ . (2.22)

Then, we can write:

Λ =









cosh φ − sinhφ 0 0
− sinhφ coshφ 0 0

0 0 1 0
0 0 0 1









. (2.23)

The inverse Lorentz transformation is the one that gives the coordinates Xµ in S, knowing X ′µ in
S and can be found immediately inverting the velocity in (2.21)























X0 = γX ′0 + βγX ′1

X1 = βγX0 + γX ′1

X2 = X ′2

X3 = X ′3

(2.24)

and then
Xν = Λ .ν

µ X ′µ , (2.25)

where now (Λ−1)νµ = Λ .ν
µ is such that

Λ−1 =









γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1









(2.26)

and
Λ .ν
ρ Λµν = ηµρ = δµρ , (2.27)
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that can be checked multiplying Eq. (2.21) times Eq. (2.26) and using γ2 − β2γ2 = 1:

ΛΛ−1 =









γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1

















γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1









=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (2.28)

Note that the boost defined in this way is particularly simple, in the sense that the translation
with velocity v is done in the x direction only, v = v î. In general we can have the velocity directed
in a general direction (we will write the general boost below). Moreover, it can happen that the frame
S′ does not have the axis x′, y′ and z′ parallel to x, y and z. In this case we can rotate S′ to make
in such a way that the axis become parallel to the axis of S. This corresponds to an isometry in the
three-dimensional space. Since the time is not affected, only dx will change. However, since we are
speaking about an isometry, we will have |dx′| = |dx| and therefore, in the end, ds′2 = c2dt2 − dx′2 =
c2dt2− dx2 = ds2. This means that the spatial rotations are part of the Lorents transformations (they
leave ds2 unchanged). A Lorentz transformation is a composition of a rigid rotation and a boost in
the v direction.

Non relativistic limit

If we consider the limit in which
v

c
≪ 1 , (2.29)

we have
1

√

1− β2
≃ 1 +

1

2
β2 + ... (2.30)

and therefore at zeroth order in β we find






















t′ ≃ t

x′ ≃ x− vt
y′ = y

z′ = z

(2.31)

i.e. the Galilean transformations.

2.1.4 Boost in a general direction

The boost in the x direction shows the general feature that only the components in the direction of
the velocity, and the time, are affected by the transformation. The components perpendicular to the
direction of the velocity are not. We can write a boost in a general direction v̂, decomposing the vector
X as the sum of two vectors: one parallel and the other perpendicular to v̂.

X = X‖ +X⊥ , X′ = X′
‖ +X′

⊥ . (2.32)

Then, the boost can be written as follows:



















X ′0 =
X0−βX‖√

1−β2
= X0−βX·v̂√

1−β2

X′
‖ =

X‖−β X0v̂√
1−β2

X′
⊥ = X⊥ .

(2.33)
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2.1.5 Transformation of the three-velocity

It is interesting to look at the composition of velocities in special relativity. We will demonstrate that,
if u is the three-velocity of a material point that moves with respect to the observer in S and the
observer in S′ moves with respect to S with a velocity v, the velocity u′ of the point seen by S′ is such
that if |u′| ≤ c and |v| ≤ c then |u ≤ c. For simplicity we consider a boost in the x direction. We have























t′ = γ
(

t− v
c2x
)

x′ = γ (x− vt)
y′ = y

z′ = z

(2.34)

and the inverse transformation given by






















t = γ
(

t′ + v
c2x

′)

x = γ (x′ + vt′)

y = y′

z = z′

(2.35)

Let us consider the three-velocity u of the material point in components. We have

ux =
dx

dt
=
dx

dt′
dt′

dt
=

d

dt′

(

x′ + vt′
√

1− β2

)

d

dt

(

t− v
c2
x

√

1− β2

)

=
u′x + v
√

1− β2
1− v

c2
ux

√

1− β2
. (2.36)

From Eq. (2.36) we find

ux(1− β2) = u′x −
v

c2
uxu

′
x + v − β2ux , (2.37)

and therefore

ux =
u′x + v

1 + v
c2
u′x

. (2.38)

For the component in y we have

uy =
dy

dt′
dt′

dt
= ... =

u′y
√

1− β2
1 + v

c2 u
′
x

(2.39)

and for uz

uz =
dz

dt′
dt′

dt
= ... =

u′z
√

1− β2
1 + v

c2
u′x

. (2.40)

In summary






















ux = u′x+v
1+ v

c2
u′x
,

uy =
u′y
√

1−β2

1+ v

c2
u′x

,

uz =
u′z
√

1−β2

1+ v

c2
u′x

.

(2.41)

Note that if c→∞ (or better if we consider the limit v/c≪ 1) we find the “euclidean” composition of
the velocities











ux ≃ u′x + v ,

uy ≃ u′y ,

uz ≃ u′z .

(2.42)
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Let us assume that the point moves in the x direction only (for simplicity) and that u′x ≤ c, v ≤ c.
Then we have

(c− u′x) ≥ 0 , and (c− v) ≥ 0 . (2.43)

It follows that
(c− u′x)(c− v) = c2 − cv − u′xc+ vu′x ≥ 0 (2.44)

and then (deviding by c2 which is 6= 0 and positive)

1 +
u′xv
c2
≥ u′x + v

c
. (2.45)

Looking at the x component in Eq. (2.41), we get

u′x + v = ux

(

1 +
v

c2
u′x
)

≥ ux
(

u′x + v

c

)

(2.46)

and therefore
ux ≤ c . (2.47)

If u′x = c, we find immediately that

ux =
u′x + v

1 + v
c2
u′x

=
c+ v

1 + v
c

= c . (2.48)

2.2 Kinematics of the classical particle

We want now to describe the kinematics and the dynamics of a point-like massive particle in a covariant
way. The goal is to be able to re-write the second principle of dynamics in a manifetly covariant way,
using tensor relations, in such a way that for v ≪ c we can recover Newtonian mechanics.

2.2.1 Four-velocity and four-acceleration

In newtonian mechanics we introduce the velocity of the particle as v = dx
dt . An obvious relativistic

generalization of the dx is dXµ. However, dt is not a relativistic invariant, and therefore dXµ

dt does not
transform as a four-vector. We should find an invariant that can replace dt.

We know that
ds2 = c2dt2 − dx2 − dy2 − dz2 (2.49)

is an invariant. Let us then perform a LT to an inertial frame in which dx′ = dy′ = dz′ = 0. If we
rename τ the time in that frame, i.e. the time in the frame in which the particle is at rest, we have

dτ = dt
√

1− β2 (2.50)

and
ds2 = c2dτ2 (2.51)

then also dτ is an invariant. τ is called the proper time of the particle.
Let us consider now the following vector (with the dimensions of a velocity)

Uµ = (U0,U) = dXµ

dτ
= γ

dXµ

dt
. (2.52)

Uµ is indeed a four-vector, since dXµ is a four-vector and dτ is an invariant. We have

U0 =
1

√

1− β2
dX0

dt
=

c
√

1− β2
, (2.53)
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U =
1

√

1− β2
dX

dt
=

v
√

1− β2
. (2.54)

Uµ is a time-like vector, since

UµUµ =

(

c
√

1− β2

)2

−
(

v
√

1− β2

)2

= c2 > 0 . (2.55)

Following on the same line, we can define the four-acceleration

Aµ =
dUµ
dτ

= γ
dUµ
dt

. (2.56)

The components of Aµ are

A0 = γ
dU0

dt
= ... =

v · a
c(1− β2) , (2.57)

A = γ
dU
dt

= ... =
a

(1− β2) +
v · a

c2(1− β2)2v , (2.58)

where v = dx
dt and a = dv

dt . Note that for c→∞ we have that the temporal component of Aµ goes to
zero, while the spatial component becomes a, the usual non relativistic acceleration.

2.2.2 Four-momentum

In newtonian mechanics an important quantity is the momentum of the particle, which ia defined as
p = mv. A covariant form of p can be constructed in the following way

Pµ = mUµ , (2.59)

where m coincides with the inertial mass of the particle when v ≪ c. We have

Pµ =

(

mc
√

1− β2
,

mv
√

1− β2

)

, (2.60)

which is called the energy-momentum four-vector. Pµ is such that

P 2 = PµPµ =
m2c2

1− β2 −
m2v2

1− β2 = m2c2 > 0 . (2.61)

It is a time-like vector. The relation PµPµ = m2c2 is called the mass-shell relation. Since the lagrangian
of the free particle is

L = −mc2
√

1− β2 , (2.62)

such that the three-momentum p is actually

p =
∂L

∂v
=

mv
√

1− β2
, (2.63)

we can look at the energy, performing a Legendre transformation to

E = p · v − L =
mc2

√

1− β2
. (2.64)

Note that even if v = 0 the energy of the free particle is not zero, but

E
v→0→ mc2 . (2.65)
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Using Eq. (2.64), we have

Pµ =

(

mc
√

1− β2
,

mv
√

1− β2

)

=

(

E

c
,p

)

(2.66)

and from the mass-shell relation we have

E2

c2
= |p|2 +m2c2 . (2.67)

2.3 Vectors and Tensors

After the introduction of Lorentz transformations, we now want to study how mathematical objects,
that will be used to describe our Physics, transform under Lorentz transformations (LT). This is the
subject of Tensor Analysis.

Let us start introducing a more general definition of vectors in a Euclidean space.

2.3.1 Vectors and Contravariant Components

In Special Relativity (SR) we have to deal with different kind of vectors. The fact that in Newtonian
mechanics, for instance, we do need just the usual Euclidean definition is simply due to the fact that
usually we use an ortonormal system of basis vectors for the vectorial space. In this situation the metric
tensor reduces to a Kronecker delta function and it becomes impossible to appreciate the difference
between different definitions of vectors.

Let us consider a vector space V on R. Let {ei} is a set of independent vectors which constitutes
a basis for V.

If v ∈ V, it can be expressed as a linear combination of the basis vectors

v = viei , with i = 1, · · · , dim(V) . (2.68)

The real numbers vi are called the contravariant components of v. The place of the index i , as
superscript is relevant. As we will see in a moment, components with an index as subscript describe a
different kind of vector.

Let us consider now a different basis of V, {e′i} and let Λ be the transformation from the old to
the new basis. We have

e′i = Λjiej (2.69)

Note that the index j of ej is contracted with the upper index of Λ. Under basis transformation, the
components of v tranform accordingly. The transformation law is the following. Remember that the
vector v is an absolute quantity, that can be represented using different basis. But v is always the
same vector. Therefore, in the new basis we will have

v = v′ie′i = v′iΛjiej , (2.70)

but we can also write
v = vjej , (2.71)

and matching Eq. (2.70) and Eq. (2.71) we find

vj = Λjiv
′i . (2.72)

Note that the index of v′i is contracted with the lower index of Λ (it goes with the transposed).

Multiplying Eq. (2.72) by
(

Λ−1
)l

j
on the l.h and r.h.s, we have

(

Λ−1
)l

j
vj =

(

Λ−1
)l

j
Λjiv

′i =
(

Λ−1Λ
)l

i
v′i = δliv

′i = v′l . (2.73)
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Finally

v′l =
(

Λ−1
)l

j
vj (2.74)

Therefore, if the basis transforms with Λ, the contravariant components of v transform with the inverse
transposed of Λ,

(

ΛT
)−1

=
(

Λ−1
)T

.
In matrix notation

v = ΛTv′ , (2.75)

v′ =
(

ΛT
)−1

v =
(

Λ−1
)T

v , (2.76)

2.3.2 Dual vectors and covariant components

Once the vectorial space V is defined, it is automatically defined also the “dual” space, V∗, which is
the vectorial space of linear funtionals on V:

σ : V → R , (2.77)

v→ σ(v) . (2.78)

Since V∗ is a vectorial space, we can find a basis {ki} in which the functional σ can be represented
in a unique way as

σ = σik
i . (2.79)

the set σi are real numbers that represent the components of σ in this basis.
Although V and V∗ are different spaces, they are connected. They have the same dimensionality

and they are isomorfic, but they are different! If the basis changes in V, this will imply a change of
basis of V∗. Therefore, we can ask how the components of σ behave under the basis transformation in
Eq. (2.69). We labeled the components of σ in the {ki} basis with a lower index because the properties
of these components under a basis tranformation in V are different from those of the contravariant
components of a vector in V.

Using (2.79), we can write

σ(v) = σik
i(v) = σik

i(vjej) = σiv
jki(ej) . (2.80)

The number ki(ej) tells how the components of the basis in the functional space V∗ act on the
components of the base in V. We say that the two chosen basis are “dual” when we have

ki(ej) = δij , (2.81)

with δ the Kronecker delta δii = 1, δij = 0 if i 6= j. In this case the situation is much simpler and we
have

σ(v) = σiv
i . (2.82)

Note that (2.82) is not a scalar product! It is the sum of the product of the corresponding components
of σ and v, vectors that belong to two different vector spaces.

Let us consider dual bases. If we apply the basis functionals {ki} to the vector v ∈ V we have

ki(v) = ki(vjej) = vj ki(ej) = vi , (2.83)

because of (2.81). Therefore, the action of ki on v is to extract its contravariant component. On the
other hand, we have

σ(ej) = σi k
i(ej) = σj , (2.84)

because of (2.79).
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If we consider the change of basis (2.69), it will imply a change of basis in V∗, say from ki to k′i.
In k′i the expression of σ will be given by

σ = σ′i k
′i . (2.85)

We have, because of (2.84)

σ′i = σ(e′i) = σjk
j(e′i) = σjk

j(Λliel) = σjΛ
l
ik
j(el) = σjΛ

l
iδ
j
l = σjΛ

j
i . (2.86)

In summary

σ′i = Λjiσj (2.87)

and the components σi transform according to the transformation of basis (as in (2.69)). That is why
they are called “covariant” components.

Scalar Product and Metric Tensor

Just to have in mind a practical example, let us introduce the scalar product and refrase what we just
said in this case.

The scalar product between two vectors of V is an application of V × V → R, which is bilinear,
symmetric and not degenerate

v,w ∈ V → (v,w) ∈ R . (2.88)

The scalar product induces a norm on V, that in turn induces a metric. Therefore, with a scalar
product our vector space becomes a metric space.

Let us fix the first vector v and consider the scalar product with every other vector w ∈ V. In this
case we defined a functional fv = (v, .) such that

w ∈ V → fv(w) = (v,w) ∈ R . (2.89)

fv is formally a vector of the dual space of V, V∗. We can choose a basis in V∗. Let us call it {ki},
with the index i as superscript. Therefore, fv will be expressed in a unique way in this basis:

f = fik
i . (2.90)

Because of the definition (2.89), in this case we have

fi = f(ei) = (v, ei) = vi . (2.91)

We call them covariant components of v.
We have, in particular

fv(w) = (v,w) = vi (ei,w) = viwj (ei, ej) = viwj gij , (2.92)

where we introduced the “metric tensor”

gij = (ei, ej) . (2.93)

The metric tensor is symmetric (by construction). If it is also positive definite, there is a theorem that
proves that with a change of basis we can find

gij = (ei, ej) = δij . (2.94)

In this case we see that covariant and contravariant components are exactly the same. If the metric
tensor is not positive definite, then they are diferent and related by the metric tensor

vi = gijv
j . (2.95)
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This is the case of Special Relativity.
Since the covariant components of v are defined as

vi = (v, ei) = (vjej , ei) = vj (ej , ei) = gijv
j , (2.96)

under basis transformation, as in Eq. (2.69), they change according to the following relation

v′i = (v, e′i) = (vjej,Λ
ρ
i eρ) = vjΛρi (ej , eρ) = vjΛρi gjρ = Λρi vρ . (2.97)

In summary

v′i = Λjivj (2.98)

Now we can ask how the metric tensor transforms under (2.69)? We have

g′ij = (e′i, e
′
j) = (Λρi eρ,Λ

σ
j eσ) = ΛρiΛ

σ
j (eρ, eσ) = ΛρiΛ

σ
j gρσ . (2.99)

Therefore
g′ij = ΛρiΛ

σ
j gρ,σ . (2.100)

A two-indices object, gij , that transforms like in Eq. (2.100) is called a covariant tensor of rank 2.
Using Eq. (2.100) we can show that the scalar product is an absolute quantity, that does not depend

on the chosen basis. In fact

(u′,v′) = g′µνu
′µv′ν = ΛρµΛ

σ
νgρσu

′µv′ν = ΛρµΛ
σ
νgρσ

(

Λ−1
)µ

γ

(

Λ−1
)ν

δ
uγvδ (2.101)

=
(

ΛΛ−1
)ρ

γ

(

ΛΛ−1
)σ

δ
uγvδ = δργδ

σ
δ u

γvδ = gγδu
γvδ (2.102)

= (u,v) . (2.103)

We can also define the inverse of the matric tensor (the contravariant version of the metric tensor)
gµν such that

gµνgνρ = δµρ = δρµ = gµνg
νρ (2.104)

and
(u,v) = gµνu

µvν = uνv
ν = uνvµg

µν . (2.105)

Under basis transformation, gµν behaves as follows:

(u,v) = gγδuγvδ = (u′,v′) = g′µνu′µv
′
ν (2.106)

= g′µνΛγµΛ
δ
νuγvδ (2.107)

and therefore
gγδ = g′µνΛγµΛ

δ
ν . (2.108)

Multiplying on both sides by
(

Λ−1
)l

γ

(

Λ−1
)m

δ
, we have

(

Λ−1
)l

γ

(

Λ−1
)m

δ
gγδ =

(

Λ−1
)l

γ

(

Λ−1
)m

δ
ΛγµΛ

δ
νg

′µν =
(

Λ−1Λ
)l

µ

(

Λ−1Λ
)m

ν
g′µν (2.109)

and finally
g′lm =

(

Λ−1
)l

γ

(

Λ−1
)m

δ
gγδ . (2.110)

2.3.3 Vectors and Tensors in Differential Form

A more convenient (and general) way to define vectors and tensors is to use the apparatus of differential
geometry. In this way, we use local definitions that are valid also for non linear spaces, like in General
Relativity.
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Contravariant Vectors

Let us suppose to work in a Euclidean space and let (x1, · · · , xn) be a system of euclidean coordinates.
A curve in this space is given in parametric form as































x1 = x1(t)

.

.

.

xn = xn(t)

(2.111)

with t ∈ [a, b] ⊂ R. The velocity vector of the curve in the point x0 = x(t0) is

vx =

(

dx1

dt
, · · · , dx

n

dt

)∣

∣

∣

∣

t=t0

, vix =
dxi

dt
. (2.112)

Let us suppose that in a neighbourhood of x0 the new coordinates (z1, · · · , zn) are introduced, in such
a way that

xi = xi(z1, · · · , zn) , i = 1, · · · , n (2.113)

and such that in this neighbourhood we have

detJ = det

{

∂xi

∂zi

}

6= 0 . (2.114)

In the new coordinates, the parametric equations of the curve are






























z1 = z1(t)

.

.

.

zn = zn(t)

(2.115)

and we can write
xi(t) = x(z(t)) . (2.116)

The velocity vector in the new coordinates is

vz =

(

dz1

dt
, · · · , dz

n

dt

)∣

∣

∣

∣

t=t0

, viz =
dzi

dt
, (2.117)

In the transformation from x to z coordinates, the velvcity vector transforms as follows

vix =
dxi

dt
=
∂xi

∂zj
dzj

dt
=
∂xi

∂zj
vjz , (2.118)

Therefore

vix =
∂xi

∂zj
vjz (2.119)

or, in matrix form
vx = J vz . (2.120)

A vector whose components transform as in Eq. (2.119) is called a contravariant vector (or contra-
variant tensor of rank 1).
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Covariant Vectors

Let us consider the gradient of a scalar function f(x1, · · · , xn):

ξ = ∇f =

(

∂f

∂x1
, · · · , ∂f

∂xn

)

, ξi =
∂f

∂xi
. (2.121)

If we introduce a new system of coordinates (z1, · · · , zn) such that xi = xi(z1, · · · , zn) and detJ =

det
{

∂xi

∂zi

}

6= 0, we define

η =

(

∂f

∂z1
, · · · , ∂f

∂zn

)

, ηi =
∂f

∂zi
. (2.122)

Changing system of coordinates, the gradient transforms in the following way

ηi =
∂f

∂zi
=
∂xj

∂zi
∂f

∂xj
=
∂xj

∂zi
ξj . (2.123)

Therefore

ηi =
∂xj

∂zi
ξj (2.124)

A vector whose components transform as in Eq. (2.124) is called a covariant vector (or covariant
tensor of rank 1).

Summarizing, if the jacobian of the transformation is

J =









∂x1

∂z1
. . ∂x1

∂zn

. .

. .
∂xn

∂z1
. . ∂xn

∂zn









, (2.125)

we have in matrix form:

contravariant ξ = J η , (2.126)

covariant η = J t ξ , =⇒ ξ =
(

J t
)−1

η . (2.127)

Note: The transformations of the contravariant and covariant vector coincide in the case in which

J =
(

J t
)−1

, =⇒ JJ t = 1 , (2.128)

therefore, if in every point the transformation is linear (J = const) and ortogonal.

Metric Tensor

Let us now introduce the scalar product of two vectors.
Let us suppose that the coordinate system (x1, · · · , xn) is euclidean, that ξ1 and ξ2 are two vectors

with origin in P0 = (x10, · · · , xn0 ) and let us introduce in a neighbourhood of (x10, · · · , xn0 ) another

system of coordinates (z1, · · · , zn) such that xi = xi(z1, · · · , zn) and detJ = det
{

∂xi

∂zi

}

6= 0, with

xi0 = xi(z10 , · · · , zn0 ).
Knowing that

ξi1 =
∂xi

∂zj

∣

∣

∣

∣

P0

ηj1 , ξi2 =
∂xi

∂zj

∣

∣

∣

∣

P0

ηj2 , (2.129)

we define the scalar product as

(ξ1, ξ2) = ξi1ξ
i
2 =

∂xi

∂zj
∂xi

∂zk

∣

∣

∣

∣

P0

ηj1η
k
2 = gjkη

j
1η
k
2 , (2.130)
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where we introduced the metric tensor

gjk =
∂xi

∂zj
∂xi

∂zk

∣

∣

∣

∣

P0

= J ijJ
i
k = δrsJ

r
j J

s
k . (2.131)

Let us see how the metric tensor transfoms under change of coordinates. If we introduce in a neigh-
bourhood of P0 a new system of coordinates (y1, · · · , yn) such that zi = zi(y1, · · · , yn) and detJ 6= 0,
we will have

ηi1 =
∂zi

∂yj

∣

∣

∣

∣

P0

ζj1 , ηi2 =
∂zi

∂yj

∣

∣

∣

∣

P0

ζj2 , (2.132)

Therefore

(ξ1, ξ2) = gijη
i
1η
j
2 =

∂zi

∂yk
gij
∂zj

∂yl

∣

∣

∣

∣

P0

ζk1 ζ
l
1 = g′klζ

k
1 ζ

l
1 . (2.133)

The metric tensor transforms according to the following rule:

g′kl =
∂zi

∂yk
gij
∂zj

∂yl

∣

∣

∣

∣

P0

= J ikJ
j
l gij . (2.134)

A tensor that transforms like in Eq. (2.134) is called a covariant tensor of rank 2.
Note that the metric tensor is a symmetric tensor

gij = gji , (2.135)

because of the fact that the scalar product is symmetric. Moreover, in general

gij = gij(P0) = gij(z
1
0 , · · · , zn0 ) , (2.136)

then it is a function of the point in which ξ1 and ξ2 are defined.
Definition The metric gij(z) is called euclidean if it exists a system of coordinates (x1, · · · , xn), with

xi = xi(z1, · · · , zn) and det(J) 6= 0, gij = ∂xk

∂zi
∂xk

∂zj
, such that in these coordinates we have

g′ij = δij =

{

1 i = j

0 i 6= j
(2.137)

Definition The metric gij(z) is called pseudo-euclidean if it exists a system of coordinates (x1, · · · , xn),
with xi = xi(z1, · · · , zn) and det(J) 6= 0, gij = ∂xk

∂zi
∂xk

∂zj
, such that in these coordinates we have

g′ij = δij =











1 for i ≤ p (i = j)

−1 for p+ 1 ≤ i ≤ p+ q = n (i = j)

0 i 6= j

(2.138)

The space where such a metric is defined is called Pseudo Euclidean and it is labeled with R
n
p,q. We

will call Minkowski space, a pseudo euclidean space R
4
1,3, with metric

gij =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









. (2.139)

In pseudo-euclidean coordinates we have

|ξ| = gijξ
iξj = (ξ1)2 + · · · + (ξp)2 − (ξp+1)2 − · · · − (ξn)2 . (2.140)
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We can extend the notion of metric tensor also to covariant vectors. We have

ξ1 =
(

J t
)−1

η1 , (2.141)

ξ2 =
(

J t
)−1

η2 , (2.142)

or, in components

ξ1,i =
∂zj

∂xi
η1,j , (2.143)

ξ2,i =
∂zj

∂xi
η2,j , (2.144)

where ξ1 and ξ2 are two vectors in the euclidean coordinate system (x1, · · · , xn), while η1 and η2 the
same vectors in the system (z1, · · · , zn), such that xi = xi(z1, · · · , zn) and det(J) 6= 0. Therefore,

(ξ1, ξ2) = ξ1,iξ1,i =
∂zj

∂xi
∂zk

∂xi
η1,jη1,k = gjkη1,jη1,k . (2.145)

In order to understand how gij transform under change of coordinate system, let us introduce
another coordinate system (y1, · · · , yn) such that zi = zi(y1, · · · , yn) and det(J) 6= 0. We have

η1,i =
∂yj

∂zi
ζ1,j , (2.146)

η2,i =
∂yj

∂zi
ζ2,j , (2.147)

and therefore

gjkη1,jη2,k =
∂yl

∂zj
gjk

∂yr

∂zk
ζ1,lζ2,r , (2.148)

and, finally

g′lr =
∂yl

∂zj
gjk

∂yr

∂zk
. (2.149)

A quantity that transforms as in Eq. (2.149) is called contravariant tensor of rank 2.
Theorem We have

{

gij
}

= {gij}−1.
In fact, let us look at the transformation rules in a matrix form. If we define the covariant metric

tensor as gc and the contravariant metric tensor as gc, we have

g′c = J tgcJ , (2.150)

g′c =
[

(

J t
)−1
]t
gc
(

J t
)−1

. (2.151)

However
[

(

J t
)−1
]t

= J−1 and therefore

g′c = J−1gc
(

J t
)−1

. (2.152)

From Eq. (2.150) we have
(

g′c
)−1

= J−1 (gc)
−1 (J t

)−1
(2.153)

and therefore we find
gc = (gc)

−1 . (2.154)

In components we have
gijg

jk = gki = δik = gijgjk = gik , (2.155)

where δik is the Kronecker delta (and therefore we do not have to distinguish between upper or lower
indices).
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Mixed Tensors

Let us suppose now that in every point of our space, with coordinates (x1, · · · , xn), is defined a linear
operator A(x). If ξ is a vector in x, we have

ηi = aij(x) ξ
j (2.156)

and for the covariant vectors
ηj = aij(x) ξi . (2.157)

If we introduce now, in the neighbourhood of x a new system of coordinates (z1, · · · , zn) such that
xi = xi(z), we will have

ηi =
∂xi

∂zj
η′j , ξi =

∂xi

∂zj
ξ′j (2.158)

and

ηj =
∂zi

∂xj
η′i , ξj =

∂zi

∂xj
ξ′i . (2.159)

Because of Eq. (2.156) we have
∂xi

∂zk
η′k = aij

∂xj

∂zl
ξ′l , (2.160)

from which

η′k =
∂zk

∂xi
∂xj

∂zl
aijξ

′l = a′kl ξ
′l . (2.161)

Therefore

a′kl =
∂zk

∂xi
∂xj

∂zl
aij . (2.162)

A quantity that transforms according to Eq. (2.162) is called mixed tensor of rank 2.

General definition

In general, we define a tensor of (p, q) type, of rank p+ q, on a n-dimensional vector space, a collection
of np+q numbers, in a certain system of coordinates (x1, · · · , xn), whose numerical expression depends
on the system of coordinate as follows: if (z1, · · · , zn) is another system of coordinates and xi =
xi(z1, · · · , zn) we have

T
i1,··· ,ip
j1,··· ,jq =

∂xi1

∂zk1
· · · ∂x

ip

∂zkp
,
∂zl1

∂xj1
· · · ∂z

lq

∂xjq
T
′k1,··· ,kp
l1,··· ,lq . (2.163)

Since det(J) 6= 0, the relation (2.163) can be inverted:

T
′k1,··· ,kp
l1,··· ,lq =

∂zk1

∂xi1
· · · ∂z

kp

∂xip
,
∂xj1

∂zl1
· · · ∂x

jq

∂zlq
T
i1,··· ,ip
j1,··· ,jq . (2.164)

In every point of the space, (p, q) tensors form a linear space.

2.4 Minkowski Space

The ideal space for the study of Special Relativity is a 4-dimensional vector space (X0 = ct, X1 = x,
X2 = y, X3 = z), called Minkowski space, M4, with pseudo-euclidean metric ηµν , that in matrix form
is given by the following expression:

η =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









. (2.165)
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We have
ηµν = ηµν , (2.166)

such that
ηµνηνρ = ηµρ = δµρ . (2.167)

The scalar product in this space is defined as follows:

X ·X = XµX
µ = ηµνX

µXν = ηµνXµXν = (X0)2 − (X1)2 − (X2)2 − (X3)2 (2.168)

and it is not positive definite.
The vectors in M

4 are called four-vectors. We have contravariant vectors (with contravariant
indices)

V µ = (V 0,V) . (2.169)

The covariant vector Vµ can be recovered by V µ using the metric

Vµ = ηµνV
ν = (V 0,−V) , (2.170)

2.5 Lorentz group

So far we have considered boosts. However, the Lorentz tranformations do not include only boosts.
The specific requirement is that a Lorents transformation leave unchanged the quadratic form

(X0)2 − (X1)2 − (X2)2 − (X2)2 . (2.171)

A boost does exactly this. However, there is another transformation that can leave (2.171) unchanged.
In fact, if we consider a rigid rotation in the euclidean 3-dim space, this will leave unchanged the
quadratic form (X1)2+(X2)2+(X2)2, and therefore also (2.171), since the time is not included in the
transformation. Finally, also transformations of the following matrix form

Λ =

(

1 0
0 R

)

, (2.172)

where R is ortogonal (RRt = 1), are Lorentz tranformations.
Let us consider a generic Lorentz transformation, Λµν , that can be a composition of a boost and a

rigid rotation. In order Λµν to be a Lorentz transformation, it must fulfill the following relation:

ηµνΛ
µ
σΛ

ν
ρ = ησρ . (2.173)

The relation in Eq. (2.173) comes from the fact that Lorentz transformations preserve the metric and
leave unchanged the lenght of the four-vector Xµ:

X ′2 = ηµνX
′µX ′ν = ηµνΛ

µ
σX

σΛνρX
ρ = ηµνΛ

µ
σΛ

ν
ρX

σXρ , (2.174)

X2 = ησρX
σXρ (2.175)

and from X ′2 = X2 we find (2.173). Using

X ′2 = ηµνX ′
µX

′
ν = ηµνΛ .σ

µ XσΛ
.ρ
ν Xρ = ηµνΛ .σ

µ Λ .ρ
ν XσXρ , (2.176)

X2 = ησρXσXρ , (2.177)

we find also the following form
ηµνΛ .σ

µ Λ .ρ
ν = ησρ . (2.178)

Eq. (2.173) can be written in matrix form as ΛtηΛ = η.
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Property 2.5.1 The Lorentz transformations, Λµν , form a group, the Lorents Group (LG).

In order to see that, we have to prove that: i) if Λ1 ∈ LG and Λ2 ∈ LG, then Λ1Λ2 ∈ LG; ii) the
identity is a Lorentz transformation; iii) ∃! Λ−1 ∈ LG such that ΛΛ−1 = Λ−1Λ = 1.

• Let us consider
Xµ Λ1→ X ′µ Λ2→ X ′′µ , (2.179)

then we have
X ′′µ = (Λ2)

µ
νX

′ν = (Λ2)
µ
ν (Λ1)

ν
ρX

ρ . (2.180)

We have to prove that
Λµρ = (Λ2)

µ
ν (Λ1)

ν
ρ (2.181)

is indeed a Lorentz transformation (it satisfies Eq. (2.173)). In fact, we have

ηµν
[

(Λ2)
µ
γ (Λ1)

γ
σ

]

[

(Λ2)
ν
δ (Λ1)

δ
ρ

]

= ηµν(Λ2)
µ
γ (Λ2)

ν
δ

[

(Λ1)
γ
σ(Λ1)

δ
ρ

]

= ηγδ(Λ1)
γ
σ(Λ1)

δ
ρ = ησρ , (2.182)

where we used the fact that Λ2 and Λ1 are indeed Lorentz transformations.

• The identity transformation
Λµν = δµν (2.183)

trivially satisfies relation (2.173):
ηµνδ

µ
σδ

ν
ρ = ησρ . (2.184)

• The inverse exists. In fact, since ΛtηΛ = η, (det(Λ))2 = 1 or det(Λ) = ±1 (and in particular
det(Λ) 6= 0). Let us see how the inverse can be defined. Multiplying both sides of Eq. (2.173) by
ηρσ

′
we have

ηρσ
′
ηµνΛ

µ
σΛ

ν
ρ = ηρσ

′
ησρ = ησ

′

σ (2.185)

This means that
ηρσ

′
ηµνΛ

ν
ρ = Λ .σ′

µ = (Λ−1)σ
′

µ . (2.186)

Let us check that, indeed, (Λ−1)σ
′

µ is a Lorentz transformation, i.e. that

ηµν(Λ
−1)µσ(Λ

−1)νρ = ηρσ . (2.187)

Using relation (2.186) we have to prove that

ηµν(η
µξησωΛ

ω
ξ )(η

νξ′ηρω′Λω
′

ξ′ ) = ηµνη
µξηνξ

′
ησωηρω′Λωξ Λ

ω′

ξ′ = ηξξ
′
(ησωΛ

ω
ξ )(ηρω′Λω

′

ξ′ ) . (2.188)

If we multiply the r.h.s. and l.h.s. of Eq. (2.173) by Λ .ρ
ν′ we find

ηµνΛ
µ
σΛ

ν
ρΛ

.ρ
ν′ = ηµν′Λ

µ
σ = ησρΛ

.ρ
ν′ . (2.189)

Using Eq. (2.189) in Eq. (2.188), we find

ηµν(η
µξησωΛ

ω
ξ )(η

νξ′ηρω′Λω
′

ξ′ ) = (ηξξ
′
ηξδ)Λ

.δ
σ (ηρω′Λω

′

ξ′ ) = δξ
′

δ Λ
.δ
σ ηρω′Λω

′

ξ′ , (2.190)

= Λ .ξ′
σ ηρω′Λω

′

ξ′ = ηρω′δσω′ = ηρσ . (2.191)
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In summary, Lorentz transformations form a group that is called Lorentz Group. Since, as we
noticed, Λ ∈ LG is such that (det(Λ))2 = 1, we have elements of the group with det(Λ) = 1 and
elements with det(Λ) = −1. The identity has det(Λ) = 1. This means that only the subset with
det(Λ) = 1 can form a subgroup of the LG.

Moreover, from (2.173) we have

1 = η00 = ηµνΛ
µ
0Λ

ν
0 = (Λ0

0)
2 −

∑

i

(Λi0)
2 , (2.192)

from which we obtain
(Λ0

0)
2 ≥ 1 =⇒ Λ0

0 ≥ 1 or Λ0
0 ≤ −1 . (2.193)

In total the LG has four different subsets, listed in the following table:

Symbol Λ0
0 detΛ Name

L↑
+ ≥ 1 +1 Proper hortocronous

L↓
+ ≤ −1 +1 Proper anticronous

L↑
− ≥ 1 −1 Improper hortocronous

L↓
− ≤ −1 −1 Improper anticronous

Only L↑
+ is a soubgroup of the LG (the identity is such that δ00 = 1) and its elements can be

obtained from the identity with a continuous change of the parameters of the group (for instance the
velocity of the boosts and the angles of the rigit rotation). A group that depends in a continuous and
differentiable way on a set of parameters is called a Lie group.

The four subsets L↑
+, L↓

+, L↑
− and L↓

− can be connected only via the discontinuous transformations
called Parity and Time Reversal.

• A Parity transformation acts only on the spatial part of the four-vector, inverting it:

(X0,X)
ΛP→ (X0,−X) . (2.194)

In matrix form we have

ΛP =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









(= η) . (2.195)

Parity belongs to the set L↑
−.

• A Time Reversal transformation acts only on the temporal part of the four-vector, inverting it:

(X0,X)
ΛT→ (−X0,X) . (2.196)

In matrix form we have

ΛT =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









(= −η) . (2.197)

Time Reversal belongs to the set L↓
−.

We can connect the four subsets using Parity and Time Reversal, as in figure 2.2. For instance,
take an element of L↑

+, say Λ↑
+. The element Λ1 = Λ↑

+ΛT is such that det(Λ1) = det(Λ↑
+ΛT ) =

det(Λ↑
+)det(ΛT ) = −1 and (Λ1)

0
0 = −(Λ

↑
+)

0
0 ≤ −1. Therefore, the action of ΛT was such that Λ1 ∈ L↓

−.

If we consider, instead, Λ2 = Λ↑
+ΛP , we find again det(Λ2) = −1 but now the sign of (Λ2)

0
0 is the same

as the one of (Λ↑
+)

0
0. Therefore Λ2 ∈ L↑

−.
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Figura 2.2: Connection of the four subsets of the LG.

2.6 Poincaré group

We consider so far only homogeneous transformations. However, in addition to boosts and rigid
rotations, we have the freedom to redefine the origin of our inertial frame, adding a constant vector
(rigid translation) and Physics must not to be affected by this operation. Such a transformation can
be expressed as

Xµ → x′µ = ΛµνX
ν + aµ . (2.198)

Boosts with rotations and translations of the space axis are called Poincaré transformations (or
inhomogeneous Lorents transformations). We indicate such a transformation as T (Λ, a).

Poincaré transformations form a group, the Poincaré group (PG). In fact:

• the identity T (1, 0) ∈ PG;

• the composition of two transformation is a Poincaré transformation, since

X ′′µ = (Λ1)
µ
νX

′ν + a′µ = (Λ1)
µ
ν

[

(Λ2)
ν
ρX

ρ + aν
]

+ a′µ = (Λ1)
µ
ν (Λ2)

ν
ρX

ρ+(Λ1)
µ
νa

ν + a′µ , (2.199)

and (Λ1)
µ
ν (Λ2)

ν
ρ is a Lorentz transformation, while (Λ1)

µ
νaν + a′µ is a constant vector. Therefore

T (Λ′, a′)T (Λ, a) = T (Λ′Λ,Λ′a+ a′) . (2.200)

• The inverse exists, T−1(Λ, a) = T (Λ−1,−Λ−1a) such that

T (Λ, a)T−1(Λ, a) = T (Λ, a)T (Λ−1,−Λ−1a) = T (ΛΛ−1,−ΛΛ−1a+ a) = T (1, 0) . (2.201)

2.7 Infinitesimal Transformations

Since L↑
+ is constituted by elements that can be connected smoothly to the identity, we can study the

local properties of LG and PG using infinitesimal transformations. An infinitesimal transformation
is a Lorentz (Poincaré) transformation in which the parameters go smoothly to zero. Therefore, for
instance

Λµν ≃ δµν + ǫµν , (2.202)

at first order. Including the translations we will have

T (Λµν , a
µ) ≃ T (δµν + ǫµν , δa

µ) , (2.203)
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where we considered
X ′µ ≃ (δµν + ǫµν )X

ν + δaµ = Xµ + ǫµν X
ν + δaµ . (2.204)

The infinitesimal Lorentz transformation (δµν + ǫµν ) has to satisfy the usual relation (2.173). Therefore:

ησρ = ηµν(δ
µ
σ + ǫµσ)(δ

µ
ρ + ǫµρ ) , (2.205)

= ηµνδ
µ
σδ

µ
ρ + ηµνδ

µ
σǫ
µ
ρ + ηµνǫ

µ
σδ
µ
ρ + ... , (2.206)

= ησρ + ǫσρ + ǫρσ . (2.207)

This means that the ǫ tensor must be antisymmetric

ǫσρ = −ǫρσ (2.208)

and therefore it has 6 independent elements. The LG then depends upon 6 independent parameters
(three for the boosts and three for the rotations). Including the 4 parameters of the rigid translation,
we have that the Poincaré group depends on 10 parameters.

NB The transformation Λµν is already a “representation” of the Lorentz group, as we will see in the
next chapter. It is a particular representation called the “fundamental” representation. We can find
immediately from Eq. (2.202) the form of the generators of the group in this representation. In fact,
we can write

Λµν ≃ δµν + ǫµν = δµν −
i

2
(Jρσ)µν ǫρσ , (2.209)

where
(Jρσ)µν = i(ηρµδσν − ησµδρν) (2.210)

and we recover1 Eq. (2.202). The six 4 × 4 matrices defined in Eq. (2.210) are the generators of the
group in this representation.

2.8 Some notes on Group Theory

In this section we recall some concepts of group theory. This is important in order to fully characterize
the Poincaré group and to understand the transformation properties of the quantities we will study in
the rest of the course.

Definition 2.8.1 A Group (G) is a collection of elements that are combined through a closed operation
(product) such that

if a, b ∈ G =⇒ a · b ∈ G . (2.211)

The product must obey the following properties:

1. a · (b · c) = (a · b) · c (associative)

2. ∃e ∈ G such that a · e = e · a = a, ∀a ∈ G (identity: null element of the product)

3. ∀a ∈ G, ∃a−1 ∈ G, such that a · a−1 = a−1 · a = e (inverse)

It can be demonstrated that the identity element e and the inverse a−1 are unique and that (a−1)−1 = a.

Definition 2.8.2 If a · b = b · a, ∀ a, b ∈ G, the group G is called Abelian.

Definition 2.8.3 We call subgroup of G, a subset H which is closed under the operation defined on
G.

1Remember that ǫρσ is antysymmetric.
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Definition 2.8.4 We call homomorphism between two groups, an application

φ : G1 → G2 , (2.212)

such that ∀g1, g2 ∈ G1 we have
φ(g1 · g2) = φ(g1) ◦ φ(g2) , (2.213)

where “◦” is the product defined in G2. If φ is invertible is called isomorphism.

2.8.1 Representations

The set of linear invertible transformations on a vector space V is a group which is called GL(V ).

Definition 2.8.5 A Representation of a group G on a vector space V is an homomorphism

DR : G→ GL(V ) . (2.214)

Therefore, if g ∈ G it follows that DR(g) ∈ GL(V ) and

DR(g1 · g2) = DR(g1)DR(g2) , (2.215)

DS(e) = 1 . (2.216)

So to say, the group is the abstract entity, while the representation is the realization of the group
structure via operators on a vector space. dim(V ) is the dimension of the representation. If dim(V ) = n
finite, we can immediately figure out a representation as a space of matrices acting on some finite
dimensional vector space. In this case the product can be the usual product rows by columns.

Definition 2.8.6 Two representations D1 and D2 of the same group G on two vector spaces V and
W are called “equivalent” if there exists an invertible application between the two vector spaces

T : V →W (2.217)

such that
T D1(g)T

−1 = D2(g) , ∀g ∈ G . (2.218)

Irriducible representations

Let us now introduce the concept of reducible and irreducible representations.

Definition 2.8.7 A subspace S of V is called “invariant” with respect to the representation DS(g) if
∀v ∈ S and ∀g ∈ G, we have DR(g)v ∈ S.

Therefore

Definition 2.8.8 A representation DR on a vector space V is “irreducible” if V does not contain
subspaces invariant under DR. On the contrary, it is “reducible” if it contains invariant subspaces.

In this case the representation DR can be expressed as direct sum of irriducible representations

DR(G) =
∑

⊕
m

D
(m)
R (G) (2.219)

and the operators that act on V (finite-dimensional, for instance) will appear, in a suitable basis, as
block diagonal matrices.
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2.8.2 Lie groups

A special role in Physics is played by the connected Lie groups

Definition 2.8.9 A “Lie group” is a group whose elements g depend in a continuous and differentiable
way on a set of real parameters θa, a = 1, 2, ..., n, θa ∈ R

g = g(θ1, ..., θn) . (2.220)

Without loss of generality, we can chose θa such that for θa = 0 we have g(0) = e. In this way, every
element of the group is connected to the identity by a continuous path in R

n

Lie Algebra

There is an important structure that is connected to the Lie group (and that, as the group itself, does
not depend on the representation of the group) and is called the Lie Algebra. Although not necessary,
in order to find out the algebra connected to the Lie group we consider a particular representation,
DR(g(θ)). For θ → 0 we have to recover the identity (acting on the vector space) and since DR(g(θ))
is continuous and differentiable in θ, we can define the infinitesimal trasformation (at first order in θ)
as

DR(g(θ)) ≃ 1 + iθaT
a
R , (2.221)

where we considered the fact the our Lie group can depend upon a set of parameters, θa, a = 1, ..., n,
and where

T aR = −i ∂DR

∂θa

∣

∣

∣

∣

θ=0

. (2.222)

The operators T aR are called the generators of the Lie group, in the representation R.
In terms of the generators, we can write any transformation DR(g(θ)) in exponential form. As a

simple example, let us consider the case of a Lie group depending on a single parameter θ and let us
indicate with DR(θ) the operator corresponding to g(θ) in a certain representation. Using the group
properties and (2.221), we will have

DR(θ + dθ) = DR(θ)DR(dθ) ≃ DR(θ) (1 + idθTR) = DR(θ) + idθTRDR(θ) . (2.223)

Since

DR(θ + dθ)−DR(θ) ≃
dDR

dθ
dθ = iTRDR(θ) dθ , (2.224)

we then have
DR(θ) = eiTRθ . (2.225)

This formula can be proven to hold in general. If the Lie group depends upon a certain number
of parameters, we can indeed write the operator DR in exponential form (it is called the exponential
map)

DR(g) = eiT
a
Rθa . (2.226)

The generators T aR obey an algebra, that can be found as follows. Since D(g) is a representation of
our Lie group, it has tu fullfil the following relation

DR(g1)DR(g2) = DS(g1g2) = DR(g3) , (2.227)

where g3 = g1g2. Using the exponential map, this means

eiαaTa
ReiβaT

a
R = eiδaT

a
R , (2.228)
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since DS(g1g2) = DR(g3) and therefore it must be of the same form of DR(g1) and DR(g2), and

δa = δa(αa, βa) . (2.229)

However, in general we have
eAeB 6= eA+B , (2.230)

and therefore (in general) δa 6= αa + βa.
Let us consider infinitesimal transformations and let us take the logarithm of both sides of Eq. (2.228).

We have

log

[(

1 + iαaT
a
R +

1

2
(iαaT

a
R)

2 + ..

)(

1 + iβaT
a
R +

1

2
(iβaT

a
R)

2 + ...

)]

= iδaT
a
R (2.231)

or

log

[

1 + iαaT
a
R + iβaT

a
R −

1

2
(αaT

a
R)

2 − 1

2
(βaT

a
R)

2 − αaβbT aRT bR + ...

]

= iδaT
a
R . (2.232)

Expanding the log up to second order (log (1 + x) ≃ x− x2/2...) we have

iδaT
a
R ≃ iαaT

a
R + iβaT

a
R −

1

2
(αaT

a
R)

2 − 1

2
(βaT

a
R)

2 − αaβbT aRT bR +
1

2
αaβbT

a
RT

b
R +

1

2
αaβbT

b
RT

a
R

+
1

2
(αaT

a
R)

2 +
1

2
(βaT

a
R)

2 , (2.233)

= i(αa + βa)T
a
R −

1

2
αaβb(T

a
RT

b
R − T bRT aR) , (2.234)

or
αaβb[T

a, T b] = 2i(αc + βc − δc)T c = γcT
c . (2.235)

Since this relation must hold for every αc and βc, γ must be proportional to αaβb:

γc = αaβb f
a b
c . (2.236)

The constants fa bc are called structure constants. Finally we find

[T a, T b] = ifa bc T c , (2.237)

which is the Lie algebra that the generators have to fulfill.
The explicit form of the generators T a depends on the specific representation. However, the algebra

(2.237) is completely general and valid for every representation. We can prove that the structure
constants are independent on the representation as well. They remain the same in every representation.
Finally, we found the algebra imposing the group structure at second order in α and β. However, it
can be proven that aty higher orders no further requirements occur. Knowing the structure constants
and the generators is sufficient to know everything about the local structure of the group.

If fa bc = 0, we have [T a, T b] = 0 and the group is Abelian.

The idea behind the study of the algebra connected to the Lie group lies in the fact that

1. The representations of the algebra induce a corresponding representation on the Lie group;

2. It is easier to study the algebra than the group, since the generators form a vector space (and it
is easier to deal with sums that with products).
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Casimir operators

In the study of the representations an important role is played by the Casimir operators.

Definition 2.8.10 A Casimir operator is an operator that commutes with all the generators T a of the
group.

For instance we can think about the angular momentum, remembering that J2 actually commutes
with the three components of the angular momentum J i (that are the generators for the rotations),
[J2, J i] = 0. Casimir operators help in the study of the irreducible representations. They are linked to
the first Schur’s lemma

Lemma 2.8.11 (Schur’s lemma). If U(G) is an irriducible representation of the group G on a
vector space V and J2 is a Casimir operator for that representation ([J2, U(g)] = 0 for ∀g ∈ G), then
J2 is proportional to the identity.

As an example we can consider again the angular momentum for which we have J2 = j(j + 1)1.
If we consider abelian groups, since fa bc = 0, we have [T a, T b] = 0 and therefore every generator is

a Casimir. It follows that every irreducible representation of an abelian group will be constituted by
operators that, since they all commute with the generators, are proportional to the identity. Therefore
the irreducible representations will have dimension one.

Unitary representations

Of particular importance in Physics are the unitary representations of the Lie groups. To have a
unitary representation means that the generators are hermitian and therefore they can be identified
with observables. In order to have finite-dimensional unitary representations of a Lie group we need
the group to be compact. This means that the parameters, which the group depends on, should range
in a closed interval of the reals. This is the case, for instance, of the two- and three-dimensional
rotations (rotations in the Euclidean space), for which the angles are defined in closed intervals. This
is, instead, not the case for the Lorentz group. Although the part that regards rotations is compact,
the boosts are not. The parameter that defines the boosts are the components of the velocity v of the
inertial frame S′ with respect to the inertial frame S. The modulus of v is such that 0 ≤ v

c < 1. So, v
can never reach the speed of light c (v = c is a singular point for Lorentz transformations). This fact
makes in such a way that the Lorents group is not compact.

There is a theorem that states: “Non compact groups have no finite-dimensional unitary represen-
tations”.

Therefore, finite-dimensional representations of the Lorentz group cannot be unitary. However,
we can find unitary infinite-dimensional representations and this is what matters for our physical
descriptions, since quantum states live in infinite-dimensional spaces (Hilbert space ...).

2.8.3 A simple example: the (abelian) group SO(2) and U(1)

As a first simple example let us consider the group of rotations in two dimensions. This is a Lie group
depending on a single real parameter, the angle of rotation φ.

R(φ) is a rotation of angle φ acting on a certain vector space, v ∈ V . Under R(φ) the modulous of
v has to remain unchanged. If we have

v→ v′ = R(φ)v , (2.238)

then

|v′|2 = vtR(φ)tR(φ)v ≡ vtv = |v|2 =⇒ R(φ)tR(φ) = 1 = R(φ)R(φ)t . (2.239)
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This defines the orthogonal transofrmations. Moreover, from R(φ)tR(φ) = 1 it follows that detR(φ) =
±1. The subset with detR(φ) = 1 forms a subgroup (it is the one containing the identity) which is
known as SO(2), special ortogonal group.

SO(2) is an Abelian group, since

R(φ1)R(φ2) = R(φ1 + φ2) = R(φ2)R(φ1) . (2.240)

It has the global property
R(φ) = R(φ± 2π) (2.241)

and this property is not related to the infinitesimal transformations (local structure) but to the global
structure of the group.

Let us find the generators of SO(2). For the infinitesimal transformations we have

R(dφ) ≃ 1+K dφ . (2.242)

Since R(φ)tR(φ) = 1 we have
(1+K dφ)t(1 +K dφ) = 1 , (2.243)

therefore at first order in dφ we have

1+ (K +Kt) dφ = 1 , (2.244)

or
K = −Kt . (2.245)

We can put K = −iJ with J hermitian (J† = J) and then

R(dφ) ≃ 1− iJ dφ . (2.246)

Exponentiating we find
R(φ) = e−iφJ . (2.247)

J is the generator of the group.

The representation on the Euclidean 2-dim vector space

We can consider a matrix representation of SO(2) as rotations on a 2-dim Euclidean vector space.

φ

v = (v1, v2)

ê2

ê1

ê′2
ê′1

0 ≤ φ ≤ 2π

We can write the transformation (that rotates the basis) as

ê′i = D(φ)ji êj , (2.248)

where the matrix D(φ) is

D(φ) =

(

cosφ sinφ
− sinφ cosφ

)

. (2.249)

47



If v ∈ V it can be written in components as

v = viêi = v′iê′i . (2.250)

The components transform with D−1 = Dt and in this case

v′i = Di
jv
j , (2.251)

that in matrix form means
(

v′1

v′2

)

=

(

cosφ − sinφ
sinφ cosφ

)(

v1

v2

)

. (2.252)

In order to find the expression of the generator in this representation, let us find the infinitesimal
transformation expanding for a small parameter the expression in Eq. (2.249)

D(dφ) =

(

1 dφ
−dφ 1

)

= 1− idφJ . (2.253)

Therefore

J =

(

0 i
−i 0

)

. (2.254)

In fact

e−iφJ = 1− iφJ +
1

2
(−iφJ)2 + .... , (2.255)

= | since J2 = 1 , J3 = J , J4 = 1... |

= 1− iφJ − φ2

2
1− iJ

(

−φ
3

3!

)

+ ... , (2.256)

= 1 cosφ− iJ sinφ , (2.257)

=

(

cosφ sinφ
− sinφ cosφ

)

= D(φ) . (2.258)

Knowing J and φ we can have all the elements of the group.
The study of the algebra (then the generators) gives many pieces of information about the group.

In particular, it gives the “local” properties. However, from the exponential form we cannot extract
the global relation D(φ) = D(φ + 2π), which we have to impose separately. This global relation is
important in the study of the irreducible representations of the group.

Irreducible representations

Let us consider a representation (labeled by R) of the group on a finite-dimensional vector space. We
have

DR(φ) = e−iφJ . (2.259)

Moreover, we have

DR(φ1)DS(φ2) = DS(φ1 + φ2) , (2.260)

DR(φ) = DR(φ+ 2π) , (2.261)

and these relations have to be satisfied by every possible representation.
J is the generator ‘in the representation R” and it is an hermitian operator on V . Because of that,

it is diagonalizable, it has real einvalues and the eigenvectors form an ortonormal basis for V .
Since DR(φ) = f(J) (it is a function of J), we have

[DR(φ), J ] = 0 . (2.262)
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Therefore, they have a common basis of eigenvectors, say |α〉, on which

J |α〉 = α|α〉 , (2.263)

DR(φ)|α〉 = e−iφα|α〉 . (2.264)

From these relations α can be whatever. However, we still have to impose the global relation

DR(φ) = DR(φ+ 2π) . (2.265)

If we do that, we find that α ≡ m ∈ Z. Therefore

J |m〉 = m|m〉 , (2.266)

DR(φ)|m〉 = e−iφm|m〉 . (2.267)

These are all one-dimensional representations, as it was expected from the fact that the group is
abelian.

The representation is diagonal in the basis of eigenvectors |m〉 and has e−iφm as eigenvalues.
Therefore, the representation is completely reducible in irreducible one-dimensional representations.

Every |m〉 is invariant underDR(φ) and therefore we can expressDR(φ) as a direct sum of irriducible
representations Dm(φ) = e−iφm

DR(φ) =
∑

⊕
Dm(φ) . (2.268)

Diagonalizing J , the generator of the group in the representation R, we found the irreducible repre-
sentations.

Let us have a closer look to these irreducible representations.

1. If m = 0 we have D0(φ) = 1, therefore the trivial representation (the identity)

2. If m = 1 we have D1(φ) = e−iφ. This is an isomorphism between elements of SO(2) and numbers
on the unit circle in the complex plane. When φ ranges in the closed interval [0, 2π], D1(φ) = e−iφ

covers the unit circle clockwise.

3. If m = −1 we have the same as above, but anti-clockwise.

4. m = ±2 covers the unit circle twice.

5. ... etc ...

Among these representations, only m = ±1 are faithful (one-to-one).
If we now go back to the representation on the Euclidean 2-dim vector space (2-dim representation)

we understand that it has to be reducible to two 1-dim irreducible representations. It is indeed
equivalent to the direct sum of m = ±1 representations. In fact

J =

(

0 i
−i 0

)

(2.269)

has two eigenvalues, ±1. The corresponding eigenvectors are

ê± =
ê1 ± iê2√

2
. (2.270)

With respect to the new basis we have

J ê± = ±ê± , (2.271)

DR(φ)ê± = e±iφê± . (2.272)
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2.9 The generators of the Poincaré group and the algebra

A general Lorentz transformation can be found as the product of a transformation of the proper
hortocronous group and parity and/or time reversal. Therefore, the study of the Lorentz group can be
“reduced” to the study of the proper hortocronous group and, separately, of P and T . We start with
L↑
+. Parity and Time reversal will follow.

For the study of the generators of the Poincaré group we will consider infinitesimal transformations.
We will have:

T (Λ, a) ≃ T (δµν + δωµν , δaµ) , (2.273)

where δωµν is an antisymmetric tensor of rank 2,

δωµν = −δωνµ , (2.274)

which depends on the parameters of the infinitesimal proper Lorentz transformation and on δaµ, an
infinitesimal four-vector.

The infinitesimal transformation (2.273) will be composed by a translation:

T (1, δaµ) = 1− iδaµPµ , (2.275)

and by a proper Lorentz transformation:

T (δµν + δωµν , 0) = 1− i

2
δωµνJ

µν . (2.276)

The four-vector Pµ is the generator of the translations, while the antisymmetric tensor or rank
2 Jµν = −Jνµ id the generator of the proper Lorentz transformations (boosts and tri-dimensional
rotations)2. In total, Jµν and Pµ constitute a system of 10 operators: 4 components of Pµ, together
with the 6 components of the antisymmetric tensor Jµν .

The exponentiation of Eq. (2.275) and (2.276) gives the following relations for the finite transfor-
mations

T (1, a) = e−i P
µaµ , T (Λ, 0) = e−

i
2
Jµνωµν . (2.278)

Let us find, now, the behaviour of the generators under Poincaré transformations.
We label with T (Λ, b) the generic finite transformation, and with T (1 + δω, δa) the infinitesimal

transformation, on which we will focus our attention. The trasformation of T (1+δω, δa) under T (Λ, b)
is given by::

T (Λ, b)T (1 + δω, δa)T−1(Λ, b) = T (Λ[1 + δω],Λδa + b)T−1(Λ, b) =

= T (Λ[1 + δω],Λδa + b)T (Λ−1,−Λ−1b) =

= T (Λ[1 + δω]Λ−1,−[Λ(1 − δω)]Λ−1b+ Λδa+ b) =

= T (Λ[1 + δω]Λ−1,Λδa − ΛδωΛ−1b) . (2.279)

Expanding at first order in the parameters the infinitesimal transformation in Eq. (2.279), we find:

T (Λ, b)

(

− i
2
δωµνJ

µν − iδaµPµ
)

T−1(Λ, b) =

= − i
2

(

ΛδωΛ−1
)

µν
Jµν − i

(

Λδa− ΛδωΛ−1b
)

µ
Pµ , (2.280)

2In quantum mechanics, both Pµ and Jµν are operators. If we look for unitary representations of the group, T (δµν +
ωµν , ǫµ) is unitary and, therefore, the generators are hermitian:

Jµν† = Jµν , Pµ† = Pµ . (2.277)
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where we have

(

ΛδωΛ−1
)

µν
= Λµσδω

σρ(Λ−1)ρν = δωσρΛ .α
µ ηασηρβ(Λ

−1)βν = δωσρηασηρβΛ
.α
µ Λ .β

ν , (2.281)

= δωαβΛ
.α
µ Λ .β

ν (2.282)

and

(

ΛδωΛ−1b
)

µ
Pµ = δωρσΛ

.ρ
α Λ .σ

µ b
αPµ , (2.283)

=
1

2
δωρσ

(

Λ .ρ
α Λ .σ

µ b
αPµ − Λ .σ

α Λ .ρ
µ b

αPµ
)

, (2.284)

=
1

2
δωρσΛ

.ρ
α Λ .σ

µ (bαPµ − bµPα) . (2.285)

Eq. (2.280), then, gives the following transformation laws:

T (Λ, b)JµνT−1(Λ, b) = Λ.µρ Λ.νσ (Jρσ − (bρP σ − bσP ρ)) , (2.286)

T (Λ, b)PµT−1(Λ, b) = Λ.µν P
ν , (2.287)

i.e. Pµ and Jµν transform as a four-vector and a rank-2 tensor, respectively.
If now we also consider T (Λ, b) as an infinitesimal transformation and we expand it at first order,

Eq. (2.280) gives the following commutation rules for the generators of the Poincaré algebra:

[Pµ, P ν ] = 0 , (2.288)

[Pµ, Jλσ ] = i
(

P ληµσ − P σηµλ
)

, (2.289)

[Jµν , Jρσ ] = i (Jνσηµρ + Jρνησµ − Jµσηνρ − Jρµησν) . (2.290)

The generator of the translations, Pµ, can be identified with the four-momentum operator; the
time component, P 0 is the energy of the system (hamiltonian), while the vector P = (P 1, P 2, P 3)
is the tri-momentum. The tensor Jµν is connected with the angular momentum and the boosts. In
particular, angular momentum is given by the three components

J = (J23, J31, J12) , (2.291)

while the other components are the generators of the boosts:

K = (J10, J20, J30) . (2.292)

For these quantities, we can find the following commutation rules, that come from Eqs. (2.290):

[Ji, Jj ] = iǫijkJk , (2.293)

[Ji, P
0] = [Pi, P

0] = 0 , (2.294)

[Ji, Pj ] = iǫijkPk , (2.295)

[Ki,Kj ] = −iǫijkJk , (2.296)

[Ji,Kj ] = iǫijkKk . (2.297)

It has to be noticed that, while the components of the angular momentum constitutes a closed
algebra (see (2.293)), the components of the boosts do not (see (2.296).
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2.10 Finite-dimensional irreducible representations of the Poincaré

group

The “most interesting part” of the study of the irreducible representations of the Poincaré group lies
in the fact that the fields transform under Poincaré transformations according to a certain finite-
dimensional representations of the group.

A field is a function of the point in the events space M (Minkowski space) with values in Cn:
φ(X) : M −→ Cn (2.298)

φ(X) =
(

φ1(X), φ2(X), ...., φn(X)
)

, (2.299)

i.e. in general a function of Xµ, with a certain number of complex components. If we act on the
space-time point with a Poincaré tranformation Xµ → X ′µ = ΛµνXν + aµ, i.e. a change of reference
system, the field φ(X) will transform according to the following linear homogeneous transformation

φ(X)→ φ′(X ′) = S(Λ)φ(X) , (2.300)

where S(Λ) is a representation of the Lorentz group on the vector space where the vector φ(X) lives3.
We are interested on finite-dimensional representations, i.e. linear operators that act on vectors

φ(X) with a finite number of components.

2.10.1 Tensor fields. Integer spin representations

We call tensor field an object with m contravariant and n covariant indices, T µ1....µmα1....αn (X), such that for
Xµ → X ′µ = ΛµνXν we have the following transformation:

T µ1....µmα1....αn
(X)

X→X′

−→ T ′µ1....µm
α1....αn

(X ′) = Λµ1ν1 ..Λ
µm
νm Λ.β1α1

..Λ.βnαn
T ν1....νmβ1....βn

(X) , (2.302)

where Λ.βα = (Λ−1)αβ .
We will indicate the general tensor T µ1....µmα1....αn of rank m,n with the symbol (m,n). The space of

tensors (m,n) is a linear space, i.e. the linear combinations of (m,n) tensors is an (m,n) tensor:

(m,n) ⊕ (m,n) −→ (m,n) . (2.303)

Moreover, we can define different operations as:

• il tensor product, ⊗, such that:

(m,n) ⊗ (m′, n′) −→ (m+m′, n+ n′) , (2.304)

i.e. such that the product of two tensors of ranks (m,n) and (m′, n′) is a tensor of rank (m +
m′, n+ n′);

• la contraction of two indices. If we match a contravariant and a covariant indices, the rank of
the tensor is lowered by 1 unit in m and 1 in n. For instance

Tαβγδ −→ Tαβγβ = Kαγ (2.305)

(3, 1) −→ (2, 0)

• raising or lowering of indices. Through the matric tensor ηµν we can make a contravariant index
covariant, and viceversa:

Tαβγδ = ηδρ T
αβγρ . (2.306)

3The reason why we said that, indeed, the field transforms with a representation of the Lorentz group, i.e. the
homogeneous part of the Poincaré group, is because every field is a scalar under rigid translations. For every field
(scalar, vector, spinor ...) we have

φ′(Xµ + aµ) = φ(Xµ) . (2.301)
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Scalar Field. Trivial representation of the Lorentz group

The first field that we will consider is the Scalar Field. This is a “tensor” of rank (0, 0) and therefore it
transforms, under Lorentz transformation, according to the trivial representation of the group S(Λ) =
1:

φ(X) −→ φ′(X ′) = φ(X) . (2.307)

Vector Field. Four-dimensional representation of the Lorentz group

Let us consider now a tensor field of rank (1, 0):

V µ(X) =
(

V 0(X),V(X)
)

, (2.308)

that we will call contravariant four-vector. Under a Lorentz transformation, the field V µ transforms
as the space-time point, Xµ, i.e.:

V µ(X) −→ V ′µ(X ′) = Λµν V
ν(X) . (2.309)

An example of such a field is the electromagnetic four-potential Aµ(X).
We can consider a tensor field of rank (0, 1), Uµ(X), and it will transform as follows::

Uµ(X) −→ U ′
µ(X

′) = Λ.νµ Uν(X) , (2.310)

i.e. Uµ(X) transforms with the inverse of Λ. Uµ is a covariant four-vector. An example of such a type

of vectors is the gradient of a scalar field, ∂µφ(X) = ∂φ(X)
∂Xµ .

Il prodotto tensoriale fra un vettore controvariante ed uno covariante, con indici saturati, V µUµ, è
uno scalare di Lorentz. Infatti:

V µ(X)Uµ(X) −→ V ′µ(X)U ′
µ(X) = ΛµνΛ

.ρ
µ V

ν(X)Uρ(X) = (2.311)

= δρν V
ν(X)Uρ(X) = (2.312)

= V ν(X)Uν(X) (2.313)

In particolare la norma di un quadrivettore V µVµ = ‖V ‖2 è un invariante di Lorentz.
Allora, nel caso di campo vettoriale si ha S(Λ) = Λµν che agisce sulle quattro componenti del

quadrivettore V µ. Abbiamo trovato una rappresentazione quaridimensionale del Gruppo di Lorentz.
Siccome questo è costituito da boosts e dalle rotazioni in tre dimensioni, potremo considerare 6 matrici:
(Λ̃µν )x, (Λ̃

µ
ν )y, (Λ̃

µ
ν )z, per i boosts lungo gli assi cartesiani e Rx, Ry e Rz per le rotazioni intorno agli

stessi. Per esempio si ha:

(Λ̃µν )x =









coshφx sinhφx 0 0
sinhφx cosh φx 0 0

0 0 1 0
0 0 0 1









e Rz =









1 0 0 0
0 cos θz sin θz 0
0 − sin θz cos θz 0
0 0 0 1









, (2.314)

dove φx coinvolge la velocità di traslazione lungo l’asse delle x e θx è l’angolo di rotazione attorno allo
stesso asse.

Per trovare nella stessa rappresentazione matriciale i generatori del Gruppo, basta ricordare che
per il mapping esponenziale si ha:

Kx = −i d

dφx
(Λ̃µν )x

∣

∣

∣

∣

∣

φx=0

= −i









0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









(2.315)
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Ky = −i d
dφy

(Λ̃µν )y

∣

∣

∣

∣

∣

φy=0

= −i









0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0









(2.316)

Kz = −i d
dφz

(Λ̃µν )z

∣

∣

∣

∣

∣

φz=0

= −i









0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0









(2.317)

e i generatori delle rotazioni sono semplicemente dati da quelli trovati in tre dimensioni euclidee con
l’aggiunta di una riga ed una colonna di zeri per la parte temporale:

Jx = −i









0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0









(2.318)

Jy = −i









0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0









(2.319)

Jz = −i









0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0









. (2.320)

È da notare che, mentre le matrici Ji sono hermitiane e quindi la loro esponenziazione porta ad una
matrice unitaria, lo stesso non si verifica per le Ki, che non sono hermitiane. Questo è dovuto al fatto
che il gruppo SO(3) è un gruppo compatto e quindi ammette rappresentazioni unitarie, mentre l’intero
Gruppo di Lorentz (con i boosts) non è compatto e quindi non ammette rappresentazioni unitarie.

I generatori del gruppo formano l’algebra di Lie associata ed infatti si può verificare che, nella
rappresentazione matriciale quadridimensionale appena data, valgono le (2.293), (2.296) e (2.297).
Mentre le espressioni matriciali sono peculiari della rappresentazione cercata, le regole che definiscono
l’algebra associata hanno carattere universale. Per ogni rappresentazione del Gruppo di Lorentz, i
generatori del gruppo devono soddisfare le (2.293), (2.296) e (2.297).

La rappresentazione (2.317, 2.320) del Gruppo di Lorentz viene denotata con SO(3, 1).

N.B. L’importanza dello studio delle proprietà di trasformazione delle quantità con cui abbiamo
a che fare nella costruzione della teoria e lo sviluppo delle notazioni tensoriali dipendono da quanto
segue. Supponiamo che nel sistema di riferimento S una legge fisica sia espressa da un’uguaglianza
tensoriale:

Tαβ = Uαβ . (2.321)

Dei due tensori che esprimono la legge (2.321) sappiamo esattamente le proprietà di trasformazione
sotto il Gruppo di Lorentz. Allora in un’altro sistema di riferimento S′, si avrà:

T ′α
β = ΛαγΛ

.δ
β T

γ
δ = (2.322)

= ΛαγΛ
.δ
β U

γ
δ = (2.323)

= U ′α
β , (2.324)

dove per passare dalla (2.322) alla (2.323) abbiamo sfruttato la (2.321). La (2.324) ci dice che una
relazione fra tensori rimane invariata in forma sotto trasformazioni di Lorentz: in S′ vale la stessa
relazione per i tensori trasformati.

Si dice che la legge (2.321) è covariante a vista.
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2.10.2 Campi spinoriali. Spinori di Dirac

Cerchiamo, adesso, una rappresentazione bidimensionale del Gruppo di Lorentz.
Per far questo, prendiamo spunto dall’omomorfismo fra il gruppo speciale delle rotazioni in tre

dimensioni, SO(3), ed il suo ricoprimento universale, SU(2), gruppo delle trasformazioni unitarie
speciali su uno spazio bidimensionale.

SO(3) dipende da tre parametri (per esempio i tre angoli di Eulero) e ne possiamo dare una rap-
presentazione in termini di matrici 3×3 reali relative alle tre rappresentazioni lungo gli assi cartesiani:
Rx(θx), Ry(θy) e Rz(θz). Più in generale, se n individua una direzione nello spazio euclideo, una rota-
zione di un angolo θ eseguita intorno all’asse n secondo la regola della mano destra può essere scritta
come segue:

Rn(θ) = eiJ·θ , (2.325)

dove abbiamo posto θ = θn e dove le matrici Ji sono i generatori del gruppo SO(3) e soddisfano le
regole dell’algebra di Lie associata:

[Ji, Jj ] = iǫijkJk . (2.326)

Prima di tutto mostriamo come anche SU(2) dipenda da tre parametri reali. Possiamo dare una
rappresentazione del gruppo in termini di matrici 2× 2 complesse:

U =

(

a b
c d

)

, (2.327)

con a, b, c, d ∈ C. Siccome la U deve essere unitaria (U †U = 1) e a determinante detU = +1, gli 8
parametri indipendenti che sembrano definire la U nella (2.327) si riducono a tre. Infatti, la prima
richiesta porta a 4 relazioni reali e la seconda ad un’altra. Sotto queste imposizioni la U diventa:

U =

(

a b
−b∗ a∗

)

. (2.328)

Una matrice siffatta agisce su uno spazio vettoriale complesso a due dimensioni, detto spazio degli
spinori a due componenti:

ξ =

(

ξ1
ξ2

)

ξ −→ ξ′ = U ξ (2.329)

I generatori del gruppo SU(2) sono le matrici di Pauli σi:

σ1 =

(

0 1
1 0

)

; σ2 =

(

0 −i
i 0

)

; σ3 =

(

1 0
0 −1

)

, (2.330)

che obbediscono alle seguenti regole di commutazione (dell’algebra associata):

[
1

2
σi,

1

2
σj ] = iǫijk

1

2
σk . (2.331)

Una trasformazione di SU(2) preserva la forma quadratica (x2 + y2 + z2). Infatti, consideriamo il
raggio vettore r = (x, y, z) e la matrice

h = σ · r =

(

z x− iy
x+ iy −z

)

, (2.332)

hermitiana a traccia nulla.
Trasformiamo la h tramite la trasformazione di similitudine:

h −→ h′ = U hU † . (2.333)
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La (2.333) conserva l’hermiticità e la traccia nulla. Infatti, si ha:

h′h′† = UhU † (UhU †)† = UhU †Uh†U † = Uhh†U † = 1 , (2.334)

dove abbiamo utilizzato U †U = 1 e hh† = 1; e:

tr h′ = tr (UhU †) = tr (U †Uh) = tr h , (2.335)

per la proprietà ciclica della traccia.
Inoltre, la (2.333) conserva anche il determinante, che non è altro che la forma quadratica ‖r‖2 con

un segno cambiato:
x′2 + y′2 + z′2 = −det h′ = −det h = x2 + y2 + z2 . (2.336)

Per questo è logico che SU(2) sia legato in qualche modo al gruppo delle rotazioni SO(3). In
particolare si ha una corrispondenza 2 a 1 fra gli elementi di SU(2) e gli elementi di SO(3) e le rappre-
sentazioni irriducibili di SO(3) sono contenute in quelle di SU(2) (si dice che SU(2) è il ricoprimento
universale di SO(3)).

La corrispondenza fra i due gruppi si può riassumere in:

U = e
i
2
σ·θ ⇐⇒ R = eiJ·θ , (2.337)
1

2
σi ⇐⇒ Ji . (2.338)

Cerchiamo, allora, una rappresentazione bidimensionale del Gruppo di Lorentz.
Per le rotazioni potremo utilizzare la (2.338).
Per trovare i generatori bidimensionali dei boosts, K(2), sfruttiamo le regole di commutazione

dell’algebra, che sono verificate per qualunque rappresentazione:

[K
(2)
i ,K

(2)
j ] = −iǫijk

1

2
σk (2.339)

[
1

2
σi,K

(2)
j ] = iǫijkK

(2)
k (2.340)

[
1

2
σi,

1

2
σj] = iǫijk

1

2
σk . (2.341)

Si trova:

K
(2)
i = ± i

2
σi , (2.342)

cioè abbiamo due possibili rappresentazioni, una con K
(2)
i = i

2σi e l’altra con K
(2)
i = − i

2σi. Corri-
spondentemente si avrammo due tipi di spinori, che sotto boost si trasformano in maniera diversa:

φR → φ′R = exp
{ i

2
σ · (θ − iφ)

}

φR , (2.343)

φL → φ′L = exp
{ i

2
σ · (θ + iφ)

}

φL , (2.344)

dove θ sono i parametri della rotazione e φ quelli dei boosts.
È da notare che φR e φL (spinori destri e sinistri) si trasformano allo stesso modo sotto rotazioni.

Infatti, se consideriamo soltanto rappresentazioni irriducibili del gruppo delle rotazioni in teoria non
relativistica abbiamo un solo tipo di spinori: quelli di Pauli. L’introduzione delle trasformazioni di
Lorentz, invece, distingue fra due tipi di componenti.

Questa rappresentazione bidimensionale del Gruppo di Lorentz si indica con SL(2, C).
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Si può vedere la corrispondenza fra le due rappresentazioni SO(3, 1) e SL(2, C) esattamente co-
me abbiamo stabilito la corrispondenza fra le trasformazioni di SO(3) e di SU(2). Consideriamo il
quadrivettore σµ = (σ0 = 1, σ) e saturiamolo con l’evento Xµ:

X = σµX
µ =

(

X0 −X3 −X1 + iX2

−X1 − iX2 X0 +X3

)

, (2.345)

matrice hermitiana.
Se A ∈ SL(2, C), facciamo la trasformazione su X:

X −→ X ′ = AXA† , (2.346)

mediante la quale X ′ è ancora una matrice hermitiana. La (2.346) preserva il determinante di X, che
non è altro che la forma quadratica

XµXµ = (X0)2 − (X1)2 − (X2)2 − (X3)2 , (2.347)

cioè la norma del quadrivettore Xµ. In altre parole è una trasformazione di Lorentz.

Siccome per parità i due spinori, destro e sinistro, si trasformano l’uno nell’altro, se vogliamo
considerare il Gruppo di Lorentz completo non ha più senso distinguere fra φR e φL.

Introdurremo, allora, lo spinore di Dirac, costituito come segue:

ψ =

(

φR
φL

)

(2.348)

tale che:

ψ −→ ψ′ =





exp
{

i
2σ · (θ − iφ)

}

0

0 exp
{

i
2σ · (θ + iφ)

}



 ψ . (2.349)

Gli spinori di Dirac costituiscono lo spazio vettoriale per la rappresentazione irriducibile bidimen-
sionale del Gruppo di Lorentz.

2.11 Infinite dimensional representations of the Poincaré group: par-
ticle states
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Capitolo 3

Conservation Laws

3.1 Lagrangian formalism

Following the formalization of analytical mechanics we will study now the system in the Lagrangian
formalism. This formalism is optimal for the study of the symmetries of the theory. We will use the
related Hamiltonian formalism when we will quantize the system, making a correspondence between
the Poisson brackets and the commutators of the operators that describe the physical observables.
This will be the subject of the co-called “canonical quantization”.

3.1.1 Relativistic free particle

In order to recall the basic principles of Lagrangian mechanics, let us concentrate on a simple example:
the relativistic free particle. In classical Physics, we find the equations of motion from Least Action
Principle, or Hamilton’s Principle.

A physical system can be described by a function called the “Lagrangian” L (given by the difference
between the kinetic and the potential energy), which depends on the coordinates (collectively labeled
with q), the velocities (q̇ and (at most) the time1:

L = L(q, q̇, t) . (3.1)

The motion of the classical system is the function of time q(t) that minimizes the following functional
(the Action)

S =

∫ t2

t1

L(q, q̇, t) dt , (3.2)

with respect to path variation with fixed end points

δS = 0 . (3.3)

Eq. (3.3) gives a system of second order differential equations, called the Euler-Lagrange equations,
that for Newtonian mechanics are the generalization of the second principle F = ma.

Let us consider now a relativistic system. Our study should be independent on the inertial frame
where the observer lives. In other words, our description of the system should be invariant under
Lorentz transformations and therefore the Action should be invariant, in such a way that the Euler-
Lagrange differential equations are unchanged in form in every inertial frame. Considering Eq. (3.2),
this means that Ldt must be a Lorentz scalar. We already pointed out that dt is not a Lorentz
scalar and, moreover, time derivation as dXµ/dt does not transform as a four-vector under Lorentz
transformations. Let us consider, then, instead of the time, the “proper time” of the particle, τ for
which we know that dτ is actually invariant.

1If the system is closed the explicit dependence on time in the Lagrangian is not present

58



We can write the product Ldt in a manifestly invariant way as follows:

S =

∫ τ2

τ1

L(Xµ, Ẋµ, τ) dτ , (3.4)

where Ẋµ = dXµ/dτ . Since dτ is invariant, so should be the function L(Xµ, Ẋµ, τ)2.
Let us now consider a generic variation of the “path” Xµ(τ). Let us consider a reparametrization

τ → τ ′ and a variation of Xµ(τ) and Ẋµ(τ) as follows:

τ → τ ′ = τ +∆τ(τ) , (3.6)

Xµ(τ) → X ′µ(τ ′) = Xµ(τ) + ∆Xµ(τ) , (3.7)

Ẋµ(τ) → Ẋ ′µ(τ ′) = Ẋµ(τ) + ∆Ẋµ(τ) . (3.8)

Note that ∆τ is a function of τ . Moreover, the variation of the path we are considering is a global
variation, such that

∆Xµ(τ) = X ′µ(τ ′)−Xµ(τ) , (3.9)

that include a variation for the change in the parametrization and a variation in form of the function
Xµ(τ) given a certain τ . Finally, since we are speaking about global variations, in the last equation
we have to consider that ∆Ẋµ(τ) 6= d/dτ ∆Xµ(τ).

Let us, moreover, consider a lagrangian that does not change in form under this reparametrization.
In principle, we could have

L′(X ′µ, Ẋ ′µ, τ ′)− L(X ′µ, Ẋ ′µ, τ ′) = δL . (3.10)

In order not to affect the equations of motion, δL should be the total derivative of a function that
vanishes at the end points. However, let us consider δL = 0.

To the first order in the variation we have

L(X ′µ, Ẋ ′µ, τ ′) ≃ L(Xµ, Ẋµ, τ) +
∂L

∂τ
∆τ +

∂L

∂Xµ
∆Xµ +

∂L

∂Ẋµ
∆Ẋµ . (3.11)

Since the total derivative of L with respect of τ is

dL

dτ
=
∂L

∂τ
+

∂L

∂Xµ

∂Xµ

∂τ
∆τ +

∂L

∂Ẋµ

∂Ẋµ

∂τ
∆τ , (3.12)

we can extract ∂L
∂τ from the previous equation and substitute it in Eq. (3.11) getting

L(X ′µ, Ẋ ′µ, τ ′) ≃ L(Xµ, Ẋµ, τ) +
dL

dτ
∆τ +

[

∂L

∂Xµ
(∆Xµ − Ẋµ∆τ) +

∂L

∂Ẋµ
(∆Ẋµ − Ẍµ∆τ)

]

, (3.13)

which is written in terms of a total proper time derivative (we will use this in a while, in order to do
the integration).

Consider also that

dτ ′ = dτ +
d∆τ

dτ
dτ =

(

1 +
d∆τ

dτ

)

dτ . (3.14)

2In particular, if under a Lorentz transformation the lagrangian becomes L′(X ′µ, Ẋ ′µ, τ ) (τ does not change under
LT) we must have

L′(X ′µ, Ẋ ′µ, τ ) = L(X ′µ, Ẋ ′µ, τ ) . (3.5)

This means that the form of the function should be the same (when Xµ becomes X ′µ ... etc.). Moreover, in practice we
will never consider lagrangians that depend explicitely on time.
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At first order we can therefore write:

δS =

∫ τ ′2

τ ′1

L(X ′µ, Ẋ ′µ, τ ′) dτ ′ −
∫ τ2

τ1

L(X ′µ, Ẋµ, τ) dτ , (3.15)

≃
∫ τ2

τ1

dτ

(

1 +
d∆τ

dτ

)

{

L+
dL

dτ
∆τ +

[

∂L

∂Xµ
(∆Xµ − Ẋµ∆τ) +

∂L

∂Ẋµ
(∆Ẋµ − Ẍµ∆τ)

]}

−
∫ τ2

τ1

dτ L , (3.16)

≃
∫ τ2

τ1

dτ

[

d

dτ
(L∆τ) +

∂L

∂Xµ
(∆Xµ − Ẋµ∆τ) +

∂L

∂Ẋµ
(∆Ẋµ − Ẍµ∆τ)

]

, (3.17)

where we discarted terms of second and higher order in the variations.
Let us now specify a bit better the variation ∆Xµ etc.
We can write

∆Xµ = X ′µ(τ ′)−Xµ(τ) , (3.18)

= X ′µ(τ ′)−X ′µ(τ) +X ′µ(τ)−Xµ(τ) , (3.19)

≃ Ẋ ′µ(τ)∆τ +X ′µ(τ)−Xµ(τ) , (3.20)

≃ Ẋµ(τ)∆τ + δXµ , (3.21)

where we neglected terms of higher order in the variations and we introduced a variation in form of the
function Xµ(τ) which consists on a variation at a fixed parameter τ . Therefore the total variation of
X/mu(τ) is represented as the sum of a variation that depends on the fact that τ varies (and therefore
the derivative is involved) and a variation in form of the function, at fixed parametert τ . Note the fact
that, then

δXµ = (∆Xµ − Ẋµ∆τ) . (3.22)

Similarly, we have

∆Ẋµ = Ẋ ′µ(τ ′)− Ẋµ(τ) , (3.23)

= Ẋ ′µ(τ ′)− Ẋ ′µ(τ) + Ẋ ′µ(τ)− Ẋµ(τ) , (3.24)

≃ Ẍ ′µ(τ)∆τ + Ẋ ′µ(τ)− Ẋµ(τ) , (3.25)

≃ Ẍµ(τ)∆τ + δẊµ , (3.26)

= Ẍµ(τ)∆τ +
d

dτ
δXµ , (3.27)

where we used the fact that

δẊµ =
d

dτ
δXµ , (3.28)

since the variation δ is taken at equal τ .
Substituting in Eq. (3.17) and integrating by parts we find

δS ≃
∫ τ2

τ1

dτ
[ d

dτ
(L∆τ) +

∂L

∂Xµ
δXµ +

∂L

∂Ẋµ

d

dτ
δXµ

]

, (3.29)

=

∫ τ2

τ1

dτ
[ d

dτ
(L∆τ) +

d

dτ

(

∂L

∂Ẋµ
δXµ

)

+

(

∂L

∂Xµ
− d

dτ

∂L

∂Ẋµ

)

δXµ
]

, (3.30)

=

∫ τ2

τ1

dτ
[ d

dτ

(

L∆τ +
∂L

∂Ẋµ
δXµ

)

+

(

∂L

∂Xµ
− d

dτ

∂L

∂Ẋµ

)

δXµ
]

, (3.31)

=
∣

∣

∣using again δXµ = ∆Xµ − Ẋµ∆τ
∣

∣

∣
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=

∫ τ2

τ1

dτ

(

∂L

∂Xµ
− d

dτ

∂L

∂Ẋµ

)

δXµ +
(

L− ∂L

∂Ẋµ
Ẋµ
)

∆τ

∣

∣

∣

∣

τ2

τ1

+
∂L

∂Xµ
∆Xµ

∣

∣

∣

∣

τ2

τ1

. (3.32)

Let us impose now
δS = 0 . (3.33)

If we consider just functional variations (i.e. ∆τ = 0 and ∆Xµ = δXµ with δXµ(τ1) = δXµ(τ2) = 0)
that vanish in τ1 and τ2, we find the Hamilton’s principle and therefore the Euler-Lagrange equations
of motion:

∂L

∂Xµ
− d

dτ

∂L

∂Ẋµ
= 0 . (3.34)

Let us suppose now that the path is such that the Euler-Lagrange equations are satisfied. If we require
that the theroy is invariant under a slightly more general variation, with a reparametrization of the
curve

∆Xµ(τ) = 0 , (3.35)

the third term in Eq. (3.32) vanishes and the second gives rise to the following equation

L =
∂L

∂Ẋµ
Ẋµ , (3.36)

which means3 that the lagrangian must be an homogeneous functions of degree one in Ẋµ.
In the case of the free particle we can chose4

L = α

√

ẊµẊµ , (3.39)

where α is a constant that can be fixed imposing the correct behaviour for velocities small with respect
to the speed of light.

S = α

∫ τ2

τ1

√

ẊµẊµ dτ = α

∫ τ2

τ1

√

dXµdXµ = α

∫ τ2

τ1

ds = αc

∫ τ2

τ1

dτ = αc

∫ t2

t1

√

1− β2 dt , (3.40)

where we moved back to a non-manifestly-invariant form. In the case β << 1 we have

L ≃ αc
(

1− v2

2c2
+ ...

)

(3.41)

and we must impose α = −mc, in such a way that

L ≃ −mc2 + mv2

2
+ ... (3.42)

that reproduces the correct Newtonian kinetic energy (up to a constant).
Finally

L = −mc
√

1− v2

c2
. (3.43)

3Eq. (3.36) has also another meaning: if we write the four-momentum of the particle as

Pµ =
∂L

∂Ẋµ
, (3.37)

and we suppose that Pµ is the canonical conjugated momentum to Xµ, the canonical Hamiltonian is given by

H =
∂L

∂Ẋµ
Ẋµ − L = 0 . (3.38)

Therefore we find that the Hamiltonian is identically zero. This is due to the fact that Pµ actually does not have all the
components independent, but they are constrained by the mass-shell relation, PµPµ = m2. This relation makes in such
a way that the trasformation from (Xµ, Ẋµ) to (Xµ, Pµ) is indeed non canonical.

4This ammounts to take as action the integral of the ds.
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3.1.2 Euler-Lagrange Equations

Since

L = −mc
√

ẊµẊµ , (3.44)

the variable Xµ is cyclic, ∂L/∂xµ = 0, the equations of motion are

d

dτ

∂L

∂Ẋµ
= 0 , (3.45)

or
mẊµ = Pµ = const . (3.46)

Remenbering the components of the four-momentum, we have

Pµ =

(

mc
√

1− β2
,− mv
√

1− β2

)

=

(

E

c
,−p

)

= const . (3.47)

Finally:
{

E
c = const

p = const
(3.48)

3.1.3 Conservation Laws

Let us consider now the invariance of the Lagrangian under Poincaré transformations

Xµ → X ′µ = ΛµνX
ν + aµ . (3.49)

Note that the transformation leaves unchanged the proper time, τ . We will find that, as a consequence
of this invariance, we get some conservation laws.

If we consider an infinitesimal transformation, we have

Xµ → X ′µ = Xµ + δXµ (3.50)

and since
Λµν ≃ δµν + ǫµν , (3.51)

we will have
δXµ = X ′µ −Xµ ≃ ǫµνXν + δaµ . (3.52)

The Lagrangian will change accordingly:

L(X ′µ, Ẋ ′µ, τ) ≃ L(Xµ, Ẋµ, τ) +
∂L

∂Xµ
δXµ +

∂L

∂Ẋµ
δẊµ , (3.53)

= L(Xµ, Ẋµ, τ) +
∂L

∂Xµ
δXµ +

∂L

∂Ẋµ

d

dτ
δXµ , (3.54)

= L(Xµ, Ẋµ, τ) +
∂L

∂Xµ
δXµ +

d

dτ

(

∂L

∂Ẋµ
δXµ

)

− δXµ d

dτ

(

∂L

∂Ẋµ

)

, (3.55)

= L(Xµ, Ẋµ, τ) +

(

∂L

∂Xµ
− d

dτ

∂L

∂Ẋµ

)

δXµ +
d

dτ

(

∂L

∂Ẋµ
δXµ

)

, (3.56)

where we used the fact that the variation δXµ is indeed a local variation (δτ = 0) and therefore

δẊµ =
d

dτ
δXµ . (3.57)
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If now we impose L(X ′µ, Ẋ ′µ, τ) = L(Xµ, Ẋµ, τ), we have
(

∂L

∂Xµ
− d

dτ

∂L

∂Ẋµ

)

δXµ +
d

dτ

(

∂L

∂Ẋµ
δXµ

)

= 0 (3.58)

and on the solution of the equations of motion finally

d

dτ

(

∂L

∂Ẋµ
δXµ

)

= 0 , (3.59)

or
∂L

∂Ẋµ
δXµ = const . (3.60)

Substituting Eq. (3.52) and remembering that

∂L

∂Ẋµ
= Pµ , (3.61)

we get the following conservation laws

Pµǫ
µ
νX

ν = ǫµνPµXν = const , (3.62)

Pµδa
µ = const . (3.63)

Since ǫµν is antisymmetric in the exchange of the two indices, the part of the tensor PµXν that survives
is only the antisymmetric part

ǫµνPµXν = ǫµν
[

1

2
(PµXν + PνXµ) +

1

2
(PµXν − PνXµ)

]

=
1

2
ǫµν (PµXν − PνXµ) . (3.64)

Finally, since ǫµν and δaµ are constants, we have

Mµν = PµXν − PνXµ = const , (3.65)

Pµ = const , (3.66)

conservation of the generalized angular momentum and of the mopmentum. Note that Mµν id an anti-
symmetric tensor and therefore it has 6 independent quantities, while Pµ has 4. In total, the invariance
under Poincaré transformations (that depend on 10 parameters) gives 10 coonserved quantites.

3.2 Lagrangian formalism for the vibrating string

Let us now consider the case of the vibrating string and study the lagrangian approach in the continuum
case.

We have
L = T − V , (3.67)

where

T =
1

2

N
∑

n=1

p2n →
1

2

∫ L

0
φ̇2(x, t) dx , (3.68)

V =
1

2
ω2

N
∑

n=1

(qn − qn+1)
2 → v2

2

∫ L

0
φ′2(x, t) dx . (3.69)

In total:

L =

∫ L

0
dx

{

1

2

[

φ̇2(x, t)− v2φ′2(x, t)
]

}

. (3.70)
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We see that we can write the lagrangian as a space integral of a “lagrangian density”

L =
1

2

[

φ̇2(x, t) − v2φ′2(x, t)
]

, (3.71)

L =

∫ L

0
dxL . (3.72)

The same can be found for the hamiltonian:

H =
1

2

[

φ̇2(x, t) + v2φ′2(x, t)
]

, (3.73)

H =

∫ L

0
dxH . (3.74)

We want not derive the vibrating string equations of motion from the Hamilton’s Principle, as in
the case of the point like particle. Then we will consider the following case:

1. Our system is described by a Lagrangian density, L, local function of the fields;

2. L depends upon the fields, their first derivative (and at most on space point and time)

L = L
(

φ, φ̇, φ′, x, t
)

. (3.75)

We can define the action as

S =

∫ t2

t1

Ldt =

∫ t2

t1

∫ L

0
L dx dt (3.76)

and we require that the equations of motion derive from the imposition of

δS = 0 . (3.77)

The variation of the fields has to be imposed to vanish on the boundary of integration:

δφ(x, t1) = δφ(x, t2) = 0 , ∀x ∈ [0, L] , (3.78)

δφ(0, t) = δφ(L, t) = 0 , ∀t ∈ [t1, t2] . (3.79)

Moreover, note that δφ is a variation in form of the field, at a given point x and t. This means that

δφ̇ =
∂

∂t
δφ , and δφ′ =

∂

∂x
δφ . (3.80)

We have

0 = δS =

∫

dt dx δL =

∫

dt dx

[

∂L
∂φ

δφ+
∂L
∂φ̇

δφ̇+
∂L
∂φ′

δφ′
]

, (3.81)

=

∫

dt dx

[

∂L
∂φ

δφ+
∂

∂t

(

∂L
∂φ̇

δφ

)

−
(

∂

∂t

∂L
∂φ̇

)

δφ +
∂

∂x

(

∂L
∂φ′

δφ

)

−
(

∂

∂x

∂L
∂φ′

)

δφ

]

, (3.82)

=

∫

dx

(

∂L
∂φ̇

δφ

)∣

∣

∣

∣

t2

t1

+

∫

dt

(

∂L
∂φ′

δφ

)∣

∣

∣

∣

0

L

+

∫

dt dx

[

∂L
∂φ
− ∂

∂t

∂L
∂φ̇
− ∂

∂x

∂L
∂φ′

]

δφ . (3.83)

Using (3.78,3.79), for the arbitraryness of δφ, we have the Euler-Lagrange equation of motion:

∂L
∂φ
− ∂

∂t

∂L
∂φ̇
− ∂

∂x

∂L
∂φ′

= 0 . (3.84)
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If we consider the lagrangian density of the vibrating string, Eq. (3.71), we find the wave equation

1

v2
∂2φ

∂t2
− ∂2φ

∂x2
= 0 . (3.85)

Knowing the lagrangian density, we can perform a Legendre transformation to get the hamiltonian
density. We define the momentum conjugate to the field φ

π(x, t) =
∂L
∂φ̇

(3.86)

and then

H = πφ̇− L =
1

2

[

π2 + v2π′2
]

. (3.87)

3.3 Lagrangian formalism: relativistic fields

We will consider now the field as a function of the space-time point Xµ, φ(X), and we will let our
system be described by a lagrangian, local funcion of the field (or fields, if we have more than one),
of its derivatives and, at most, of the space-time point (as we will see, we cannot have an explicit
dependence on xµ for theories that have to be Poincaré invariant). The request of locality for the
lagrangian is connected to necessity that physical quantities are observable (causality principle).

Our goal, is to include in our quantum description of microscopic phenomena special relativity.
Therefore, we will require that the action, S =

∫

dtL, is invariant under Poincaré transformations (i.e.
the action is a scalar). In fact, Physics must be independent on the inertial frame in which we describe
it.

If the lagrangian is L = L(φi(X), ∂µφi(X), ..., ∂
(n)
µ φi(X),Xµ), we define the lagrangian density L,

such that:

L =

∫

V
L(φi(X), ∂µφi(X), ..., ∂(n)µ φi(X)Xµ) d

3X . (3.88)

The action, S(V ), will be given by the following expression:

S(V ) =

∫ t2

t1

Ldt =

∫ t2

t1

∫

V
L(φi(X), ∂µφi(X), ..., ∂(n)µ φi(X)Xµ) d

4X . (3.89)

We impose that S is invariant under proper Poincaré transformations (disconituous transformations,
as the parity for instance, have to be studied apart). Since the volume element d4X is actually invariant

d4X ′ = |detΛ| d4X = d4X , (3.90)

that follows from the fact that the proper Lorentz transformation has determinant +1, we have to
impose that the lagrangian density is invariant under proper Poincaré transformations. This means,
for instance, that L cannot depend explicitely on the space-time point.

Apart from locality and Poincaré invariance, we can constrain the lagrangian density with additional
requirements: i) The action (and then the lagrangian) should be a real functional to avoid problems
in the probabilistic interpretation of the theory; ii) In order to have equations of motion that are
at most second order differential equations, the lagrangian density can depend upon up to first order
derivative of the fields; iii) We can require that the lagrangian is invariant under other transformations;
for instance including internal symmetries, gauge transformations and so on ...

In general, therefore, we will have to deal with lagrangian densities of the following kind:

L = L(φi(X), ∂µφi(X)) , (3.91)
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where the label i of the fields φi can be a collective index or a Lorentz index, depending on what we
are considering.

Once the lagrangian density is defined, we can define the conjugated momenta to the fields

πi(X) =
∂L
∂φ̇i

(3.92)

and then the hamiltonian density, via a Legendre transformation

H =
∑

i

πiφ̇i − L , (3.93)

that coincides with the energy density of the system.

3.4 Hamilton’s principle and the equations of motion

Once the lagrangian density (and the action) is specified, we can find the equations of motion for the
fields φi from the Hamilton’s principle. We ask then that

δS = 0 , (3.94)

i.e. that the action is stationary on the variations δφi(X), that will have to be the analogous of the
fixed-endpoints variations of the analytical mechanics of the massive point particle.

In our case we have to deal with an integration over the space volume V and one over the time,
between t1 andt2 (that can also be ±∞). Then, if Σ is the surface that delimits the integration volume,
δφi(X) should be such that:

δφ(x, t) = 0 if x ∈ Σ (3.95)

δφ(x, t1) = δφ(x, t2) = 0 ∀ x ∈ V . (3.96)

We will have, then

0 = δS =

∫

d4X

[

∂L
∂φi

δφi +
∂L
∂φi,µ

δφi,µ

]

= (3.97)

=

∫

d4X

[

∂L
∂φi
− ∂µ

( ∂L
∂φi,µ

)

]

δφi +

∫

d4X ∂µ

[

∂L
∂φi

δφi

]

= (3.98)

=

∫

d4X

[

∂L
∂φi
− ∂µ

( ∂L
∂φi,µ

)

]

δφi , (3.99)

where, in order to move from (3.97) to (3.98) we integrated by parts and from (3.98) to (3.99) we used
the vanishing of the field variations on the boundary of the integration domain. Since δφi is arbitrary,
Eq. (3.99) gives rise to the Euler-Lagrange equations for the fields:

∂L
∂φi
− ∂µ

(

∂L
∂φi,µ

)

= 0 . (3.100)

We must notice that L is determined up to a total derivative. In fact, if L gives rise to the equations
of motion (3.100), also L′ = L+ ∂µΛ

µ(X) gives the same equations, provided that Λµ(X) vanishes on
the boundary of the integration domain.
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3.5 Global continuous symmetries and Nöether’s theorem

Abbiamo visto come, nel formalismo lagrangiano, si facciano derivare le equazioni del moto dal Principio
variazionale di Hamilton. Supporremo quindi che il nostro sistema fisico sia descritto da una densità di
lagrangiana, funzione locale dei campi e al massimo delle loro derivate prime. Aggiungeremo l’ipotesi
che L dipenda anche esplicitamente dal punto dello spazio-tempo Xµ, anche se in realtà poi avremo a
che fare con lagrangiane indipendenti da Xµ. Questo per necessità di formulare in maniera generale il
teorema di Nöether.

Supponiamo di operare sul sistema una generica trasformazione. A livello matematico ciò si
tradurrà in una trasformazione sull’azione, S(V ), che coinvolga Xµ, φi(X) e L.

Hanno particolare interesse le trasformazioni che lasciano invariata la “fisica” del problema, cioè che
permettano di avere le stesse ampiezze di transizione e quindi, in ultima analisi, le stesse equazioni del
moto. Trasformazioni di questo genere vengono dette simmetrie del sistema e generalmente hanno
struttura di gruppo.

Se scriviamo una trasformazione generica come segue:














Xµ −→ X ′µ = Xµ + δXµ

φi(X) −→ φ̃i(X
′) = φi(X) + ∆φi(X)

L −→ L̃
(

φ̃i(X
′), φ̃i,µ(X ′),X ′

)

= L (φi(X), φi,µ(X),X) + ∆L (φi(X), φi,µ(X),X)

(3.101)
si avrà corrispondentemente:

S(V) −→ S′(V ′) =

∫

V ′

d4X ′ L̃
(

φ̃i(X
′), φ̃i,µ(X

′),X ′
)

, (3.102)

dove V è il volume quadridimensionale d’integrazione.
Le Eqs. (3.101) costituiscono una simmetria del sistema se si ha:

S′(V ′) = S(V) . (3.103)

L’importanza del teorema di Nöether sta nel fatto che questo asserisce che ad ogni simmetria
continua del sistema viene associata una legge di conservazione locale, ovvero una quantità conservata,
che possiamo identificare quantisticamente come un’osservabile. Il numero delle quantità conservate è
pari al numero di parametri indipendenti da cui dipende la trasformazione (3.101). Quindi lo studio
delle simmetrie del sistema ci permette di fare un salto nella trattazione del problema e di individuare
subito un certo numero di osservabili.

È da notare che la richiesta (3.103) rappresenta la simmetria più generale possibile: non è detto che
non esistano delle simmetrie più limitate. Per esempio un certa trasformazione può lasciare invariata
la lagrangiana o la densità di lagrangiana e queste implicano a loro volta la (3.103). Consideriamo
quindi il caso generale e poi ci limiteremo ad alcuni casi più restrittivi.

Cominciamo col puntualizzare alcune cose a proposito delle (3.101).
Le trasformazioni che considereremo in questo paragrafo sono tutte trasformazioni infinitesime,

alle quali ci limitiamo perché stiamo considerando trasformazioni continue, il cui comportamento è
deducibile da quello nell’intorno dell’identità.

Queste trasformazioni possono agire sullo spazio-tempo, Xµ → X ′µ, ed indurre quindi una cor-
rispondente variazione sul campo φi, φi(X) → φ̃i(X

′) (simmetrie geometriche), ma possono anche
agire soltanto sulla forma funzionale del campo φi, indipendentemente dal punto in cui essa è valutata
(simmetrie interne). Quindi, la variazione del campo φi(X) comprende genericamente le due possibi-
lità. Per esempio, una trasformazione di Lorentz sullo spazio-tempo, cioè il passaggio da un sistema
di riferimento inerziale ad un altro nello studio della fisica di un problema, indurrà una conseguen-
te trasformazione sui campi dovuta alla diversa natura di questi: se si ha un campo scalare si avrà
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φ̃(X ′) = φ(X), mentre per un campo tensoriale o spinoriale la trasformazione X ′µ = ΛµνXν determine-
rà la trasformazione φ′(X ′) = S(Λ)φ(X) nelle rispettive rappresentazioni del gruppo. Oppure, senza
trasformazioni dello spazio-tempo, potremo pensare ad una simmetria sotto la ridefinizione dei campi
φi.

Definiamo genericamente la variazione totale di φi(X) e L come segue:

∆φi(X) = φ̃i(X
′)− φi(X) = φ̃i(X

′)− φ̃i(X) + φ̃i(X) − φi(X) , (3.104)

≃ ∂µφ̃i(X) δXµ + φ̃i(X)− φi(X) , (3.105)

≃ ∂µφi(X) δXµ + δφi(X) , (3.106)

dove abbiamo posto δφi(X) = φ̃i(X) − φi(X), variazione in forma di φi e dove abbiamo sostituito
φ̃i con φi all’interno della derivazione fra (3.105) e (3.106), a meno di termini di ordine superiore al
primo. Inoltre:

∆L = L̃(φ̃i(X ′)...) − L(φi(X), ...) , (3.107)

= δL(φi(X)...) +
∂L
∂φi

δφi +
∂L
∂φi,µ

δφi,µ + ∂µLδXµ , (3.108)

dove δL è la variazione in forma della densità di lagrangiana ed il resto deriva dall’aver considerato
φi(X), φi,µ(X) e Xµ come variabili indipendenti in L e ∂µL è la derivata totale5 di L rispetto ad Xµ

(∂µL = ∂L
∂φi

∂φi
∂Xµ + ...) .

Considerando le trasformazioni infinitesime, imporre la (3.103) equivale ad imporre:

0 = δS =

∫

V ′

d4X ′ L̃ −
∫

V
d4X L . (3.112)

Quindi, per poter procedere nel calcolo, dovremo riportare i due integrali allo stesso dominio d’inte-
grazione. Trasformando

∫

V ′ d
4X ′ in

∫

V d
4X dovremo tener conto dello jacobiano della trasformazione

Xµ → X ′µ = Xµ + δXµ , (3.113)

ovvero di:

det(J) =

∣

∣

∣

∣

∂X ′ν

∂Xµ

∣

∣

∣

∣

= det
(

δνµ + ∂µδX
ν
)

≃ 1 + ∂µδX
µ , (3.114)

dove abbiamo usato la relazione det(1 + ǫ) ≃ 1 + tr(ǫ).
Sostituendo nell’Eq. (3.112) e sviluppando al primo ordine, si ottiene:

0 =

∫

V
d4X

{

(1 + ∂µδX
µ) L̃ − L

}

, (3.115)

≃
∫

V
d4X

{

δL +
∂L
∂φi

δφi +
∂L
∂φi,µ

δφi,µ + ∂µLδXµ + ∂µδX
µL̃
}

, (3.116)

≃
∫

V
d4X

{

δL +
∂L
∂φi

δφi + ∂µ

[ ∂L
∂φi,µ

δφi

]

−
[

∂µ
∂L
∂φi,µ

]

δφi + ∂µLδXµ + ∂µδX
µL
}

, (3.117)

5We can rewrite the total difference as follows:

∆L = L̃(φ̃i(X
′)...)− L(φi(X), ...) , (3.109)

= L̃(φ̃i(X
′)...)− L(φ̃i(X

′)...) + L(φ̃i(X
′)...)− L(φi(X

′)...) + L(φi(X
′)...) − L(φi(X), ...) , (3.110)

≃ δL+
∂L
∂φi

δφi +
∂L
∂φi,µ

δφi,µ + ∂µLδXµ , (3.111)

where we identified the functional variation of the lagrangian density, δL ≃ L̃(φ̃i(X
′)...)−L(φ̃i(X

′)...), its derivative with
respect to the variation in form of the fields, L(φ̃i(X

′)...) − L(φi(X
′)...) ≃ ∂L

∂φi
δφi +

∂L
∂φi,µ

δφi,µ and the total derivative

with respect to Xµ, L(φi(X
′)...) − L(φi(X), ...) ≃ ∂µLδXµ.
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=

∫

V
d4X

{

δL + ∂µ

[ ∂L
∂φi,µ

δφi + L δXµ
]

}

, (3.118)

dove per passare da (3.116) a (3.117) abbiamo integrato per parti e sostituito, a meno di infinitesimi
superiori al primo, L̃ con L, e per passare da (3.117) a (3.118) abbiamo sfruttato le equazioni del moto.

Per l’arbitrarietà del d4X, la (3.118) dà la seguente equazione:

∂µ

[ ∂L
∂φi,µ

δφi + L δXµ
]

= −δL . (3.119)

Consideriamo il termine δL.
Se la trasformazione è una simmetria, come abbiamo imposto, la variazione in forma della densità

di lagrangiana non può essere qualunque. Infatti, dovendo rimanere invariate le equazioni di moto, δL
potrà al massimo essere la quadridivergenza di una certa funzione δΩµ:

δL = ∂µ δΩ
µ , (3.120)

con δΩµ che si annulla sulla frontiera del dominio d’integrazione.
L’Eq. (3.119) diventa, allora, semplicemente un’equazione di continuità:

∂µ J
µ = 0 , (3.121)

dove abbiamo definito la seguente quadricorrente:

Jµ =

(

∂L
∂φi,µ

δφi + L δXµ + δΩµ
)

. (3.122)

Se i campi φi e la funzione arbitraria δΩµ si annullano all’infinito, la conservazione della corrente
Jµ, espressa dall’Eq. (3.121), porta alla conservazione della carica:

Q =

∫

V
d3X J0 . (3.123)

Infatti, si ha:
dQ

dt
= ∂0

∫

V
d3X J0 =

∫

∂V
dΣJ · n = 0 , (3.124)

che implica:
Q = cost . (3.125)

È chiaro che, a seconda della trasformazione (o meglio a seconda di quanti parametri indipendenti
contiene la trasformazione) (3.101), avremo più correnti conservate e quindi più cariche conservate. Il
numero di queste dipende proprio dal numero di parametri indipendenti della trasformazione.

È da notare, inoltre, che se le simmetrie “di Nöether” formano un gruppo, l’algebra di questo gruppo
induce sulle cariche conservate la stessa algebra. In altre parole le cariche sono i generatori del gruppo
di trasformazioni considerato.

Andiamo, adesso, a vedere alcuni esempi.

3.5.1 Simmetrie geometriche. Trasformazioni di Lorentz

Consideriamo il caso in cui δΩµ = 0, cioè in cui la densità di lagrangiana viene lasciata invariata dalla
trasformazione, e operiamo una trasformazione di Lorentz infinitesima:

X ′µ = Xµ + ǫµνXν , (3.126)
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dove il tensore del secondo ordine ǫµν è antisimmetrico. Infatti, siccome X2 è un’invariante di Lorentz,
si ha:

X2 = X ′2 (3.127)

e siccome per la trasformazione infinitesima X ′ = X + δX, elevando al quadrato si trova

X ′2 = (X + δX)2 ≃ X2 +X · δX (3.128)

che, per la (3.127), dà:
X · δX = 0 . (3.129)

Ma siccome, ancora, δXµ = ǫµνXν , si ha infine:

XµXνǫ
µν = 0 , (3.130)

che è vera solo se ǫµν è antisimmetrico, essendo XµXν simmetrico.

Questo vuol dire che ǫµν ha 6 = n(n−1)
2 parametri indipendenti: 3 per le rotazioni e 3 per i boosts,

lungo i tre assi coordinati.
Consideriamo l’indice “i” del campo φi come un indice di Lorentz, ovvero consideriamo il caso di

un unico campo che si trasformi sotto la (3.126) secondo una certa rappresentazione del Gruppo di
Lorentz. Allora si avrà:

φi(X) → S(Λ)ijφ
j(X) ≃

[

1− 1

2
Σνρǫ

νρ
]i

j
φj(X) =

= φi(X) − 1

2
(Σνρǫ

νρ)ij φ
j(X) . (3.131)

Le Σνρ sono i generatori del Gruppo di Lorentz, o meglio una loro rappresentazione nella base dei
campi (rappresentazione tensoriale o spinoriale), mentre ǫµν rappresenta gli “angoli” di rotazione.

In totale, quindi:
{

δXµ = ǫµνXν

∆φi(X) = −1
2 (Σνρǫ

νρ)ij φ
j(X)

. (3.132)

Siccome

Jµ =
∂L
∂φi,µ

δφi + LδXµ =
∂L
∂φi,µ

[

∆φi − ∂µφiδXµ
]

+ LδXµ , (3.133)

la quadricorrente conservata è data dalla seguente relazione:

Jµ =
∂L
∂φi,µ

[

−1

2

(

Σνρǫ
νρ
)i

j
φj − ∂ρφiδXρ

]

+ LδXµ = (3.134)

= −1

2

∂L
∂φi,µ

(Σνρǫ
νρ)ij φ

j − ∂L
∂φi,µ

∂νφ
iǫνρXρ + gµν ǫ

νρXρL = (3.135)

= −1

2

∂L
∂φi,µ

(Σνρǫ
νρ)ij φ

j − ǫνρXρ

[

∂L
∂φi,µ

φi,ν − gµνL
]

= (3.136)

= −1

2

∂L
∂φi,µ

(Σνρǫ
νρ)ij φ

j − ǫνρXρT
µ
ν , (3.137)

dove abbiamo posto:

T µν =
∂L
∂φi,µ

φi,ν − gµνL . (3.138)

Siccome, inoltre, ǫµν è antisimmetrico nello scambio dei due indici, l’unico contributo non nullo di
ǫνρXρT

µ
ν deriva dalla parte antisimmetrica di XρT

µ
ν (in ν e ρ):

1

2

(

XρT
µ
ν −XνT

µ
ρ

)

. (3.139)
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Per cui, infine, si ha:

Jµ =
1

2
ǫνρ
[

− ∂L
∂φi,µ

(

Σνρ

)i

j
φj −

(

XρT
µ
ν −XνT

µ
ρ

)

]

= (3.140)

=
1

2
ǫνρMµ

νρ , (3.141)

dove abbiamo definito il tensore:

Mµ
νρ =

(

XνT
µ
ρ −XρT

µ
ν

)

− ∂L
∂φi,µ

(Σνρ)
i
j φ

j , (3.142)

che ha 24 componenti indipendenti ( 4 in µ e 6 = n(n−1)
2 in ρν).

Il tensore Mµ
ρν è una generalizzazione del momento angolare.

È formato da un momento “orbitale” XρT
µ
ν − XνT

µ
ρ , che infatti ha la struttura di un prodotto

vettoriale e da un momento “intrinseco” (momento di spin) − ∂L
∂φi,µ

(Σρν)
i
j φ

j. Il primo momento angolare

deriva dall’azione del Gruppo di Lorentz sulle coordinate spazio-temporali; lo spin dall’azione dello
stesso sulle coordinate spinoriali del campo.

La conservazione della quadricorrente, ∂µJµ = 0, essendo ǫρν una costante (sono gli angoli di
rotazione e non dipendono da X), porta alla seguente equazione per il tensore M:

∂µMµ
ρν = 0 . (3.143)

La (3.143) costituisce in realtà 6 correnti conservate, che sono le 6 componenti indipendenti in ρ e
ν di Mµ

ρν .
Posto

Mρν =

∫

d3XMo
ρν , (3.144)

se i campi vanno a zero all’infinito, si ha la conservazione delle 6 cariche:

Ṁρν = 0 . (3.145)

3.5.2 Campo scalare e conservazione del quadriimpulso e del momento angolare
orbitale

Se ci riduciamo al caso particolare di un campo scalare, avremo

∆φ(X) = φ′(X ′)− φ(X) = 0 . (3.146)

Consideriamo prima di tutto una traslazione spazio-temporale di un quadrivettore aµ costante:
{

δXµ = aµ

∆φ = 0
(3.147)

cosicché si abbia:
δφ(X) = −∂µφ(X) δXµ = −∂µφ(X) aµ . (3.148)

Allora, si può ricavare facilmente la conservazione del quadriimpulso. Infatti, si ha:

Jµ =

[

Lgµν −
∂L
∂φ,µ

∂ν

]

aν = (3.149)

= −T µν aν , (3.150)

dove T µν è il tensore energia-impulso del sistema.
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Siccome la traslazione aµ è costante, la legge di conservazione della corrente Jµ implica:

∂µT
µ
ν = 0 , (3.151)

che sono quattro leggi di conservazione locale.
Definiamo il quadriimpulso del sistema come segue:

Pν =

∫

d3X T 0
ν . (3.152)

Allora la (3.151) porta alla
Ṗν = 0 . (3.153)

Infatti, le






















∂µT
µ
0 = 0

∂µT
µ
1 = 0

∂µT
µ
2 = 0

∂µT
µ
3 = 0

(3.154)

implicano






















∂0T
0
0 = ∂iT

i
0

∂0T
0
1 = ∂iT

i
1

∂0T
0
2 = ∂iT

i
2

∂0T
0
3 = ∂iT

i
3

(3.155)

e integrando in d3X, supposto che i campi vadano a zero all’infinito, si ottiene la (3.153) componente
per componente:























∂0P0 = ∂i
∫

d3X T i0 → 0

. = . .

. = . .

∂0P3 = ∂i
∫

d3X T i3 → 0

(3.156)

Se invece delle traslazioni consideriamo le trasformazioni proprie di Lorentz, avremo:

Jµ =
1

2
ǫρν

[

XρT
µ
ν −XνT

µ
ρ

]

=
1

2
ǫρν Mµ

ρν . (3.157)

La conservazione della corrente Jµ implica:

∂µM
µ
ρν = 0 , (3.158)

ovvero:
∂0M

0
ρν = ∂iM

i
ρν . (3.159)

Consideriamo le componenti M0
ij . Si ha:

M0
ij =

[

XiT
0
j −XjT

0
i

]

= [XiPj −XjPi] , (3.160)

dove abbiamo introdotto Pi densità spaziale d’impulso. Allora:

M0
ij = ǫijk Lk =





0 L3 −L2

−L3 0 L1

L2 −L1 0



 (3.161)

dove L = r ∧ P è la densità spaziale di momento angolare. Integrando la (3.159) in d3X si ottiene la
conservazione del momento angolare orbitale:

L̇ = 0 , (3.162)

dove

Li =

∫

d3X Li . (3.163)
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3.5.3 Simmetrie interne globali

Come abbiamo già accennato, l’altro esempio di trasformazione (3.101) da considerare è quello di una
variazione che coinvolga soltanto una ridefinizione in forma dei campi, ma non un cambiamento di
sistema di riferimento.

Genericamente avremo:
{

δXµ = 0

∆φi = δφi 6= 0
(3.164)

da cui scaturisce la legge di conservazione locale ∂µJµ = 0 con:

Jµ =
∂L
∂φi,µ

δφi . (3.165)

Se i campi vanno a zero all’infinito, si conserva la carica:

Q =

∫

d3X J0 =

∫

d3X
∂L
∂φ̇i

δφi . (3.166)

Campo scalare carico

Il tipico esempio di simmetria interna è l’invarianza della lagrangiana del campo scalare carico,

L = ∂µφ
†∂µφ−m2φ†φ , (3.167)

sotto trasformazioni di fase globali:
{

φ → φ′ = eiαφ

φ† → φ′† = φ†e−iα
. (3.168)

Quest’invarianza determina la conservazione della corrente:

jµ =
Jµ

α
= i

[

(

∂µφ
†)φ−

(

∂µφ
)

φ†
]

(3.169)

e della carica:

Q = i

∫

d3X
(

φ̇†φ− φ̇φ†
)

, (3.170)

che può essere vista nel modello interagente come carica elettrica delle particelle e antiparticelle scalari
φ.

Campo di Dirac

Le trasformazioni di fase globali lasciano invariata anche un’altra lagrangiana: quella del campo di
Dirac libero:

L = ψ (i 6∂ −m) ψ . (3.171)

Riscriviamo le (3.168) per il campo ψ:
{

ψ → ψ′ = e−iαψ

ψ → ψ
′
= ψ eiα

. (3.172)

Allora, avremo una corrente conservata:

jµ =
Jµ

α
= ψ γµ ψ (3.173)

ed una carica conservata:

Q =

∫

d3X
(

ψ γ0 ψ
)

=

∫

d3X ψ†ψ . (3.174)
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Capitolo 4

Free Fields

In this chapter we will study the non-interacting fields, from the classical viewpoint to their canonical
quantization.

4.1 The Klein-Gordon Field (classical field)

We introduced different finite-dimensional representation of the Lorentz group. According to them, we
can classify our fields. We start with the simplest representation, the trivial one1, and we consider then
a scalar field (real or complex) φ(X) which under a Poincaré transformation Xµ → X ′µ = ΛµνXν + aµ

transforms as
φ(X)→ φ′(X ′) = φ(X) . (4.1)

4.1.1 The Klein-Gordon equation

The Klein-Gordon field will satisfy a differential equation that can be found using the relativistic
dispertion relation (energy-momentum relation or mass-shell condition)

E2 = p2 +m2 , (4.2)

replacing the energy and the momentum with the correspondence principle
{

E → i ∂∂t ,

p → −i∇ .
(4.3)

We find

− ∂2

∂t2
φ(X) = (−∇2 +m2)φ(X) , (4.4)

that, remembering the covariant form ∂µ∂
µ = ∂20 − ∂2i , can be written in manifestly covariant way as

follows
(∂µ∂

µ +m2)φ(X) = 0 . (4.5)

Eq. (4.5) is invariant under Poincaré transformations. In fact we can check easily that

(∂′µ∂
′µ+m2)φ′(X ′) = (Λ .ν

µ Λµρ ∂ν∂
ρ+m2)φ′(X ′) = (δνρ∂ν∂

ρ+m2)φ′(X ′) = (∂ν∂
ν+m2)φ(X) = 0 . (4.6)

Eq. (4.5) has to be considered as a classical equation for the classical field φ(X). Then we will
quantize our system. In this sense there is no “second quantization”, but only the quantization of the
classical field (we will quantize once!).

1In this representation the generators of the group are zero, Jµν = 0.
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If, as was the case when the equation was proposed around 1926, we would like to interpret Eq. (4.5)
as a wave equation (so to say “à la Schrödinger”), we would face many issues. The main ones can be
summarized as follows:

• First of all, the fact that we have a differential equation which is second-order in time seams to
be in constrast with the basic laws of quantum mechanics according to which we can determine
the time evolution of the wave function knowing just the function at a certain time t0. In order
to solve a second-order differential equation, we must, instead, provide the initial values of the
field and its time derivative.

• The fact that we have a differential equation which is second-order in time makes in such a way
that the probabilistic interpretation of the theory is at risk. What we would like to interpret as
“probability density” is in fact non positive definite. We can see that considering the differential
equation for the complex-conjugated field (which is the same as Eq. (4.5) since the differential
operator is real):

(∂µ∂
µ +m2)φ∗(X) = 0 . (4.7)

If we multiply Eq. (4.5) by φ∗ and we subtract Eq. (4.7) multiplied by φ, we have

0 = φ∗(∂µ∂
µ +m2)φ− φ(∂µ∂µ +m2)φ∗ =

= φ∗
∂2

∂t2
φ− φ ∂

2

∂t2
φ∗ + φ∇2φ∗ − φ∗∇2φ =

=
∂

∂t
(φ∗

∂

∂t
φ− φ ∂

∂t
φ∗) +∇ · (φ∇φ∗ − φ∗∇φ) , (4.8)

which is a continuity equation in which the probability density should be given by the following
expression2:

ρ = i

(

φ∗
∂

∂t
φ− φ ∂

∂t
φ∗
)

= iφ∗
←→
∂0 φ , (4.9)

such that
d

dt

∫

d3X iφ∗
←→
∂0φ = 0 . (4.10)

Eq. (4.10) defines the correct scalar product (in the Hilbert space of φ(X)), which is conserved
(time independent):

(φ1, φ2) =

∫

d3X iφ∗1
←→
∂0 φ2 . (4.11)

However, ρ it is not a positive definite expression and, therefore, the connection with the
probabilistic interpretation of the theory fails.

• Finally, an even more serious problem arises from the plane wave solutions of the Klein-Gordon
equation. As we will see in the next section.

4.1.2 Plane wave solutions of the Klein-Gordon equation

We look for a solution of Eq. (4.5) as a plane wave solution

φ(X) = Ae−iPµXµ

. (4.12)

Substituting Eq. (4.12) in Eq. (4.5) we find that the plane wave is a solution prodived that

(∂µ∂
µ +m2)Ae−iPµXµ

= (−PµPµ +m2)Ae−iPµXµ

= 0 , (4.13)

2We put an “i” in order to have a real ρ
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i.e.
PµP

µ = E2 − p2 = m2 . (4.14)

Eq. (4.14) gives two possible solutions for the energy E:

E+ =
√

p2 +m2 = ωp , (4.15)

E− = −
√

p2 +m2 = −ωp . (4.16)

We therefore have two different solutions:

f+p (X) = Ae−iE+t+ip·x = Ae−iωpt+ip·x , (4.17)

f−p (X) = Ae−iE−t+ip·x = Aeiωpt+ip·x . (4.18)

Solution (4.18) is of difficult interpretation within a theory such as wave mechanics, “à la Schrödin-
ger”. The issue can be solved moving to a field theory. Eq. (4.5) should be interpreted not as a wave
equation, but as the differential equation that the classical field φ has to fulfill.

The general solution will be a superposition of f+ and f−:

φ(X) =

∫

d3p
(

α(p)Ae−iωpt+ip·x + β(p)Aeiωpt+ip·x) . (4.19)

Let us normalize our functions with respect to the scalar product (4.11). We have

(f+p (X), f+p′ (X)) = i|A|2
∫

d3X
[

eiPµXµ

∂0e
−iP ′

µX
µ − e−iP ′

µX
µ

∂0e
iPµXµ

]

, (4.20)

= i|A|2
∫

d3X
[

−iωp′ei(P−P ′)µXµ − iωpe−i(P−P ′)µXµ
]

, (4.21)

= |A|2
∫

d3X(ωp′ + ωp)e
i(P−P ′)µXµ

, (4.22)

= |A|2(ωp′ + ωp)e
i(ωp−ωp′ )t

∫

d3Xe−i(p−p′)·x , (4.23)

= (2π)3|A|2(ωp′ + ωp)e
i(ωp−ωp′)tδ(p − p′) , (4.24)

= (2π)3|A|22ωpδ(p − p′) . (4.25)

Imposing
(f+p (X), f+p′ (X)) = δ(p − p′) , (4.26)

we find3

A =
1

(2π)
3
2
√

2ωp
. (4.27)

Finally

f+p (X) =
e−iPµXµ

(2π)
3
2
√

2ωp
. (4.28)

In the same way we can normalize f−p (X), that has negative norm (a remark of the fact that
negative energy solutions cannot be linked to usual wave mechanics solutions). We have

(f−p (X), f−p′ (X)) = i|A|2
∫

d3X
[

e−iωpt−ip·x∂0e
iωp′ t−ip′·x − eiωp′ t−ip′·x∂0e

−iωpt−ip·x
]

, (4.29)

= i|A|2
∫

d3X
[

iωp′e
−i(ωp−ωp′ )t−i(p−p′)·x + iωpe

i(ωp−ωp′ )t−i(p−p′)·x
]

, (4.30)

3We choose A real.
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= −|A|2(ωp′ + ωp)e
−i(ωp−ωp′)t

∫

d3Xe−i(p−p′)·x , (4.31)

= −(2π)3|A|22ωpδ(p − p′) . (4.32)

Imposing
(f−p (X), f−p′ (X)) = −δ(p− p′) , (4.33)

we find the same expression for the normalization factor:

A =
1

(2π)
3
2
√

2ωp
. (4.34)

Therefore

f−p (X) =
eiωpt+ip·x

(2π)
3
2
√

2ωp
. (4.35)

We can prove that f+ and f− are ortogonal, as follows

(f−p (X), f+p′ (X)) = i|A|2
∫

d3X
[

e−iωpt−ip·x∂0e
−iωp′ t+ip

′·x − e−iωp′ t+ip
′·x∂0e

−iωpt−ip·x
]

, (4.36)

= i|A|2
∫

d3X
[

−iωp′e−i(ωp+ωp′ )t−i(p−p′)·x + iωpe
−i(ωp+ωp′)t−i(p−p′)·x

]

,(4.37)

= |A|2(ωp′ − ωp)e−i(ωp+ωp′)t

∫

d3Xe−i(p−p′)·x , (4.38)

= 0 . (4.39)

We express the classical solution of the KG equation in terms of plane waves as the following
combination:

φ(X) =

∫

d3p
(

α(p) f+p (X) + β(p) f−p (X)
)

, (4.40)

=

∫

d3p

(2π)
3
2
√

2ωp

(

α(p) e−iωpt+ip·x + β(p) eiωpt+ip·x) . (4.41)

Since we are integrating in the whole domain of p, we can change p with −p in the second integral
finding

φ(X) =

∫

d3p

(2π)
3
2
√

2ωp

(

α(p) e−iPµXµ

+ β̃(p) eiPµXµ
)

, (4.42)

=

∫

d3p
(

α(p) f+p (X) + β̃(p) f−p (X)
)

, (4.43)

where now

f−p (X) = (f+p (X))∗ =
eiPµXµ

(2π)
3
2
√

2ωp
. (4.44)

If we consider a real field, then we have to impose φ∗(X) = φ(X):

φ∗(X) =

∫

d3p
(

α∗(p) (f+p (X))∗ + β̃∗(p) f+p (X)
)

= φ(X) , (4.45)

that means β̃(p) = α∗(p).
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The final expression for the classical real Klein-Gordon field (in terms of normal modes) is the
following

φ(X) =

∫

d3p

(2π)
3
2
√

2ωp

(

α(p) e−iPµXµ

+ α∗(p) eiPµXµ)

. (4.46)

NOTE: The expression (4.44) for f− has all the characteristics of the previous one, i.e. negative norm
and ortogonality with f+. The fact that negative-energy solutions are related to the positive-energy
ones by the transformation (E,p)→ (−E,−p) has a nice meaning in terms of the Feynman-Stuckelberg
interpretation.

We can use the scalar product to extract the coefficients α(p) and α∗(p):

α(p) = (f+p , φ) = i

∫

d3X (f+)∗
←→
∂0φ , (4.47)

α∗(p) = −(f−p , φ) = −i
∫

d3X (f−)∗
←→
∂0 φ . (4.48)

4.1.3 Lagrangian density of the Klein-Gordon real field

We now want to find the Lagrangian density of the Klein-Gordon real field, i.e. the functional L such
that through the Euler-Lagrange equations we can obtain Eq. (4.5). In order to do that, we use the
Hamilton’s principle following the reverse procedure. If δφ is the variation of the field φ(X), that
vanishes on the boundary of the integration domain, we multiply Eq.(4.5) by that variation and we
integrate by parts. We have

0 =

∫

d4X
(

∂µ∂
µφ+m2φ

)

δφ = (4.49)

=

∫

d4X

[

∂µ
(

∂µφ δφ
)

− ∂µφ∂µδφ +
m2

2
δφ2
]

= (4.50)

= −
∫

d4X

[

∂µφ δ
(

∂µφ
)

− m2

2
δφ2
]

= (4.51)

= −δ
[

∫

d4X
1

2

(

∂µφ∂
µφ−m2φ2

)

]

, (4.52)

where moving from (4.49) to (4.50) and from (4.51) to (4.52) we integrated by parts and where the
first term of Eq. (4.50) gives a vanishing integral, since it is the total derivative and the variation of
the field annihilates on the boundary of integration.

The lagrangian density is:

L =
1

2

(

∂µφ∂
µφ−m2φ2

)

. (4.53)

We note that an overall sugn in the definition of L does not affect the equations of motion. However,
on the sign of L depends the sign of the hamiltonian density H. We chose the sign of (4.53) in such a
way to have an hamiltonian density definite positive.

Conserved quantities

From the invariance under Poincaré transformations of the lagrangian (4.53), we have a relation for
the Nöther’s charges. Translation invariance gives the conservation of the energy-momentum tensor

T µν =
∂L
∂φ,µ

φ,ν − ηµνL = ∂µφ∂νφ− ηµνL , (4.54)
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such that ∂µT µν = 0. The four conserved charges are the energy density

H = T 00 = (∂0φ)
2 −L =

1

2

[

φ̇2 + (∇φ)2 +m2φ2
]

(4.55)

and the momentum density
Pi = T 0

i = φ̇∂iφ . (4.56)

From Lorentz invariance, instead, we find the conservation of the 6 charges

M0
µν =

∫

d3X
(

XµT
0
ν −XνT

0
µ

)

, (4.57)

among which for instance the orbital angular momentum

M0
ij =

∫

d3X
(

XiT
0
j −XjT

0
i

)

=

∫

d3X (Xi∂0φ∂jφ−Xj∂0φ∂iφ) , (4.58)

=

∫

d3X ∂0φ (Xi∂j −Xj∂i)φ = −i
∫

d3X ∂0φLijφ , (4.59)

where
Lij = i (Xi∂j −Xj∂i) (4.60)

is the angular momentum operator

4.1.4 Hamiltonian

The hamiltonian density is in Eq. (4.55)4. It can be obtained also with a Legendre transformation of
the lagrangian density. We define the conjugated momentum to the field

π(X) =
∂L
∂φ̇

= φ̇ . (4.61)

Then we find

H =
1

2

[

π2 + (∇φ)2 +m2φ2
]

. (4.62)

Recalling that

φ(X) =

∫

d3p

(2π)
3
2
√

2ωp

(

α(p) e−iPµXµ

+ α∗(p) eiPµXµ)

, (4.63)

π(X) = −i
∫

d3p

(2π)
3
2
√

2ωp
ωp
(

α(p) e−iPµXµ − α∗(p) eiPµXµ)

, (4.64)

∇φ(X) = i

∫

d3p

(2π)
3
2
√

2ωp
p
(

α(p) e−iPµXµ − α∗(p) eiPµXµ)

, (4.65)

we can find the hamiltonian as follows

H =

∫

d3XH =

∫

d3X
1

2

[

π2 + (∇φ)2 +m2φ2
]

, (4.66)

=
1

2

∫

d3p d3p′

(2π)3
√

4ωpωp′

∫

d3X

{

4Actuaslly, since in Eq. (4.55) there is the energy density, it is written in terms of φ and φ̇. If we want the hamiltonian
we have to intend Eq. (4.61) as an equation from which to extract φ̇ in terms of π.
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−ωpωp′
[

α(p) e−iPµXµ − α∗(p) eiPµXµ]
[

α(p′) e−iP
′
µX

µ − α∗(p′) eiP
′
µX

µ
]

−p · p′ [α(p) e−iPµXµ − α∗(p) eiPµXµ]
[

α(p′) e−iP
′
µX

µ − α∗(p′) eiP
′
µX

µ
]

+m2
[

α(p) e−iPµXµ

+ α∗(p) eiPµXµ]
[

α(p′) e−iP
′
µX

µ

+ α∗(p′) eiP
′
µX

µ
]

}

, (4.67)

=
1

2

∫

d3p d3p′

(2π)3
√

4ωpωp′

∫

d3X

{

α(p)α(p′)e−i(P+P ′)µXµ

(−ωpωp′ − p · p′ +m2)

+α∗(p)α∗(p′)ei(P+P ′)µXµ

(−ωpωp′ − p · p′ +m2)

+α(p)α∗(p′)e−i(P−P ′)µXµ

(ωpωp′ + p · p′ +m2)

+α∗(p)α(p′)ei(P−P ′)µXµ

(ωpωp′ + p · p′ +m2)

}

, (4.68)

= | integrating in d3X |

=
1

2

∫

d3p d3p′
√

4ωpωp′

{

[

α(p)α(p′)e−i(ωp+ωp′)t + α∗(p)α∗(p′)ei(ωp+ωp′ )t
]

(−ωpωp′ − p · p′ +m2) δ(p + p′)

+
[

α(p)α∗(p′)e−i(ωp−ωp′ )t + α∗(p)α(p′)ei(ωp−ωp′ )t
]

(ωpωp′ + p · p′ +m2) δ(p − p′)

}

,(4.69)

= | integrating in d3p′, since −ω2
p + p2 +m2 = 0 |

=

∫

d3p
1

2
ωp [α(p)α∗(p) + α∗(p)α(p)] , (4.70)

where we considered α∗(p)α(p) 6= α(p)α∗(p), although classically this does not have any meaning.
As in the case of the vibrating string, we find that the hamiltonian is the “sum” of an infinite

number of hamiltonians of harmonic oscillator of frequency ωp.

4.1.5 Complex scalar field and the charge

So far we treated the real field case. Let us consider now the possibility to have a complex scalar
field. We can treat the case, starting with two real fields, φ1 and φ2 degenerate in mass, for which the
lagrangian density is

L =
1

2

[

∂µφ1∂
µφ1 + ∂µφ2∂

µφ2 −m2(φ21 + φ22)
]

, (4.71)

rotating in the complex plane to φ and φ∗ defined such that

φ =
φ1 + iφ2√

2
, (4.72)

φ∗ =
φ1 − iφ2√

2
, (4.73)

or

φ1 =
φ+ φ∗√

2
, (4.74)

φ2 =
φ− φ∗
i
√
2

, (4.75)
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Substituting (4.74,4.75) in Eq. (4.71) we find

L = ∂µφ
∗∂µφ−m2φ∗φ . (4.76)

The lagrangian (4.76) has a global internal symmetry, under U(1) phase transformations:

φ(X) → φ′(X) = e−iθφ(X) , (4.77)

φ∗(X) → φ′∗(X) = eiθφ∗(X) , (4.78)

with θ ∈ R. It is easy to check that indeed

L′ = ∂µφ
′∗∂µφ′ −m2φ′∗φ′ = ∂µφ

∗∂µφ−m2φ∗φ = L . (4.79)

The Nöther’s current associated to this symmetry is

Jµ =
∂L
∂φi,µ

δφi =
∂L
∂φ,µ

δφ+
∂L
∂φ∗,µ

δφ∗ . (4.80)

Note that the piece proportional to the lagrangian density is not present, since for this internal
symmetry we do not have any change in the space-time point, δXµ = 0.

The infinitesimal transformation can be found expanding (4.77,4.78):

δφ = −iθφ , (4.81)

δφ∗ = iθφ∗ , (4.82)

from which

∂µ

[

∂L
∂φ,µ

δφ+
∂L
∂φ∗,µ

δφ∗
]

= ∂µ [−iθφ∂µφ∗ + iθφ∗∂µφ] = θ ∂µ

[

iφ∗
←→
∂µφ

]

= 0 . (4.83)

Since relation (4.83) holds for any θ, we define the current as

Jµ = iφ∗
←→
∂µφ (4.84)

and the conserved current is

Q =

∫

d3Xiφ∗
←→
∂0φ . (4.85)

4.1.6 Non relativistic limit

In the β ≪ 1 limit, the energy can be expanded as well finding

E ∼ m+
p2

2m
+ ... (4.86)

We have a big constant, the mass m, which comes from relativity and is not present in non relativistic
newtonian mechanics, and a small term which is indeed the non relativistic kinetic energy. Therefore,
we consider the limit in which the momenta and energies are small with respect to the big term m.
We define

E′ = E −m, (4.87)

and therefore we have E′ ≪ m.
The positive-energy solutions will oscillate with a term that is as big as m, ∼ e−imt, and a slightly

varying term ∼ e−iE′t. In order to study the latter, we have to factorize the former. We put

φ = ϕe−imt , (4.88)
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in such a way that
∣

∣

∣

∣

i
∂ϕ

∂t

∣

∣

∣

∣

∼ E′ϕ≪ mϕ . (4.89)

We have, at first order in E′:

∂φ

∂t
=

(

∂ϕ

∂t
− imϕ

)

e−imt , (4.90)

∂2φ

∂t2
=

(

∂2ϕ

∂t2
− im∂ϕ

∂t

)

e−imt − im
(

∂ϕ

∂t
− imϕ

)

e−imt , (4.91)

≃
(

−i 2m∂ϕ

∂t
−m2ϕ

)

e−imt . (4.92)

Substituting in the Klein-Gordon equation we have

∂2φ

∂t2
= ∇2φ−m2φ (4.93)

and, therefore
(

−i 2m∂ϕ

∂t
−m2ϕ

)

e−imt = ∇2ϕe−imt −m2ϕe−imt . (4.94)

Finally

i
∂ϕ

∂t
= − 1

2m
∇2ϕ , (4.95)

which is the Schródinger equation for a free spinless particle.

4.1.7 The two-component form

The Klein-Gordon equation is second order in time. Every second-order differential equation is equi-
valent to a system of first-order differential equations. We can then cast the Klein-Gordon equation
into a form which is “similar” to the Schrödinger equation, loosing the manifest covariance and getting
an equation that involves a two-component field and a matrix 2x2 that plays the role of the hamil-
tonian in the Schródinger equation (however, in this two-component description the Schrödinger-like
hamiltonian is not even hermitian).

We consider then φ and ∂0φ as independent fields, defining two fields, φ+ and φ−, as follows

φ+ =
1√
2m

(i∂0φ+mφ) , (4.96)

φ− =
1√
2m

(−i∂0φ+mφ) , (4.97)

such that

φ =
1√
2m

(φ+ + φ−) , (4.98)

i∂0φ =

√

m

2
(φ+ − φ−) . (4.99)

(For the moment we do not include interactions).
Let us take the derivatives with respect to time of φ±:

i∂0φ± =
1√
2m

(

∓ ∂2

∂t2
φ+mi∂0φ

)

, (4.100)
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= |using the Klein-Gordon equation |

=
1√
2m

[

∓(−p2 −m2)φ+mi∂0φ
]

, (4.101)

=
1√
2m

[

∓(−p2 −m2)
1√
2m

(φ+ + φ−) +m

√

m

2
(φ+ − φ−)

]

, (4.102)

= ±
(

p2

2m
+
m

2

)

(φ+ + φ−) +
m

2
(φ+ − φ−) . (4.103)

Finally






i∂0φ+ =
(

p2

2m +m
)

φ+ + p2

2mφ− ,

i∂0φ− = − p2

2mφ+ −
(

p2

2m +m
)

φ− .
(4.104)

If we arrange φ± in a two-component vector

Ψ =

(

φ+
φ−

)

(4.105)

we find the following form for the KG equation

(i∂0 −H)Ψ = 0 . (4.106)

In Eq. (4.106), we defined the following matrix

H =

(

p2

2m +m p2

2m

− p2

2m − p2

2m −m

)

=

(

p2

2m
+m

)

τ3 +
p2

2m
iτ2 , (4.107)

where

τ1 =

(

0 1
1 0

)

, τ2 =

(

0 −i
i 0

)

, τ3 =

(

1 0
0 −1

)

, (4.108)

are the Pauli matrices. Note that although we found a natural representation in terms of the Pauli
matrices, we are not speaking about spin. The particle we are describing with the KG equation are
spinless particles. Here we are considering an SU(2) rotation, but in another space (the one identified
by the two-component vectors Ψ).

Since

(i∂0 +H)(i∂0 −H) = − ∂2

∂t2
−H2 (4.109)

and

H2 =

(

p2

2m
+m

)2

(τ3)2 − p4

4m2
(τ2)2 + i

p2

2m

(

p2

2m
+m

)

[τ3, τ2]+ = (p2 +m2)1 , (4.110)

we find that since Eq. (4.106) holds, we have

(i∂0 +H)(i∂0 −H)Ψ = 0 , (4.111)

and therefore, because of Eq. (4.109):

(

∂2

∂t2
−∇2 +m2

)

Ψ = 0 . (4.112)

Both φ+ and φ− satisfy the KG equation.

83



The operator H is not hermitian, H† 6= H. However, it is hermitian “in τ3 metric”, i.e.

τ3H†τ3 = H , (4.113)

as can be checked by direct inspection.
We can also plug in the new form the conserved charge

Q = i

∫

d3X φ∗
←→
∂0φ =

i

2m

∫

d3X
(

φ∗+ + φ∗−
)
←→
∂0 (φ+ + φ−) , (4.114)

= ... ,

=

∫

d3X
(

|φ+|2 − |φ−|2
)

, (4.115)

=

∫

d3X Ψ†τ3Ψ . (4.116)

We can introduce the “Klein-Gordon” adjoint

Ψ = Ψ†τ3 (4.117)

and write then

Q =

∫

d3X ΨΨ . (4.118)

Plane wave solutions

We can study the solutions of the KG equation in the two-component form. We look for a solution of
the following kind

Ψ ∼ A
(

φ+
φ−

)

e−iEt+ip·x . (4.119)

Substituting in Eq. (4.106) we find the system
(

E −m− p2

2m − p2

2m
p2

2m E +m+ p2

2m

)

(

φ+
φ−

)

= 0 , (4.120)

that has a non-trivial solution if

det

(

E −m− p2

2m − p2

2m
p2

2m E +m+ p2

2m

)

= E2 − p2 −m2 = 0 . (4.121)

Eq. (4.121) require positive and negative energy solutions

E = ±
√

p2 +m2 = ±ωp (4.122)

and the system becomes






(

±ωp −m− p2

2m

)

φ+ = p2

2mφ−
p2

2mφ+ = −
(

±ωp +m+ p2

2m

)

φ−
(4.123)
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Positive-energy solutions

The system is Eq. (4.123) in which we consider +ωp:

(

ωp −m− p2

2m

)

φ
(+)
+ = p2

2mφ
(+)
−

p2

2mφ
(+)
+ = −

(

ωp +m+ p2

2m

)

φ
(+)
−

(4.124)

that gives
φ
(+)
+

φ
(+)
−

=
p2

2m

ωp −m− p2

2m

(4.125)

and since

ωp −m−
p2

2m
=

(ωp −m)2

2m
, (4.126)

ωp +m+
p2

2m
=

(ωp +m)2

2m
, (4.127)

p2 = (ωp +m)(ωp −m) , (4.128)

we find
φ
(+)
+

φ
(+)
−

=
p2

2m

ωp −m− p2

2m

= −ωp +m

ωp −m
. (4.129)

We choose the positive-energy solution as

Ψ(+) = A(+)

(

ωp +m
ωp −m

)

e−iωpt+ip·x . (4.130)

The normalization factor A(+) will be discussed below.

Negative-energy solutions

The system is Eq. (4.123) in which we consider −ωp:
(

−ωp −m− p2

2m

)

φ
(−)
+ = p2

2mφ
(−)
−

p2

2mφ
(−)
+ = −

(

−ωp +m+ p2

2m

)

φ
(−)
−

(4.131)

that gives
φ
(−)
+

φ
(−)
−

= −
p2

2m

ωp +m+ p2

2m

= −ωp −m
ωp +m

. (4.132)

Then

Ψ(−) = A(−)

(

ωp −m
ωp +m

)

eiωpt+ip·x . (4.133)

The normalization factor A(−) will be discussed below.

Normalization

For the normalization of the two solutions we impose
∫

d3X Ψ̄(+)
p Ψ

(+)
p′ = δ(p − p′) , (4.134)
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∫

d3X Ψ̄(−)
p Ψ

(−)
p′ = −δ(p− p′) . (4.135)

We have
∫

d3X Ψ̄(+)
p Ψ

(+)
p′ =

∫

d3X Ψ(+)†
p τ3Ψ

(+)
p′ , (4.136)

=
∣

∣

∣
A(+)

∣

∣

∣

2
e−i(ωp′−ωp)t

[

(m+ ωp)(m+ ωp′)− (ωp −m)(ωp′ −m)
]

∫

d3X ei(p
′−p)·x ,

=
∣

∣

∣A(+)
∣

∣

∣

2
(2π)3 4mωp δ(p− p′) (4.137)

and therefore5

A(+) =
1

√

(2π)3 4mωp
. (4.138)

For A(−) we find the same expression

A(−) =
1

√

(2π)3 4mωp
. (4.139)

Finally:

Ψ(+) =
1

√

(2π)3 2ωp

m+ ωp√
2m

(

1
ωp−m
ωp+m

)

e−iωpt+ip·x , (4.140)

=
1

√

(2π)3 2ωp

m+ ωp√
2m

(

1
p2

(ωp+m)2

)

e−iωpt+ip·x , (4.141)

Ψ(−) =
1

√

(2π)3 2ωp

m+ ωp√
2m

(

ωp−m
ωp+m

1

)

eiωpt+ip·x , (4.142)

=
1

√

(2π)3 2ωp

m+ ωp√
2m

(

p2

(ωp+m)2

1

)

eiωpt+ip·x . (4.143)

Charge conjugation

The Klein-Gordon equation, as the other covariant equations, has a symmetry related to the existence
of both positive and negative energy solutions. These solutions can be transformed into each other by
charge conjugation:

φ→ φC = τ1φ
∗ , (4.144)

such that
(

φC
)C

= τ1
(

τ1φ∗
)∗

= φ.
φC satisfies the same free6 equation as φ. In fact, taking the complex conjugate of Eq. (4.106),

with Eq. (4.107), we find

−i ∂
∂t
φ∗ =

{(

p2

2m
+m

)

τ3 +
p2

2m
(−i)(−τ2)

}

φ∗ . (4.145)

If now we multiply on the l.h.s. by τ1, recalling the fact that τ1 anti-commutes with τ2 and τ3, we
have

i
∂

∂t
φC =

{(

p2

2m
+m

)

τ3 +
p2

2m
i)τ2

}

φC . (4.146)

5We choose A(+) real.
6When we will introduce the electromagnetic interaction, we will see that φC is a solution of the equation in which

the electric charge changes sign.
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The charge conjugated field φC has a charge which is opposite to the charge of φ. In fact

φC = τ1φ
∗ ,

(

φC
)†

= (φ∗)† (τ1)† = φtτ1 . (4.147)

Therefore

Q′ =

∫

d3X
(

φC
)†
τ3φC =

∫

d3X φtτ1τ3τ1φ∗ , (4.148)

= −
∫

d3X
(

|φ+|2 − |φ−|2
)

= −Q . (4.149)

Concerning the plane-wave solutions, we find that charge conjugation connects the negative-energy
solution to the positive-energy one in the following way:

Ψ
(−)C
−p = τ1

1
√

(2π)3 2ωp

m+ ωp√
2m

(

p2

(ωp+m)2

1

)

e−iωpt+ip·x , (4.150)

=
1

√

(2π)3 2ωp

m+ ωp√
2m

(

1
p2

(ωp+m)2

)

eiωpt+ip·x = Ψ(+)
p . (4.151)

Therefore, charge conjugation turns a negative-energy state of momentum −p into a positive-energy
one of opposite charge and momentum +p. If we “connect” φ with a “particle” state, φC will be
connected with an anti-particle state.

4.2 Quantization of the Klein-Gordon field

We worked out the theory of the classical φ(X) field and we analysed the system using the lagrangian
and the hamiltonian formalism. The first gives us the possibility to find the conserved quantities of
the physical system, as the charges of the symmetries of the corresponding action. The second is the
correct framework for the canonical quantization.

4.2.1 Real field

Just to recap, the real field, φ(X), has to satisfy the Klein-Gordon equation

(∂2 +m2)φ(X) = 0 , (4.152)

which is the Euler-Lagrange equation of the following lagrangian density

L =
1

2

(

∂µφ∂
µφ−m2φ2

)

. (4.153)

The lagrangian density is invariant under Poincaré transformations and, therefore, it follows that the
four-momentum and the generalized angular momentum (in particular the orbital angular momentum,
since the real scalar field does not have spin) are conserved.

The energy density coming from Nöther’s theorem is

H = T 0
0 =

1

2

(

φ̇2 + (∇φ)2 +m2φ2
)

=
1

2

(

π2 + (∇φ)2 +m2φ2
)

, (4.154)

since

π(X) =
∂L
∂φ̇

= φ̇ (4.155)

and therefore it coincides with the hamiltonian density that can be found via a Legendre transformation

H = πφ̇− L . (4.156)
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Note that H is positive definite. The hamiltonian can be diagonalized in terms of normal modes if we
find a plane-wave solution of Eq. (4.152)

φ(X) =

∫

d3p
√

(2π)3 2ωp

[

a(p)e−ipµX
µ

+ a∗(p)eipµX
µ]

. (4.157)

We have

H =

∫

d3p
ωp
2

[a(p)a∗(p) + a∗(p)a(p)] , (4.158)

that has the form of an infinite sum of harmonic oscillators. This suggests the right way for the
quantization of this system. We will have to promote the field (4.157) from a classical function to an
operator. In order to do that, we can only interpret the coefficients a(p) and a∗(p) as operators

a(p)→ â(p) , a∗(p)→ â†(p) (4.159)

and we will have to check that these operators are indeed creation-annihilation operators, as we can
understand from the form of the hamiltonian.

Considering the correspondence with the non-relativistic point-like particle, the degree of freedom
that was describing the position at a certain time in that framework, corresponds now to the field in
a certain point at the time t:

q(t)→ φ(x, t) . (4.160)

The conjugated momentum, p(t), corresponds to the conjugated momentum π(x, t).
Note that the description in terms of the fields is given naturally in a time-dependent framework.

When we promote the field to an operator, this operator will have to be treated in Heisenberg picture.
To the canonical quantization relations

[qi(t), pj(t)] = i δij , [qi(t), qj(t)] = [pi(t), pj(t)] = 0 , (4.161)

will have to involve the fields. We will have to impose the following equal-time quantization relations

[φ(x, t), π(y, t)] = i δ(x − y) , (4.162)

[φ(x, t), φ(y, t)] = [π(x, t), π(y, t)] = 0 , (4.163)

where now the field is
∫

d3p
√

(2π)3 2ωp

[

â(p)e−iPµXµ

+ â†(p)eiPµXµ
]

(4.164)

and π(X) = φ̇(X).
We have to check that the quantization relations (4.162,4.163) imply that â† and â are indeed

creation-annihilation operators, and the hamiltonian can be written in terms of the number operator.
In order to to that, we remember that7

â(p) =
(

f+p , φ
)

= i

∫

d3X
(

f+p
)∗←→
∂0φ , (4.168)

7This can be checked by direct inspection, using the form of f+ and the field in normal modes. In fact

(

f+
p , φ

)

= i

∫

d3X
(

f+
p

)∗←→
∂0φ , (4.165)

= i

∫

d3X

∫

d3p′

(2π)3
√

4ωpωp′
eiPµXµ←→

∂0
[

â(p′)e−iP ′

µXµ

+ â†(p′)eiP
′

µXµ
]

, (4.166)

= .. = â(p) . (4.167)
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â†(p) = −
(

f−p , φ
)

= −i
∫

d3X
(

f−p
)∗←→
∂0φ . (4.169)

Therefore

â(p) = i

∫

d3X
eiPµXµ

√

(2π)3 2ωp

←→
∂0φ , (4.170)

= i

∫

d3X
√

(2π)3 2ωp

(

eiPµXµ

φ̇− iωpeiPµXµ

φ
)

, (4.171)

=

∫

d3X
√

(2π)3 2ωp

(

ωpφ+ iφ̇
)

eiPµXµ

, (4.172)

â†(p) =

∫

d3X
√

(2π)3 2ωp

(

ωpφ− iφ̇
)

e−iPµXµ

. (4.173)

With these expressions we can construct the commutator [a(p), a†(p′)] and, using the quantization
relations for the fields, prove that [a(p), a†(p′)] = δ(p − p′). We have

[â(p), â†(p′)] =

∫

d3X d3Y

(2π)3
√

4ωpωp′

[(

ωpφ(X) + iφ̇(X)
)

eiPµXµ
(

ωp′φ(Y )− iφ̇(Y )
)

e−iP
′
µY

µ

,

−
(

ωp′φ(Y )− iφ̇(Y )
)

e−iP
′
µY

µ
(

ωpφ(X) + iφ̇(X)
)

eiPµXµ
]

, (4.174)

= |where we have to remember that X0 = Y 0 = t |

=

∫

d3X d3Y

(2π)3
√

4ωpωp′
e−iP

′
µY

µ+iPµXµ
[(

ωpφ(X) + iφ̇(X)
) (

ωp′φ(Y )− iφ̇(Y )
)

,

−
(

ωp′φ(Y )− iφ̇(Y )
) (

ωpφ(X) + iφ̇(X)
)]

, (4.175)

=

∫

d3X d3Y

(2π)3
√

4ωpωp′
e−i(ωp′−ωp)teip

′·y−ip·x
(

ωpωp′ [φ(x, t), φ(y, t)] − iωp[φ(x, t), φ̇(y, t)] ,

+iωp′ [φ̇(x, t), φ(y, t)] + [φ̇(x, t), φ̇(y, t)]
)

, (4.176)

=

∫

d3X d3Y

(2π)3
√

4ωpωp′
e−i(ωp′−ωp)teip

′·y−ip·x (ωp + ωp′)δ(x − y) , (4.177)

=

∫

d3X

(2π)3
√

4ωpωp′
e−i(ωp′−ωp)te−i(p−p′)·x (ωp + ωp′) , (4.178)

=
1

√

4ωpωp′
e−i(ωp′−ωp)t (ωp + ωp′) δ(p − p′) , (4.179)

= δ(p− p′) . (4.180)

In the same way we find
[â(p), â(p′)] = [â†(p), â†(p′)] = 0 . (4.181)

Moreover, using the expression of the fields we find

H =

∫

d3X
1

2

(

φ̇2 + (∇φ)2 +m2φ2
)

, (4.182)

=

∫

d3p
ωp
2

(

â(p)â†(p) + â†(p)â(p)
)

, (4.183)

that in normal ordering gives

: H :=

∫

d3pωp â
†(p)â(p) . (4.184)
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The operators â(p) and â†(p) are therefore, indeed, annihilation and creation operators. They act on
the Fock space, in such a way that

â(p)|0〉 = 0 . (4.185)

In this way, the energy of the vacuum is 0:

: H : |0〉 =
∫

d3pωp â
†(p)â(p) |0〉 = 0 . (4.186)

If we act once with â†(p) on the vacuum we find a one-particle state with definite energy (and
momentum):

â†(p)|0〉 = |p〉 , (4.187)

such that

: H : â†(p)|0〉 =

∫

d3p′ωp′ â
†(p′)â(p′) â†(p)|0〉 , (4.188)

=

∫

d3p′ωp′ â
†(p′)δ(p − p′)|0〉 +

∫

d3p′ωp′ â
†(p′)â†(p)â(p′)|0〉 , (4.189)

= ωp â
†(p)|0〉 . (4.190)

Therefore, â†(p)|0〉 is an eigenstate of the hamiltonian with energy ωp. If we consider, for example, the
state

|p1, p2〉 = â†(p1)â
†(p2)|0〉 , (4.191)

we find:

: H : â†(p1)â
†(p2)|0〉 =

∫

d3pωp â
†(p)â(p) â†(p1)â

†(p2)|0〉 , (4.192)

=

∫

d3pωp â
†(p)

(

â†(p1)â(p) + δ(p − p1)
)

â†(p2)|0〉 , (4.193)

=

∫

d3pωp â
†(p)â†(p1)â(p)â

†(p2)|0〉+ ωp1 â
†(p1)â

†(p2)|0〉 , (4.194)

=

∫

d3pωp â
†(p)â†(p1)

(

â†(p2)â(p) + δ(p− p2)
)

|0〉

+ωp1 â
†(p1)â

†(p2)|0〉 , (4.195)

= (ωp1 + ωp2) â
†(p1)â

†(p2)|0〉 . (4.196)

Therefore, â†(p1)â†(p2)|0〉 is again an eigenstate of : H : with energy (ωp1 + ωp2). Etc ...
Let us look at the momentum of these states. From Nöther’s theorem we have8

P i =

∫

d3X T 0i =

∫

d3X φ̇ ∂iφ , (4.197)

=

∫

d3X

∫

d3p d3p′

(2π)3
√

4ωpωp′
(−iωp)

(

a(p)e−iPµXµ − a†(p)eiPµXµ
)

(−ip′i)
(

a(p′)e−iP
′
µX

µ

−a†(p′)eiP ′
µX

µ
)

, (4.198)

= −
∫

d3p d3p′

(2π)3
√

4ωpωp′
ωpp

′i
∫

d3X
[

(a(p)a(p′)e−i(Pµ+P ′
µ)X

µ

+ a†(p)a†(p′)ei(Pµ+P ′
µ)X

µ

)

−(a(p)a†(p′)e−i(Pµ−P ′
µ)X

µ

+ a†(p)a(p′)ei(Pµ−P ′
µ)X

µ

)
]

, (4.199)

=
∣

∣ integrating in d3X
∣

∣

8from now on we will omit the “hat” on the creation/annihilation operators.
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=

∫

d3p d3p′
√

4ωpωp′
ωpp

′i (a(p)a†(p′) + a†(p)a(p′))δ(p − p′) , (4.200)

=
∣

∣ integrating in d3p′
∣

∣

=

∫

d3p
1

2
pi (a(p)a†(p) + a†(p)a(p)) , (4.201)

where, from (4.199) to (4.200), we considered that

∫

d3p d3p′

(2π)3
√

4ωpωp′
ωp p

′ia(p)a(p′)e−i(ωp+ωp′)tδ(p + p′) = −
∫

d3p
1

2
pi a(p)a(−p) e−2iωp ,(4.202)

but
∫

d3p
1

2
pi a(p)a(−p) e−2iωp =

∫

d3p
1

2
pi a(−p)a(p) e−2iωp , (4.203)

= | since [a(p), a(−p)] = 0 |

= −
∫

d3p
1

2
pi a(p)a(−p) e−2iωp , (4.204)

= |where we changed p→ −p | . (4.205)

Therefore
∫

d3p
1

2
pi a(p)a(−p) e−2iωp = 0 (4.206)

and, finally
∫

d3p d3p′

(2π)3
√

4ωpωp′
ωp p

′ia(p)a(p′)e−i(ωp+ωp′)tδ(p + p′) = 0 . (4.207)

The same is true for
∫

d3p d3p′

(2π)3
√

4ωpωp′
ωp p

′ia†(p)a†(p′)ei(ωp+ωp′)tδ(p + p′) = 0 . (4.208)

In normal ordering, then, we have

: P i :=

∫

d3p pi a†(p)a(p) , (4.209)

that commutes with the hamiltonian (as it should) and such that

: P i : a†(p)|0〉 = pia†(p)|0〉 , (4.210)

: P i : a†(p1)a
†(p2)|0〉 = (pi1 + pi2)a

†(p1)a
†(p2)|0〉 , (4.211)

etc ...
These results corroborate the interpretation of the state |p1, p2〉 = a†(p1)a†(p2)|0〉 as a two-particle

state, with definite energy, which is the sum of the energies of the one-particle state |p1〉 and the
one-particle state |p2〉, and with definite momentum, which is the vectorial sum of the momenta p1

and p2.

One- and two-particle states. Bosons

The state |p〉 = a†(p)|0〉 is a plane wave, a state with definite energy and momentum and therefore
totally delocalized. A one-particle state will be described as a superposition of plane waves

|ψ〉 =
∫

d3pψ(p)a†(p)|0〉 . (4.212)
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The function ψ(p) is the actual wave function in p-representation. In fact

〈p′|ψ〉 = 〈0|a(p′)
∫

d3pψ(p)a†(p)|0〉 , (4.213)

=

∫

d3pψ(p)〈0|a(p′)a†(p)|0〉 , (4.214)

=

∫

d3pψ(p)δ(p − p′) = ψ(p′) (4.215)

gives the probability amplitude to have a particle with momentum p′. We have

〈ψ|ψ〉 =

∫

d3pψ∗〈0|a(p)
∫

d3qψ(q)a†(q)|0〉 , (4.216)

=

∫

d3pd3q ψ∗ψ(q)δ(p − q) , (4.217)

=

∫

d3p |ψ(p)|2 . (4.218)

Therefore, ψ(p) should be normalizable and we can choose 〈ψ|ψ〉 = 1.
Let us consider now a two-particle state. As in the previous case, we can write

|ψ〉 =
∫

d3p1 d
3p2 ψ(p1, p2)a

†(p1)a
†(p2)|0〉 . (4.219)

Due to the commutation relations we have

|p1, p2〉 = a†(p1)a
†(p2)|0〉 = a†(p2)a

†(p1)|0〉 = |p2, p1〉 . (4.220)

This means that in the integral (4.219) the function ψ(p1, p2) should be symmetric in the exchange
1↔ 2 (or, in other words, only the symmetric part of ψ(p1, p2) gives an ingtegral different from zero).
It follows that the commutation relations that we used for the quantization of the KG field give rise
to bosonic particles.

4.2.2 Complex field

Let us now discuss the quantization of the complex field φ(X) with lagrangian density

L = ∂µφ
∗∂µφ−m2φ∗φ , (4.221)

that can be found from the lagrangian of two real fields, φ1 and φ2, degenerate in mass, rotated in the
complex plane as

φ =
φ1 + iφ2√

2
, (4.222)

φ∗ =
φ1 − iφ2√

2
. (4.223)

We promote the fields to operators, and then we will have φ and φ†. We can find the expression of the
fields in terms of creation-annihilation operators using Eqs. (4.222,4.223) in which we substitute the
expressions for the two real fields φ1 and φ2. We find

φ(X) =

∫

d3p

(

f+p
a1(p) + ia2(p)√

2
+ f−p

a†1(p) + ia†2(p)√
2

)

,
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=

∫

d3p
(

f+p a(p) + f−p b
†(p)

)

, (4.224)

φ†(X) =

∫

d3p

(

f+p
a1(p)− ia2(p)√

2
+ f−p

a†1(p)− ia
†
2(p)√

2

)

,

=

∫

d3p
(

f+p b(p) + f−p a
†(p)

)

, (4.225)

where we defined

a(p) =
a1(p) + ia2(p)√

2
, (4.226)

b(p) =
a1(p)− ia2(p)√

2
. (4.227)

Note that, trivially, b†(p) 6= a†(p), as it should since the field is not anymore hermitian.
Interpreting a(p), a†(p) and b(p), b†(p) as creation-annihilation operators, we find a spectrum

constituted by two kind of particles: “type a” and “type b” particles. Let us study their quantum
numbers.

For the quantization of the system we have to find the conjugated momenta to φ and φ†:

πφ =
∂L
∂φ̇

= φ̇† , (4.228)

πφ† =
∂L
∂φ̇†

= φ̇ , (4.229)

and impose the commutation relations at equal time:

[φ(x, t), φ̇†(y, t)] = [φ†(x, t), φ̇(y, t)] = iδ(x − y) , (4.230)

[φ(x, t), φ(y, t)] = [φ†(x, t), φ†(y, t)] = [φ̇(x, t), φ̇†(y, t)] = .... = 0 , (4.231)

where the dots mean “all other combinations”. These quantization rules induce analogous commutation
relations among the operators a(p), a†(p) and b(p), b†(p). In fact we find:

[a(p), a†(p′)] = [b(p), b†(p′)] = δ(p − p′) , (4.232)

and all the other combinations give zero commutator. It turnes out that a(p), a†(p) and b(p), b†(p)
are indeed creation-annihilation operators and the conserved quantities such that the hamiltonian and
the momentum can be written in terms of them.

We have9

H =

∫

d3X
(

φ̇†φ̇+∇φ† · ∇φ+m2φ†φ
)

. (4.233)

Now, using Eqs. (4.224,4.225), we find

H =

∫

d3pωp
1

2

(

a†(p)a(p) + a(p)a†(p) + b†(p)b(p) + b(p)b†(p)
)

, (4.234)

or

: H : =

∫

d3pωp

(

a†(p)a(p) + b†(p)b(p)
)

. (4.235)

For the momentum we find an analogous expression:

: P i : =

∫

d3p pi
(

a†(p)a(p) + b†(p)b(p)
)

. (4.236)

9We can find this relation taking the hamiltonian as a sum of the two hamiltonians of the real fields φ1 and φ2 and
then rotate with (4.222,4.223).
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Fock space

Since we have two kinds of creation-annihilation operators we have

a(p)|0〉 = b(p)|0〉 = 0 , (4.237)

and then we have, for instance, one-particle states of kind a, a†(p)|0〉, and b, b†(p)|0〉, with definite
energy and momentum. Let us see:

: H : a†(p)|0〉 =
∫

d3p′ ωp′
(

a†(p′)a(p′) + b†(p′)b(p′)
)

a†(p)|0〉 = ωp a
†(p)|0〉 , (4.238)

since a and b operators commute. Then, we conclude that a†(p)|0〉 is an eigenstate of the hamiltonian
with energy ωp. However, we also have

: H : b†(p)|0〉 =
∫

d3p′ ωp′
(

a†(p′)a(p′) + b†(p′)b(p′)
)

b†(p)|0〉 = ωp b
†(p)|0〉 . (4.239)

Therefore, also b†(p)|0〉 is an eigenstate of the hamiltonian with the same energy ωp.
The same is true for the momentum. We have:

: P i : a†(p)|0〉 = pi a†(p)|0〉 , (4.240)

: P i : b†(p)|0〉 = pi b†(p)|0〉 . (4.241)

Then the states a†(p)|0〉 and b†(p)|0〉 have the same energy and momentum. They are degenerate with
respect to these quantum numbers.

However, note that in the complex-field case there is another conserved quantity, which is the
charge (that will be interpreted as the actual electric charge once we will introduce electromagnetic
interactions).

From the Nöther’s theorem we have

Q = i

∫

d3X φ†
←→
∂0φ , (4.242)

and substituting the fields in terms of creation-annihilation operators and performing the integrations,
we find

: Q : =

∫

d3p
(

a†(p)a(p) − b†(p)b(p)
)

. (4.243)

Therefore, this operator (that commutes with the hamiltonian) resolves the degeneracy, distinguishing
between particles of type a and particles of type b.

In fact, now, we have

: Q : a†(p)|0〉 = a†(p)|0〉 , (4.244)

: Q : b†(p)|0〉 = −b†(p)|0〉 . (4.245)

States of type a are eigenstates of the charge with eigenvalue +1, while states of type b have opposite
charge (-1).

Then, the spectrum is constructed using the following operators: a†(p) creates a particle state of
type a with energy ωp, momentum p and charge +1, while a(p) annihilates such state; b†(p) creates a
particle state of type b with energy ωp, momentum p and charge −1, while b(p) annihilates such state.
We say that particles of type b are the “anti-particcles” of the particles of type a. In the real case, we
have a(p) = b(p) and therefore the particle is its own anti-particle.

States a and b appear in the theory in a totally symmetric way. Therefore, the names "particle"
and "anti-particle" are totally interchangable.

Note that the field operator φ(X) is a linear combination of annihilation operators a(p) and creation
operators b†(p) (and viceversa for φ†(X)). This suggests a sort of “equivalence” between the creation
of a charge +1 and the annihilation of a charge -1.
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4.2.3 Locality and causality in QFT

4.3 The Dirac Field (classical field)

Let us proceed with the study of the finite-dimensional representations of the Lorentz group. We
consider now a field that transforms, under Poincaré transformations, as a spinor in the (12 , 0)⊕ (0, 12 )
representation:

ψ(X)→ ψ′(X ′) = S(Λ)ψ(X) , (4.246)

where, as we will se below
S(Λ) = e

1
8
[γµ,γν ]ǫµν . (4.247)

4.3.1 The Dirac equation

Historically, we can look at the Dirac equation as an attempt to overcome the difficulties emerged by
the Klein-Gordon equation. In particular, we refer to the failure of the probabilistic interpretation of
the theory, due to the fact that what should be interpreted as a probability density is not positive
definite. This is connected to the fact that the time derivative in the KG equation is of second order.
Therefore, we look for a covariant equation of the kind

i
∂

∂t
ψ(X) = Hψ(X) , (4.248)

in which, for the covariance, in the hamiltonian the space derivatives have to be as well of the first
order:

H = α · p+ βm . (4.249)

α and β are four matrices that we will define according to some obvious constraints. Firstly, since the
hamiltonian has to the hermitean10, we have to have

(αi)† = αi , β† = β . (4.255)

We require that:

1. If ψ(X) is a solution of (4.248), it has to be also a solution of the KG equation, since it has to
fulfil the correct relativistic energy-momentum relation (E2 = p2 +m2).

10We just recall what an hermitean operator is. Given a scalar product defined on the Hilbert space under study,
(ψ, φ), we say that the operator Â is hermitean if

(ψ, Âφ) = (ψÂ, φ) = (φ, Âψ)∗ . (4.250)

Let us consider, for instance, the operator momentum p̂, in x representation, acting on L2:

p̂ = −i d
dx

. (4.251)

We have

(ψ, φ) =

∫ ∞

−∞

ψ∗(x)φ(x)dx (4.252)

and, then

(ψ, p̂φ) =

∫ ∞

−∞

ψ∗(x)

(

−i d
dx
φ(x)

)

dx =

∫ ∞

−∞

−i d
dx

(ψ∗(x)φ(x)) dx−
∫ ∞

−∞

(

−i d
dx
ψ∗(x)

)

φ(x) dx , (4.253)

=

{∫ ∞

−∞

φ∗(x)

(

−i d
dx
ψ(x)

)

dx

}∗

= (φ, Âψ)∗ , (4.254)

where we used the fact that, if the fields go to zero rapidly at infinity, the first integral of the next-to-the last line
vanishes. The same happens with the hamiltonian H = −iα · ∇+ βm.
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2. The equation should be relativistically covariant.

3. The equation has to give rise to a conserved current, jµ, that has to transform as a four-vector
and such that j0 is positive definite.

Using (4.249) and the correspondence principle we find the following form for the equation:

i
∂

∂t
ψ(X) = (−iα · ∇+ β m)ψ(X) , (4.256)

4.3.2 αi and β matrices

Applying twice the operator i ∂∂t we should recover the KG equation. We have

− ∂2

∂t2
ψ(X) = (−iα · ∇+ βm)2ψ(X) , (4.257)

where, in components

(−iα · ∇+ βm)2 = −αiαj∂i∂j − im(αiβ + βαi)∂i + β2m2 , (4.258)

= −1

2
(αiαj + αjαi)∂i∂j − im(αiβ + βαi)∂i + β2m2 , (4.259)

since ∂i∂j is totally symmetric in the exchange i ↔ j and therefore only the symmetric part of αiαj

survives in the sum.
The Klein-Gordon equation is given by

∂2

∂t2
ψ = (∇2 −m2)ψ . (4.260)

In order for the Eq. (4.257) to reproduce Eq. (4.260), we must have

β2 = 1 , (4.261)

αiβ + βαi = 0 , (4.262)
1

2
(αiαj + αjαi) = δij . (4.263)

Relations (4.261), (4.262), (4.263) can be written in a more compact way as follows:

[αi, αj ]+ = 2δij , (4.264)

[αi, β]+ = 0 , (4.265)

β2 = 1 . (4.266)

These relations imply the following properties for αi and β:
First of all, from Eq. (4.264) it follows that, also for αi we have

(αi)2 = 1 . (4.267)

Therefore, αi and β have real eigenvalues (because they are hermitean) and they have to be ±1.
Another property is that trαi = trβ = 0. In fact, using Eqs. (4.266,4.265) we have:

αi = β2αi = −βαiβ (4.268)

and, for the cyclicity of the trace

trαi = tr (β2αi) = −tr (βαiβ) = −tr (β2αi) = −trαi , (4.269)

96



from which
trαi = 0 . (4.270)

The same happens for β.
Since the trace is zero and the eigenvalues are ±1, αi and β should have even dimensionality. They

cannot be matrices 2 × 2, since we cannot accomodate, in that space, four anticommuting matrices.
This can be done, instead, using 4× 4 matrices.

A possible representation for αi and β is the so-called Dirac representation:

β =

(

1 0
0 −1

)

, αi =

(

0 σi

σi 0

)

, (4.271)

where σi are the Pauli matrices (2× 2), generators of the SU(2) group:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

, (4.272)

such that

[σi, σj ] = 2iǫijkσk , (4.273)

[σi, σj ]+ = 2δij . (4.274)

It is simple to check, by direct inspection, that the matrices in Eq. (4.271) satisfy Eqs. (4.264,4.265,4.266,4.267).

4.3.3 Covariance of the Dirac equation

The equation in (4.256) is not written in a manifestly covariant form. We introduce the following
matrices (the Dirac matrices)

γ0 = β , γi = βαi , (4.275)

such that we can define γµ = (γ0, γ1, γ2, γ3) and write Eq. (4.256) in the following form11

(iγµ∂µ −m)ψ(X) = 0 . (4.276)

Using the “slash” notation for a four-vector, 6a = γµa
µ, we can also write

(i 6∂ −m)ψ(X) = 0 . (4.277)

Consistently with the representation (4.271), we have

γ0 =

(

1 0
0 −1

)

, γi =

(

0 σi

−σi 0

)

. (4.278)

Moreover, relations (4.264,4.265,4.266,4.267) can be summarized by the (Clifford) algebra

[γµ, γν ]+ = 2ηµν , (4.279)

with

(γ0)2 = 1 , (γi)2 = −1 , (γ0)† = γ0 , (γi)† = −γi , (γ0)† =
(

γ0
)−1

, (γi)† =
(

γi
)−1

. (4.280)

So γ0 is hermitian and unitary, while γi are anti-hermitian and unitary.

11We multiply Eq. (4.256) on the l.h.s. by β and we use the definition of the gamma’s.
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We now want to find the representation S(Λ) of the Lorentz group such that, if in the inertial frame
S our system is described by Eq. (4.277), in the inertial frame S′ it will be described by

(i 6∂′ −m)ψ′(X ′) = 0 , (4.281)

where
6∂′ = γµ∂′µ (4.282)

and
ψ′(X ′) = S(Λ)ψ(X) . (4.283)

We note that in Eq. (4.282) the γµ is the same as in Eq. (4.277). In fact, the representation of the
gamma matrices can change by a unitary transformation12, that, however, does not affect the physical
description of our system. We can then decide to use the same representation in the two inertial frames
and use the same gammas.

S(Λ) has to be a representation of the Lorentz group and therefore it must fulfil the following
relations:

S(Λ1)S(Λ2) = S(Λ1Λ2) , (4.289)

for any Λ1 and Λ2 Lorents transformations, and

S−1(Λ) = S(Λ−1) , (4.290)

since S(Λ)S(Λ−1) = S(ΛΛ−1) = 1 = S(Λ)S−1(Λ).
We have

0 = (iγµ∂µ −m)ψ(X) = (iγµ∂µ −m)S−1(Λ)ψ′(X ′) . (4.291)

Moreover

∂µ =
∂

∂Xµ
=

∂

∂X ′ν
∂X ′ν

∂Xµ
=

∂

∂X ′ν Λ
ν
µ . (4.292)

Multiplying Eq. (4.291) by S(Λ) on the left, and using (4.292), we find

0 = S(Λ)(iγµ∂µ −m)S−1(Λ)ψ′(X ′) , (4.293)

= S(Λ)(iγµ∂′νΛ
ν
µ −m)S−1(Λ)ψ′(X ′) , (4.294)

= (iS(Λ)Λνµγ
µS−1(Λ)∂′ν −m)ψ′(X ′) . (4.295)

12Moving from the equation in the inertial frame S to the inertial frame S′ we should consider

(iγ̃µ∂′
µ −m)ψ′(X ′) = 0 , (4.284)

where the γ̃µ have to satisfy the Clifford algebra. This means that the γ̃µ are related to the γµ by a similarity
transformation:

γ̃µ = SγµS−1 , (4.285)

such that we have

[γ̃µ, γ̃ν ]+ = SγµS−1SγνS−1 + SγνS−1SγµS−1 = S[γµ, γν ]+S
−1 = S 2ηµνS−1 = 2ηµν . (4.286)

If we want to preserve also the hermiticity or anti-hermiticity and the unitarity of the gamma’s, then we can choose the
similarity transformation to be unitary:

S = U , such that U†U = 1 . (4.287)

In so doing, we can choose a representation for the gamma’s or another representation, without affecting the physics:

0 = (iγµ∂µ −m)ψ(X) = (iγ̃µ∂µ −m)Uψ(X) , (4.288)

but Uψ(X) represents the same physics than ψ(X).
In the end, the two inetrial frames “can agree” on a given representation and use the same gamma’s.
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In order to reproduce Eq. (4.282) we have to impose

S(Λ)Λνµγ
µS−1(Λ) = γν , (4.296)

and therefore, multiplying on the l.h.s. by S−1(Λ) and on the r.h.s. by S(Λ)

S−1(Λ)γνS(Λ) = Λνµγ
µ . (4.297)

Let us find an explicit form for S(Λ). If we consider an infinitesimal transformation

Λµν ≃ δµν + ǫµν , (4.298)

where ǫµν = −ǫνµ, we have

S(Λ) ≃ 1− i

4
σµνǫ

µν , (4.299)

S−1(Λ) ≃ 1 +
i

4
σµνǫ

µν . (4.300)

Substituting in Eq. (4.297), we find (at first order)
(

1 +
i

4
σµνǫ

µν

)

γρ

(

1− i

4
σαβǫ

αβ

)

= γρ + ǫραγ
α (4.301)

and neglecting higher order terms, we find

i

4
[σµν , γρ]ǫ

µν = γνηρµǫ
µν =

1

2
(γνηρµ − γµηρν) ǫµν , (4.302)

where, due to the fact that ǫµν is anti-symmetric, we anti-symmetrized the tensor γνηρµ. In the end,
we have

[σµν , γρ] = −2i(γνηρµ − γµηρν) . (4.303)

This relation is satisfied by

σµν =
i

2
[γµ, γν ] , (4.304)

as can be checked by direct inspection:

σµν =
i

2
(γµγν − γνγµ) =

i

2
(2ηµν − 2γνγµ) , (4.305)

[σµν , γρ] =
i

2
[(2ηµν − 2γνγµ), γρ] = −i[γνγµ, γρ] = −i (γνγµγρ − γργνγµ) , (4.306)

= −i (γνγµγρ + γνγργµ − 2ηρνγµ) = −i (γν2ηρµ − 2ηρνγµ) , (4.307)

= −2i(γνηρµ − γµηρν) . (4.308)

Therefore

S(Λ) ≃ 1 +
1

8
[γµ, γν ]ǫ

µν . (4.309)

Exponentiating, we get
S(Λ) = e

1
8
[γµ,γν ]ǫµν . (4.310)

σµν are the generators of the Lorentz group in this representation. Using the Dirac form of the gamma
matrices, we find explicitely

σ00 = σii = 0 , (4.311)

σ0i = −σi0 =
i

2
[γ0, γi] = −i

(

0 σi

σi 0

)

, (4.312)

σij =
i

2
[γi, γj ] = ǫijk

(

σk 0
0 σk

)

(4.313)

and we see, once more, that the σij are the generators of the rotations and are hermitian, while σ0i
are the generators of the boosts and are anti-hermitian.
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4.3.4 Unitarity and Dirac adjoint

The operator S(Λ) is not unitary and this is due to the fact that the Lorentz group is not compact
and therefore we cannot find finite-dimensional unitary representations. In fact we have

σ†µν = − i
2
(γµγν − γνγµ)† = ... =

i

2
(γ†µγ

†
ν − γ†νγ†µ) =

i

2
[γ†µ, γ

†
ν ] 6= σµν , (4.314)

since γ†0 = γ0 but γ†i = −γi. This implies that

S†(Λ) = e
i
4
σ†µνǫ

µν 6= e
i
4
σµνǫµν = S−1(Λ) . (4.315)

However, we can prove (by direct inspection) that

γ0σ
†
µνγ0 = σµν (4.316)

and therefore
γ0S

†(Λ)γ0 = S−1(Λ) . (4.317)

S(Λ) is not unitary but is “unitary with respect to the metric γ0”. A consequence of this behaviour is
that a bilinear in the fields like ψ†ψ is not a scalar under Lorentz transformations, but it transforms
as the temporal component of a four-vector. If we want to construct a scalar (and this is important
because then we would like to find the lagrangian density for the Dirac field and it must be a scalar)
we have to consider the so-called Dirac adjoint:

ψ = ψ†γ0 . (4.318)

With the Dirac adjoint of ψ, we can construct a scalar: ψψ. In fact, under a Lorentz transformation
we have:

ψ
′
ψ′ = ψ′†γ0ψ

′ = (S(Λ)ψ)†γ0S(Λ)ψ = ψ†S†(Λ)γ0S(Λ)ψ = ψS−1(Λ)S(Λ)ψ = ψψ . (4.319)

We have still to verify that S(Λ) satisfy Eq. (4.289), and Eq. (4.290) follows directly. Let us consider
the first Lorentz transformation Λ1. We have

S−1(Λ1)γ
µS(Λ1) = (Λ1)

µ
νγ

ν . (4.320)

Multiplying on the l.h.s. by (Λ−1
1 )ρµ, we find

(Λ−1
1 )ρµS

−1(Λ1)γ
σS(Λ1) = (Λ−1

1 )ρµ(Λ1)
µ
νγ

ν = δρνγ
ν = γρ . (4.321)

Let us consider now the second transformation, Λ2. We have

S−1(Λ2)γ
ρS(Λ2) = (Λ2)

ρ
αγ

α . (4.322)

We now substitute in the expression above the γρ with the analogous expression in (4.321):

(Λ2)
ρ
αγ

α = S−1(Λ2)(Λ
−1
1 )ρµS

−1(Λ1)γ
µS(Λ1)S(Λ2) , (4.323)

= (Λ−1
1 )ρµS

−1(Λ2)S
−1(Λ1)γ

µS(Λ1)S(Λ2) . (4.324)

Multiplying on the left by (Λ1)
σ
ρ we find

S−1(Λ2)S
−1(Λ1)γ

µS(Λ1)S(Λ2) = (Λ1)
σ
ρ (Λ2)

ρ
αγ

α = (Λ1Λ2)
σ
αγ

α . (4.325)

Since (Λ1Λ2) is indeed a Lorentz transformation, we can also write

S−1(Λ1Λ2)γ
σS(Λ1Λ2) = (Λ1Λ2)

σ
αγ

α . (4.326)

Therefore, it follows the statement:

S(Λ1)S(Λ2) = S(Λ1Λ2) . (4.327)

S(Λ) is indeed a representation of the Lorentz group.
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Example

As an example, we write the explicit form of S(Λ), acting on the spinorial field ψ(X), when Λ is a
boost. Let us choose for simplicity a boost in the x direction. We will have

Xµ → X ′µ = ΛµνX
ν , (4.328)

where, in matrix form

Λµν =









γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1









(4.329)

or, using the hyperbolic parametrization

β =
v

c
= tanh(θ) , γ =

1
√

1− β2
= cosh(θ) , (4.330)

Λµν =









cosh(θ) − sinh(θ) 0 0
− sinh(θ) cosh(θ) 0 0

0 0 1 0
0 0 0 1









(4.331)

For the infinitesimal transformation (θ ≪ 1)

Λµν ≃ δµν + ǫµν =









1 −θ 0 0
−θ 1 0 0
0 0 1 0
0 0 0 1









=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









+









0 −θ 0 0
−θ 0 0 0
0 0 0 0
0 0 0 0









. (4.332)

We have
ǫµν = ηµρǫ

ρ
ν (4.333)

and therefore we find
ǫ10 = −ǫ01 = θ (4.334)

and the other components are zero. Then

S(Λ) ≃ 1− i

4
ǫµνσ

µν = 1− i

4

(

ǫ10σ
10 + ǫ01σ

01
)

= 1− i

4

(

2ǫ10σ
10
)

= 1− i

2
θσ10 , (4.335)

where

σ10 =
i

2
[γ1, γ0] =

i

2

(

γ1γ0 − γ0γ1
)

= −iγ0γ1 = −iα1 = −i
(

0 σ1

σ1 0

)

= −i









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









. (4.336)

Exponentiating, we find

S(Λ) = e−
θ
2
α1

= 1− θ

2
α1 +

1

2

(

−θ
2
α1

)2

+
1

6

(

−θ
2
α1

)3

+ ... , (4.337)

=
∣

∣ recalling that (α1)2 = 1
∣

∣

=
∞
∑

k=0

1

(2k)!

(

−θ
2

)2k

+ α1
∞
∑

k=0

1

(2k + 1)!

(

−θ
2

)2k+1

, (4.338)
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= cosh

(

θ

2

)

− α1 sinh

(

θ

2

)

, (4.339)

=

(

cosh
(

θ
2

)

−σ1 sinh
(

θ
2

)

−σ1 sinh
(

θ
2

)

cosh
(

θ
2

)

)

. (4.340)

Since

cosh2
(

θ

2

)

=
cosh(θ) + 1

2
, sinh2

(

θ

2

)

=
cosh(θ)− 1

2
, (4.341)

recalling the hyperbolic parametrization in terms of β and γ we find

S(Λ) =

√

γ + 1

2

(

1 − βγ
γ+1σ

1

− βγ
γ+1σ

1 1

)

. (4.342)

This form can be generalized to a boost in the n direction as

S(Λ) =

√

γ + 1

2

(

1 − βγ
γ+1σ · n

− βγ
γ+1σ · n 1

)

. (4.343)

4.3.5 Probability density

One of the main problems in the “first-quantization” interpretation of the Klein-Gordon equation was
the failure of the probabilistic interpretation due to the non-positivity of the probability density. This
can be linked to the fact that the KG equation is second order in the time derivative. Let us see what
happens in the case of the Dirac equation.

Firstly, let us write the equation for the daggered field, ψ†. We have

−i ∂
∂t
ψ† = i(∇ψ†) · α+mψ†β , (4.344)

where we used the fact that (αi)† = αi and β† = β. Multiplying the Direc equation for ψ by ψ† on the
left and subtracting Eq. (4.344) multiplied by ψ on the right, we find

iψ†
(

∂

∂t
ψ

)

+ i

(

∂

∂t
ψ†
)

ψ = ψ†(iα · ∇ψ + βmψ)− (i∇ψ† · α+mψ†β)ψ , (4.345)

or

i
∂

∂t
(ψ†ψ) = −iψ† α · ∇ψ − i(∇ψ†) · αψ = −i∇ · (ψ†αψ) . (4.346)

If we define the vector
jµ = (ψ†ψ,ψ†αψ) = ψγµψ , (4.347)

Eq. (4.369) becomes
∂µj

µ = 0 . (4.348)

Eq. (4.348) implies the conservation of the “charge”

Q =

∫

d3X ψ†ψ , (4.349)

and since ψ†ψ is a positive definite quantity, it can be interpreted as a probability density (and then
Q is the total probability to find the particle in all the space, therefore Q = 1).

The vector jµ defined in Eq. (4.347) transforms indeed as a four-vector under Lorentz transforma-
tions. In fact

j′µ(X ′) = ψ′(X ′)γµψ′(X ′) = (ψ′†(X ′)γ0)γµψ′(X ′) , (4.350)

= (S(Λ)ψ(X))† γ0γµS(Λ)ψ(X) = ψ†S†(Λ)γ0γµS(Λ)ψ(X) , (4.351)

= ψ(X)γ0S†(Λ)γ0γµS(Λ)ψ(X) = ψ(X)S−1(Λ)γµS(Λ)ψ(X) , (4.352)

= Λµνψ(X)γνψ(X) , (4.353)

= Λµν j
ν(X) . (4.354)
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4.3.6 Lagrangian and Hamiltonian densities

The Dirac field is a spinorial complex field. Then, we will consider ψ and ψ as independent fields.
While ψ obeys the equation

(i 6∂ −m)ψ(X) = 0 , (4.355)

the equation for the adjoint field can be found taking the dagger of (4.355)

−i∂µψ†(X) (γµ)† −mψ†(X) = 0 (4.356)

and multiplying by γ0 on the r.h.s.

−i∂µψ†(X) γ0γ0(γµ)†γ0 −mψ(X) = −i∂µψ(X)γµ −mψ(X) = 0 (4.357)

or, better
ψ(X) (i 6←−∂ +m) = 0 . (4.358)

Using the same approach as in the Klein-Gordon case, we can recover the lagrangian density starting
from the Euler-Lagrange equations (4.355,4.358) mulptiplied by the variation of the fields and making
in such a way to find the Hamilton Principle

0 = δS =

∫

{

δψ(i 6∂ −m)ψ + ψ (i 6←−∂ +m)δψ
}

, (4.359)

= δ

∫

d3X ψ(i 6∂ −m)ψ . (4.360)

The lagrangian density is therefore
L = ψ(i 6∂ −m)ψ . (4.361)

It is easy to check that the Euler-Lagrange equations of the lagrangian density (4.361) are indeed
Eqs. (4.355,4.358). In fact, in order to get the equations for ψ we have

0 =
∂L
∂ψ
− ∂µ

∂L
∂ψ,µ

= (i 6∂ −m)ψ(X) , (4.362)

since L does not involve derivatives of the field ψ and therefore

∂L
∂ψ,µ

= 0 . (4.363)

For ψ wi have

0 =
∂L
∂ψ
− ∂µ

∂L
∂ψ,µ

= −mψ − (iγµ∂µψ) (4.364)

and therefore Eq. (4.358).
The lagrangian density (4.361) has a problem. It is a singular lagrangian, in the sense that the

momentum conjugate to ψ is zero:

πψ =
∂L
∂ψ̇

= iψ† , (4.365)

πψ† =
∂L
∂ψ̇†

= 0 . (4.366)

This is due to the fact that L does not involve derivatives of ψ† or, which is the same, the canonical
momenta do not depend on velocities. The canonical formalism rely on momenta that are the time
derivative of the conjugated degree of freedom. In this case, then, in principle we cannot proceed with
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a Legendre transformation getting the hamiltonian (the energy) of the system. The problem was solved
by Dirac himself, that proposed a procedure to arrive to the hamiltonian. This procedure coincides,
in this case, with the naive formula

H = πψψ̇ − L (4.367)

and, considering the configurations of the field that satisfy Dirac’s equation, we get

H = iψ†∂0ψ (= ψ†(−iα · ∇+ βm)ψ) . (4.368)

Contrarly to the KG field, this expression is not positive definite. However, we will see that when we
will move to the quantized version of H, as an operator acting on the Fock space, it will be positive
definite.

The expression (4.368) can be recovered also using Nöther’s theorem.

4.3.7 Conserved quantities

The lagrangian density (4.361) is Poincaré invariant. This imply that, according to Nöther’s theorem,
there are some quantities that are conserved.

If we consider the non homogeneous part of the Poincaré group (rigid translations), we get the
relation

∂µT
µ
ν = 0 , (4.369)

where the tensor T µν is the so-called “energy-momentum” tensor

T µν =
∂L
∂ψ,µ

ψ,ν +
∂L
∂ψ†

,µ

ψ†
,ν − ηµνL (4.370)

and , considering the configurations of the field that satisfy Dirac’s equation, we get

T µν = iψγµψ,ν . (4.371)

It is easy to check that the form given in Eq. (4.371) satisfies Eq. (4.369).
The conserved four-vector is

Pν =

∫

d3X T 0
ν =

∫

d3X iψ†∂νψ . (4.372)

Therefore

H =

∫

d3X T 0
0 =

∫

d3X iψ†∂0ψ , (4.373)

P =

∫

d3X T 0i = −
∫

d3X iψ†∇ψ . (4.374)

If we consider instead the Lorentz group, we get

∂µMµ
rhoσ = 0 , (4.375)

where

Mµ
ρσ = iψγµ

(

Xρ∂σ −Xσ∂ρ +
1

4
[γρ, γσ]

)

ψ . (4.376)

The conserved charges are the following 6 charges:

Mρσ =

∫

d3XM0
ρσ . (4.377)

The angular momentum is

J = (M23,M31,M12) =

∫

d3X ψ†(−ix ∧∇+
1

2

(

σ 0
0 σ

)

)ψ , (4.378)

where we can recognize an orbital part and a spin part.
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Global phase invariance

The lagrangian density (4.361) is invariant under the following transformation

ψ(X) → ψ′(X) = e−iθψ(X) , (4.379)

ψ(X) → ψ′(X) = eiθψ(X) , (4.380)

where θ ∈ R. This is a continuous transformation. The infinitesimal tranformation is

δψ = −iθψ , (4.381)

δψ = iθψ . (4.382)

This symmetry gives rise to a four-vector

Jµ =
∂L
∂ψ,µ

δψ = θ ψγµ (4.383)

such that
∂µJ

µ = 0 . (4.384)

Then, we can define the current as in Eq. (4.347) such that the conserved charge is the one in Eq. (4.349).
Once we introduce the interaction of the Dirac field with the electromagnetic field the charge will be
correctly interpreted in QFT as the electric charge (and not connected with the probability density of
a tentative “first quantization” interpretation of the theory).

4.3.8 The matrix γ5

The matrix
γ5 = iγ0γ1γ2γ3 (4.385)

plays un important role in the Clifford algebra of the γ matrices. It has the following properties:

1. γ5 is hermitian:

(γ5)† = (iγ0γ1γ2γ3)† = −i(γ3)†(γ2)†(γ1)†(γ0)† , (4.386)

= iγ3γ2γ1γ0 = iγ0γ1γ2γ3 , (4.387)

= γ5 . (4.388)

2. γ5 anticommutes with all the γµ:

[γ5, γ
0]+ = iγ0γ1γ2γ3γ0 + iγ0γ0γ1γ2γ3 = −iγ1γ2γ3 + iγ1γ2γ3 = 0 , (4.389)

[γ5, γ
i]+ = iγ0γ1γ2γ3γi + iγiγ0γ1γ2γ3 = ... = 0 . (4.390)

The representation for γ5 follows the representation of the γµ. In the Pauli representation we have

γ5 =

(

0 1
1 0

)

. (4.391)

We can find a more “covariant” form of γ5 noting that the expression

iγµγνγργσ with µ 6= ν 6= ρ 6= σ (4.392)

gives ±γ5. Actually, if µνρσ is an even permutation of 0123, we have +γ5; if µνρσ is an odd permutation
of 0123, we have −γ5. Using the totally antisymmetric tensor ǫµνρσ we have

ǫµνρσ(iγ
µγνγργσ) =

∑

evenP(0123)

(+1)(+γ5) +
∑

oddP(0123)

(−1)(−γ5) = 24 γ5 . (4.393)
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Therefore

γ5 = iγ0γ1γ2γ3 =
i

24
ǫµνρσγ

µγνγργσ . (4.394)

In order to find how γ5 transforms under Lorentz transformations S(Λ), consider that

detΛ = ǫµνρσΛ
µ
0Λ

ν
0Λ

ρ
0Λ

σ
0 , (4.395)

from which we can write
ǫµνρσΛ

µ
αΛ

ν
βΛ

ρ
δΛ

σ
γ = detΛ ǫαβδγ . (4.396)

Therefore

S−1(Λ)γ5S(Λ) =
i

24
ǫµνρσS

−1(Λ)γµγνγργσS(Λ) , (4.397)

=
i

24
ǫµνρσS

−1γµSS−1γνSS−1γρSS−1γσS , (4.398)

=
i

24
ǫµνρσΛ

µ
αγ

α Λνβγ
β Λρδγ

δ Λσγγ
γ , (4.399)

=
i

24
ǫµνρσΛ

µ
αΛ

ν
βΛ

ρ
δΛ

σ
γ γ

αγβγδγγ , (4.400)

= detΛ
i

24
ǫαβδγ γ

αγβγδγγ , (4.401)

= detΛ γ5 . (4.402)

4.3.9 Bilinear covariants

The space of Dirac matrices is a 16-dim space. We can prove that a basis for such space is constituted
by the following 16 matrices:

Γ = {1, γµ, γ5, σµν , γµγ5} . (4.403)

With this choice, it is very easy to understand the transformation behaviour of bilinears in the fields,
like ψΓψ, under Lorentz transformations.

In fact, we already proved that
ψ 1ψ = ψψ (4.404)

transforms as a scalar under Lorentz transformations. Moreover,

ψγµψ (4.405)

transforms as a four-vector.
For the other possible bilinears we have:

ψ′(X ′)γ5ψ
′(X ′) = ψ†(X)S†(Λ)γ0γ5S(Λ)ψ(X) , (4.406)

= ψ(X)S−1(Λ)γ5S(Λ)ψ(X) , (4.407)

= detΛψ(X)γ5ψ(X) . (4.408)

We say that ψ(X)γ5ψ(X) is a pseudo-scalar.

ψ′(X ′)γµγ5ψ
′(X ′) = ψ†(X)S†(Λ)γ0γµγ5S(Λ)ψ(X) , (4.409)

= ψ(X)S−1(Λ)γµS(Λ)S−1(Λ)γ5S(Λ)ψ(X) , (4.410)

= detΛΛµνψ(X)γνγ5ψ(X) . (4.411)

We say that ψ(X)γµγ5ψ(X) is a pseudo-vector.
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Since σµν = i
2(γ

µγν − γνγν), we concentrate on

ψ′(X ′)γµγνψ′(X ′) = ψ†(X)S†(Λ)γ0γµγνS(Λ)ψ(X) , (4.412)

= ψ(X)S−1(Λ)γµS(Λ)S−1(Λ)γνS(Λ)ψ(X) , (4.413)

= ΛµαΛ
ν
β ψ(X)γαγβψ(X) . (4.414)

Therefore, ψ(X)γµγνψ(X) transforms as a rank-2 tensor.

4.3.10 Algebra of the γµ matrices and γ5

It is important, for future applications, to introduce some rules for the calculation of traces with γ
matrices. We consider the Minkowski space with 4 = 3 + 1 dimensions. We recall the algebra of the
γ’s

[γµ, γν ]+ = 2ηµν . (4.415)

We have

• γµγ
µ = 41 In fact

γµγ
µ = (γ0)2 − (γ1)2 − (γ2)2 − (γ2)2 = 41 . (4.416)

• γµγ
νγµ = −2γν In fact

γµγ
νγµ = γµ(−γµγν + 2ηµν) = −γµγµγν + 2γν = −4γν + 2γν = −2γν . (4.417)

• γµγ
λγνγµ = 4ηλν In fact

γµγ
λγνγµ = γµγ

λ(−γµγν + 2ηµν) = −γµγλγµγν + 2γνγλ = 2γλγν + 2γνγλ ,

= 2[γλ, γν ]+ = 4ηλν . (4.418)

And, saturating with vectors, recalling the “slash” notation 6a = aµγ
µ, we have

• 6a 6a = a2 In fact

6a 6a = aµaνγµγν = aµaν(−γµγν + 2ηµν) = − 6a 6a+ 2a2 , (4.419)

and therefore 6a 6a = a2.

• 6a 6b+ 6b 6a = 2a · b

• γµ 6aγµ = −2 6a

• γµ 6a 6bγµ = 4a · b

Concerning the traces of the γ’s, we have:

• trγµ = 0

• tr(6a 6b) = 4 a · b In fact

tr(6a 6b) = aµbνtr(γ
µγν) = aµbν

1

2
tr(γµγν + γνγµ) = aµbν

1

2
tr(2ηµν1) = 4 a · b , (4.420)

where we used the cyclicity of the trace tr(γµγν) = tr(γνγµ) and therefore

tr(γµγν) =
1

2
(tr(γµγν) + tr(γνγµ)) . (4.421)
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• tr(6a 6b 6c) = 0 In fact

tr(6a 6b 6c) = tr(6a 6b 6cγ5γ5) = | cyclicity | = tr(γ5 6a 6b 6cγ5) = | anti-commuting the γ5 | ,
= −tr(γ5γ5 6a 6b 6c) = −tr(6a 6b 6c) . (4.422)

• tr(6a 6b 6c 6d) = 4(a · b)(c · d) + 4(a · d)(b · c)− 4(a · c)(b · d) In fact

tr(6a 6b 6c 6d) = tr[(−2 6b 6a+ 2(a · b)) 6c 6d] = 2(a · b)tr(6c 6d)− tr(6b 6a 6c 6d) ,
= 8(a · b)(c · d)− tr[6b(− 6c 6a+ 2a · c) 6d] = 8(a · b)(c · d)− 8(a · c)(b · d)

+tr(6b 6c 6a 6d) ,
= 8(a · b)(c · d)− 8(a · c)(b · d) + tr[6b 6c(− 6d 6a+ 2(a · d)))] , (4.423)

= 8(a · b)(c · d)− 8(a · c)(b · d) + 8(a · d)(b · c)− tr(6b 6c 6d 6a) ,
= 8(a · b)(c · d)− 8(a · c)(b · d) + tr[6b 6c(− 6d 6a+ 2(a · d)))] , (4.424)

= 8(a · b)(c · d)− 8(a · c)(b · d) + 8(a · d)(b · c)− tr(6a 6b 6c 6d) , (4.425)

from which tr(6a 6b 6c 6d) = 4(a · b)(c · d) + 4(a · d)(b · c)− 4(a · c)(b · d).

• In general

tr(6a1 6a2.... 6an) = 0 , if n is odd , (4.426)

tr(6a1 6a2.... 6an) = (a1 · a2)tr(6a3 6a4.... 6an)− (a1 · a3)tr(6a2 6a4.... 6an) + ...

+(a1 · an)tr(6a2 6a3.... 6an−1) , if n is even . (4.427)

And, including γ5:

• trγ5 = 0

• tr(γ5 6a) = 0

• tr(γ5 6a 6b) = 0

• tr(γ5 6a 6b 6c) = 0

• tr(γ5 6a 6b 6c 6d) = 4iǫµνρσa
µbνcρdσ

• tr(γ5 6a1 6a2.... 6an) = 0 if n is odd

• tr(γ5 6a1 6a2.... 6an) 6= 0 if n is even, n > 4.

4.3.11 Plane wave solutions

In this section we consider the plane wave solutions of the Dirac equation. We assume

ψ(X) = u(P )e−iPµXµ

, (4.428)

where u(p) is a spinor. Substituting into the Dirac equation, we get

(iγµ∂µ −m)u(P )e−iPµXµ

= (iγµ(−iPµ)−m)u(P )e−iPµXµ

= (6 P −m)u(P )e−iPµXµ

= 0 . (4.429)

This leads to the following equation for the spinor u(P ):

(6 P −m)u(P ) = 0 , (4.430)
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or, in matrix form, using a two-component spinor
(

P 0 −m −σ · p
σ · p −P 0 −m

)(

φ
χ

)

=

(

0
0

)

. (4.431)

The system has non-trivial solutions only if

det

(

P 0 −m −σ · p
σ · p −P 0 −m

)

= m2 − (P 0)2 + (σ · p)2 = m2 − (P 0)2 + p2 = 0 , (4.432)

where we used the fact that

(σ · p)2 = σiσjp
ipj =

1

2
([σi, σj ] + [σi, σj]+)p

ipj = (δij + ǫijkσk)p
ipj = p2 . (4.433)

Therefore, as in the Klein-Gordon case, we find again two kind of solutions

P 0 = ±
√

p2 +m2 = ±ωp . (4.434)

We have two different plane waves, with positive and with negative frequency, that we wiill name

ψ(+) = u(P )e−iPµXµ

, (4.435)

ψ(−) = v(P )eiPµXµ

. (4.436)

Substituting into the Dirac equation, therefore, we find that the spinors u(p) and v(p) are solutions of
the following equations

(6 P −m)u(P ) = 0 , (4.437)

(6 P +m)v(P ) = 0 . (4.438)

In order to solve the system (4.437,4.438) it is convenient to move in the frame in which the particle
is at rest, i.e. in the frame in which Pµ = (m,0). In this frame, 6 P = γ0m and therefore we get

(γ0m−m)u(m,0) = 0 , (4.439)

(γ0m+m)v(m,0) = 0 , (4.440)

or, since m 6= 0

(γ0 − 1)u(m,0) = 0 , (4.441)

(γ0 + 1)v(m,0) = 0 , (4.442)

If we define the general spinors

u(m,0) =









u1
u2
u3
u4









, v(m,0) =









v1
v2
v3
v4









, (4.443)

and we consider for instance the Pauli representation for the gamma matrices, Eqs. (4.441,4.442) have
the following solution

u3 = u4 = v1 = v2 = 0 . (4.444)

We do not find any constraint on the other components, and therefore the general solution is the
following linear combination

u(m,0) = α









1
0
0
0









+ β









0
1
0
0









= αu(1)(m,0) + βu(2)(m,0) , (4.445)
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v(m,0) = α′









0
0
1
0









+ β′









0
0
0
1









= α′v(1)(m,0) + β′v(2)(m,0) , (4.446)

where we defined

u(1)(m,0) =









1
0
0
0









, u(2)(m,0) =









0
1
0
0









, v(1)(m,0) =









0
0
1
0









, v(2)(m,0) =









0
0
0
1









, (4.447)

and where the degeneracy is due to the spin. In the rest frame we have: positive-energy solutions, with
spin up or spin down, and negative-energy solutions with spin up or spin down.

The spinors u(1)(m,0), u(2)(m,0), v(1)(m,0), v(2)(m,0), are eigenvectors of the third component
of the spin, with eigenvalues ±1/2.

In order to find the general solution, u(P ), v(P ) in a frame in which Pµ = (E,p) we can boost our
solutions, found in the rest frame, using Eq. (4.343).

If

γ =
E

m
, βγ =

p

m
, p = pn̂ , (4.448)

we have

S(Λ) =

√

γ + 1

2

(

1 − βγ
γ+1σ · n

− βγ
γ+1σ · n 1

)

=

√

E +m

2m

(

1 − σ·p
E+m

− σ·p
E+m 1

)

. (4.449)

Therefore, using the generic two-component spinor in the rest frame

u(α)(m,0) =

(

φ(α)

0

)

, v(α)(m,0) =

(

0

χ(α)

)

, (4.450)

where α = 1, 2, φ1 ∝ u(1)(m,0), φ2 ∝ u(2)(m,0), ... etc, we have

u(α)(P ) = S−1(Λ)u(m,0) =

√

E +m

2m

(

1 σ·p
E+m

σ·p
E+m 1

)(

φ(α)

0

)

=





√

E+m
2m φ(α)

σ·p√
2m(E+m)

φ(α)



 . (4.451)

The same for the spinor v(P ):

v(α)(P ) = S−1(Λ)v(m,0) =

√

E +m

2m

(

1 σ·p
E+m

σ·p
E+m 1

)(

0

χ(α)

)

=





σ·p√
2m(E+m)

χ(α)

√

E+m
2m χ(α)



 . (4.452)

The same result can be found noting that

(6 P −m)(6 P +m) = P 2 −m2 = 0 . (4.453)

Therefore, if we define

u(α)(P ) = Cα(6 P +m)u(α)(m,0) , (4.454)

v(α)(P ) = Dα(− 6 P +m)v(α)(m,0) , (4.455)

where Cα and Dα are normalization factors, we find immediately

(6 P −m)u(α)(P ) = 0 , (4.456)

110



(6 P +m)v(α)(P ) = 0 . (4.457)

In order to find the normalization factors Cα and Dα, we note that (by direct inspection) the
following relations hold in the rest frame:

u(α)(m,0)u(β)(m,0) = δαβ , (4.458)

v(α)(m,0)v(β)(m,0) = −δαβ , (4.459)

u(α)(m,0)v(β)(m,0) = 0 . (4.460)

(4.461)

These relations are already cast in scalar form, in the sense that in a generic frame it must hold

u(α)(P )u(β)(P ) = δαβ , (4.462)

v(α)(P )v(β)(P ) = −δαβ , (4.463)

u(α)(P )v(β)(P ) = 0 , (4.464)

(4.465)

that can be used to impose the normalization of the spinors:

δαβ = u(α)(P )u(β)(P ) = C∗
α(u

(α)(m,0))†(6 P +m)†γ0 Cβ(6 P +m)u(β)(m,0) , (4.466)

= C∗
αCβ u

(α)(m,0)(6 P +m)2u(β)(m,0) , (4.467)

= C∗
αCβ u

(α)(m,0)(2m 6 P + 2m2)u(β)(m,0) , (4.468)

= | since u(α)(m,0) 6 Pu(β)(m,0) = P0u
(α)(m,0)γ0u(β)(m,0) = Eu(α)(m,0)u(β)(m,0) |

= C∗
αCβ 2m(E +m)u(α)(m,0)u(β)(m,0) , (4.469)

= |Cα|2 2m(E +m) δαβ . (4.470)

This gives (apart from a phase that we choose to be equal to zero)

Cα =
1

√

2m(E +m)
. (4.471)

The same expression we find for Dα, using Eq. (4.463). In the end

u(α)(P ) =
6 P +m

√

2m(E +m)
u(α)(m,0) , (4.472)

v(α)(P ) =
− 6 P +m

√

2m(E +m)
v(α)(m,0) . (4.473)

It is easy to check that these spinors are indeed ortogonal (they satisfy Eq. (4.464)):

u(α)(P ) v(β)(P ) =
u(α)(m,0)(6 P +m)(− 6 P +m)v(β)(m,0)

2m(E +m)
= 0 . (4.474)

Using the two-component expression for u(P ) and v(P )

u(α)(P ) =

(

φ(α)

0

)

, v(α)(P ) =

(

0

χ(α)

)

(4.475)

and explicitely expressing (6P + m) and (− 6P + m) in matrix notation, we get the expressions of
Eqs. (4.451,refvsp):

u(α)(P ) =





√

E+m
2m φ(α)

σ·p√
2m(E+m)

φ(α)



 , (4.476)
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v(α)(P ) =





σ·p√
2m(E+m)

χ(α)

√

E+m
2m χ(α)



 . (4.477)

In this way, we found the spinors normalized in the sense of Eqs. (4.462,4.463). However, the
scalar product for our fields is defined in terms of ψ† and not ψ. What we would like to impose is the
normalization of the charge, which is given by

Q =

∫

d3X ψ†ψ . (4.478)

Let us note that

(u(α)(P ))†u(α)(P ) =

(

√

E+m
2m (φ(α))† σ·p√

2m(E+m)
(φ(α))†

)





√

E+m
2m φ(α)

σ·p√
2m(E+m)

φ(α)



 , (4.479)

=
E +m

2m
(φ(α))†φ(α) +

(σ · p)2
2m(E +m)

(φ(α))†φ(α) , (4.480)

= | since (φ(α))†φ(α) = 1 and (σ · p)2 = p2 = E2 −m2 |

=
E

m
, (4.481)

while (u(α)(P ))†u(β)(P ) = 0 when α 6= β. For the spinor v(P ) we get

(v(α)(P ))†v(α)(P ) =

(

σ·p√
2m(E+m)

(χ(α))†
√

E+m
2m (χ(α))†

)





σ·p√
2m(E+m)

χ(α)

√

E+m
2m χ(α)



 , (4.482)

=
p2

2m(E +m)
(χ(α))†χ(α) +

E +m

2m
(χ(α))†χ(α) , (4.483)

=
E

m
. (4.484)

In order to normalize, using the correct scalar product, the positive and negative energy solutions,
then, we have to consider

ψ
(+)
(α) (X) = N u(α)(P )

√

m

E
e−iPµXµ

, (4.485)

ψ
(−)
(α) (X) = N v(α)(P )

√

m

E
eiPµXµ

, (4.486)

such that

(ψ
(+)
(α) (X))†ψ(+)

(β) (X) = δαβ , (ψ
(−)
(α) (X))†ψ(−)

(β) (X) = δαβ (ψ
(+)
(α) (X))†ψ(−)

(β) (X) = 0 . (4.487)

In Eqs. (4.485,4.486), N is a normalization factor.
Recalling the scalar product

(ψ1, ψ2) =

∫

d3X ψ†
1ψ2 , (4.488)

we now want to normalize the fields to the delta:

(ψ
(+)
(α) (X), ψ

(+)
(β) (X)) = |N |2 m

E

∫

d3X (u(α)(P ))†u(β)(Q)ei(P−Q)µXµ

,

= |N |2 m
E

E

m
δαβ

∫

d3X ei(P−Q)µXµ

= |N |2 δαβ (2π)3 δ(p − q) . (4.489)
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This implies (we choose N real):

N =
1

√

(2π)3
. (4.490)

Finally, the full expression of the Dirac field in normal modes is

ψ(X) =

2
∑

α=1

∫

d3p

(2π)
3
2

√

m

E

[

b(α)(p)u
(α)(P )e−iPµXµ

+ d∗(α)(p) v
(α)(P )eiPµXµ

]

, (4.491)

with E =
√

p2 +m2 > 0 and where, for the classic field, b(α)(P ) and d∗(α)(P ) are the coefficients of the
linear combination.

4.3.12 Energy projectors and polarization sum

It is convenient to introduce the projectors for positive and negative-energy, spin up and spin down
solutions, in such a way that from a generic solution we could project out four independent solutions
(positive-energy spin-up, positive-energy spin-down, negative-energy spin-up, negative-energy spin-
down solutions).

Considering that

(6 P +m)(6 P +m) = 2m(6 P +m) , (6 P +m)(− 6 P +m) = 0 , (4.492)

let us write the following operators

Λ± =
± 6 P +m

2m
. (4.493)

These are indeed the projectors we were looking for. In fact, if

ψ(X) ∼ αu(P ) + β v(P ) , (4.494)

we have
Λ+ψ(X) = αu(P ) , and Λ−ψ(X) = β v(P ) . (4.495)

The operators Λ± are projectors. In fact

Λ2
± =

1

4m2
(± 6 P +m)(± 6 P +m) =

± 6 P +m

2m
= Λ± , (4.496)

Λ+Λ− =
1

4m2
(6 P +m)(− 6 P +m) = 0 , (4.497)

Λ+ + Λ− =
1

2m
[6 P +m+ (− 6 P +m)] = 1 . (4.498)

The projectors Λ± can be written in terms of the polarization sum of the spinors as follows. We
have

2
∑

α=1

u(α)(P )u(α)(P ) =

2
∑

α=1

u(α)(P )(u(α)(P ))
†γ0 , (4.499)

=
1

2m(E +m)

2
∑

α=1

(6 P +m)u(α)(m,0)(u(α)(m,0))
†(6 P +m)†γ0 , (4.500)

=
1

2m(E +m)
(6 P +m)

2
∑

α=1

u(α)(m,0)u(α)(m,0)(6 P +m) , (4.501)

= | since
2
∑

α=1

u(α)(m,0)u(α)(m,0) =
1 + γ0

2
|
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=
1

2m(E +m)
(6 P +m)

1 + γ0

2
(6 P +m) , (4.502)

=
1

4m(E +m)

[

2m(6 P +m) + (6 P +m)(γ0γνPν +mγ0)
]

, (4.503)

= | since γ0γν = −γνγ0 + 2η0ν |

=
1

4m(E +m)

[

2m(6 P +m) + (6 P +m)(2E + (− 6 P +m)γ0)
]

, (4.504)

=
2(E +m)

4m(E +m)
(6 P +m) , (4.505)

=
(6 P +m)

2m
= Λ+ . (4.506)

Analogously we find
2
∑

α=1

v(α)(P )v(α)(P ) =
(6 P −m)

2m
= −Λ− . (4.507)

Therefore
2
∑

α=1

u(α)(P )u(α)(P )−
2
∑

α=1

v(α)(P )v(α)(P ) = 1 . (4.508)

4.3.13 Spin projectors

The positive and negative energy solutions are still doubly degenerate. It is possible to remove such
deceneracy selecting a spin state through spin projectors.

Let us consider the solution of the Dirac equation in the rest frame. The spinors u(1)(m,0) and
u(2)(m,0) are eigenstates of

σ12 =
i

2
[γ1, γ2] =

(

σ3 0
0 σ3

)

(4.509)

with eigenvalues +1 and −1, respectively. The same is true for v(1)(m,0) and v(2)(m,0). Therefore, a
projector for eigenstates of spin up (in the ẑ direction) can be looked for in the following expression

Σ̃(ẑ) =
1 + σ12

2
, (4.510)

such that

Σ̃(ẑ)u(1)(m,0) =
1 + σ12

2









1
0
0
0









= u(1)(m,0) , (4.511)

Σ̃(ẑ)u(2)(m,0) =
1 + σ12

2









0
1
0
0









= 0 , (4.512)

Σ̃(ẑ)v(1)(m,0) =
1 + σ12

2









0
0
1
0









= v(1)(m,0) , (4.513)

Σ̃(ẑ)v(2)(m,0) =
1 + σ12

2









0
0
0
1









= 0 . (4.514)
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We also notice that

σ12 =
i

2
[γ1, γ2] = iγ1γ2 = −γ0γ5γ3 = γ5γ3γ

0 , (4.515)

and that

Σ̃(ẑ) =
1 + σ12

2
=

1 + σ12n̂
3
R

2
, (4.516)

where n̂3R is the third spatial component of the space-like vector

n̂µR =









0
0
0
1









(

n̂2R = −1 , n̂µRP
µ = 0

)

, (4.517)

in the rest frame. We can therefore write

Σ̃(ẑ) =
1 + γ5γ3γ

0

2
=

1 + γ5γ3n̂
3γ0

2
=

1 + γ5 6 n̂Rγ0
2

= Σ̃(n̂R) , (4.518)

where, in the rest frame
6 n̂R = γ0n̂

0
R + γin̂

i
R = γ3n̂

3
R . (4.519)

The expression of Σ(n̂R) in Eq. (4.518) is “almost” generalizable to a generic inertial frame. The
problem is the presence of γ0, that does not allow to use the same expression in another frame. If we
could drop the γ0 from Eq. (4.518), we would have reached our goal.

Projectors Σ̃(±n̂R) = 1±γ5 6n̂Rγ
0

2 behave as follows

Σ̃(+n̂R)









α
β
γ
δ









=
1

2

(

1 + σ3 0
0 1 + σ3

)









α
β
γ
δ









=









α
0
γ
0









, (4.520)

Σ̃(−n̂R)









α
β
γ
δ









=
1

2

(

1− σ3 0
0 1− σ3

)









α
β
γ
δ









=









0
β
0
δ









. (4.521)

Let us see to which projectors correspond instead the

Σ(±n̂R) =
1± γ5 6 n̂R

2
, (4.522)

without the γ0 in their expression. We have

Σ(+n̂R)









α
β
γ
δ









=
1

2

(

1 + σ3 0
0 1− σ3

)









α
β
γ
δ









=









α
0
0
δ









, (4.523)

Σ(−n̂R)









α
β
γ
δ









=
1

2

(

1− σ3 0
0 1 + σ3

)









α
β
γ
δ









=









0
β
γ
0









. (4.524)

Therefore, in the rest frame Σ(+n̂R) projects positive-energy spin-up and negative-energy spin-down
solutions, while Σ(−n̂R) projects positive-energy spin-down and negative-energy spin-up solutions.
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The expression of the spin projectors in a general frame is, then

Σ(±n̂) = 1± γ5 6 n̂
2

, (4.525)

in which now n̂µ is the boosted unit space-like vector. In fact, if Λ is the boost, according to which

Pµ = ΛµνP
ν
R , (4.526)

where PµR = (m,0), we have

Σ(±n̂) = S−1(Λ)Σ(±n̂R)S(Λ) =
1± S−1(Λ)γ5S(Λ)S

−1(Λ)γµS(Λ)n̂
µ
R

2
, (4.527)

=
1± γ5γνΛµν n̂µR

2
=

1± γ5 6 n̂
2

. (4.528)

The vector n̂µ is still space-like, n̂2 = −1, and since in the rest frame we have n̂µRPRµ = 0, in the
boosted frame we still have n̂µPµ = 0. The operator 1

2γ5 6 n̂ is called the Pauli-Lubanski operator and
it is the relativistic generalization of what in the rest frame is the projection of the spin σ/2 in the
direction of n̂R. If in the rest frame we have

Σ(±n̂R)u(α)(m,0) = u(α)(m,0) , (4.529)

Σ(±n̂R)v(α)(m,0) = v(α)(m,0) , (4.530)

in the boosted frame we still have

Σ(±n̂)u(α)(P ) = Σ(±n̂)S−1(Λ)u(α)(m,0) = S−1(Λ)Σ(±n̂R)u(α)(m,0) = S−1(Λ)u(α)(m,0) ,

= u(α)(P ) , (4.531)

Σ(±n̂)v(α)(P ) = Σ(±n̂)S−1(Λ)v(α)(m,0) = S−1(Λ)Σ(±n̂R)v(α)(m,0) = S−1(Λ)v(α)(m,0) ,

= v(α)(P ) . (4.532)

Σ(±n̂) project out positive energy solutions with spin projection in the n̂ direction of ±1
2 and

negative energy solutions with spin projection ∓1
2 .

Σ(±n̂) are actually projectors, then they satisfy the following properties:

Σ2(±n̂) =
1

4
(1± γ5 6 n̂)2 =

1

4
(1± 2γ5 6 n̂+ γ5 6 n̂γ5 6 n̂) =

1

4
(2± 2γ5 6 n̂) ,

= Σ(±n̂) , (4.533)

Σ(+n̂) + Σ(−n̂) =
1

2
(1 + γ5 6 n̂+ 1− γ5 6 n̂) = 1 , (4.534)

Σ(+n̂)Σ(−n̂) =

(

1 + γ5 6 n̂
2

)(

1− γ5 6 n̂
2

)

= 0 . (4.535)

We have
[Λ±,Σ(±n̂)] = 0 , for every n̂ such that n̂µPµ = 0 . (4.536)

In fact

6 P γ5 6 n̂ = Pµn̂ν γµγ5γν = −Pµn̂ν γ5γµγν = −Pµn̂ν γ5(−γνγµ + 2ηµν) , (4.537)

= γ5 6 n̂ 6 P + 2γ5Pν n̂
ν , (4.538)

= | since n̂µPµ = 0 |
= γ5 6 n̂ 6 P . (4.539)
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and therefore, if Pν n̂ν = 0, we have
(± 6 P +m

2m

)(

1± γ5 6 n̂
2

)

=

(

1± γ5 6 n̂
2

)(± 6 P +m

2m

)

. (4.540)

Using Λ± and Σ(±n̂) we can compose projectors for definite energy and spin

P1 = Λ+Σ(+n̂) , (4.541)

P2 = Λ+Σ(−n̂) , (4.542)

P3 = Λ−Σ(+n̂) , (4.543)

P4 = Λ−Σ(−n̂) , (4.544)

such that
4
∑

i=1

Pi = 1 , PiPj = δij , trPi = 1 . (4.545)

4.3.14 Non relativistic limit of the Dirac’s equation

We consider in this section the case in which the particle that we would like to describe using Dirac’s
equation moves with a speed much smaller than the speed of light, v ≪ c, and it is in interaction with
an electromagnetic field.

In order to describe the interaction, we perform the so-called “minimal substitution” in the Dirac’s
eqution. This ammounts to

∂µ → ∂µ + ieAµ , (4.546)

where e is the electric charge of the electron (negative, so e = −|e|) and Aµ is the electromagnetic
four-potential Aµ = (φ,A). Under the substitution (5.19) the free Dirac’s equation becomes

(i 6∂ − e 6A−m)ψ(X) = 0 . (4.547)

In components we have

(iγ0∂
0 − eγ0A0 −m)ψ(X) + γi(i∂

i − eAi)ψ(X) = 0 . (4.548)

We would like that Eq. (4.548) would provide an accurate description of the behaviour of an electron
(positve-energy state) in an electromagnetic field for small velocities. Its energy will be

E =
√

p2 +m2 ∼ m+
p2

2m
+ ... (4.549)

where p2

2m ≪ m. In this situation the term e−iPµXµ
is dominated by e−imt that oscillates much

faster than any other term. It is then convenient to isolate such fast varying term redefining our
positive-energy solution as

ψ(X) = ψ̃(X)e−imt , (4.550)

where now ψ̃(X) oscillates much slower, ∼ e−iE′t where E′ = E−m≪ m. Substituting in Eq. (4.548),
we find an equation for ψ̃(X):

γ0(i∂
0 − eA0 +m)ψ̃(X)−mψ̃(X) + γi(i∂

i − eAi)ψ̃(X) = 0 . (4.551)

If we express ψ̃(X) with two two-component spinors

ψ̃(X) =

(

φ̃
χ̃

)

, (4.552)
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we find
(

1 0
0 −1

)

(i∂0 − eA0 +m)

(

φ̃
χ̃

)

−m
(

φ̃
χ̃

)

+

(

0 −σi
σi 0

)

(i∂i − eAi)
(

φ̃
χ̃

)

= 0 , (4.553)

or, the following system:
{

(i∂0 − eA0)φ̃ = σ · (p− eA)χ̃

(i∂0 − eA0 + 2m)χ̃ = σ · (p− eA)φ̃
(4.554)

In the second equation we can neglect the terms i∂0χ̃ and −eA0χ̃ with respect to 2mχ̃ and we can
therefore solve for χ̃ as follows:

χ̃ =
σ · (p− eA)

2m
φ̃ . (4.555)

Eq. (4.555) tells us that χ̃ is “small” with respect to φ̃ (of order of p/m). So, the spinor is basically
described, in this limit, by the two-component spinor φ̃. Substituting (4.555) in the first equation of
(4.554), we find an equation for φ̃:

(i∂0 − eA0)φ̃ =
[σ · (p− eA)]2

2m
φ̃ . (4.556)

We have

[σ · (p− eA)]2 = σiσj(pi − eAi)(pj − eAj) , (4.557)

= | since σiσj =
1

2
[σi, σj ] +

1

2
[σi, σj ]+ |

= (δij + iǫijkσk)(pi − eAi)(pj − eAj) , (4.558)

= (p− eA)2 + iǫijkσk(pipj − epiAj − eAipj + e2AiAj) . (4.559)

The two terms pipj and AiAj are totally symmetric in ij, therefore, when we saturate with the epsilon-
tensor they vanish. Then we have to remember that pj and Aj do not commute, since pi = i∂i and
Aj = Aj(X). Therefore we have

piAj = i∂iAj +Ajpi (4.560)

and

ǫijk(−epiAj − eAipj) = ǫijk[−ei∂iAj − e(Aipj +Ajpi)] = −eσk(∇∧A)k = −eσ ·B , (4.561)

since ∇∧A = B is the magnetic field.
Finally

[σ · (p− eA)]2 = (p− eA)2 − eσ ·B (4.562)

and therefore

i
∂

∂t
φ̃ =

(

eA0 +
(p− eA)2

2m
− e

m

σ

2
·B
)

φ̃ = Hφ̃ . (4.563)

Eq. (4.563) is the Schrödinger equation of a spin-1/2 particle in an electromagnetic field. In particular,
Dirac’s equation describes the correct magnetic dipole moment of the electron

µ = − e

m
s = −g e

2m
s , (4.564)

where the factor g = 2 was introduced phenomenologically ad hoc to describe the anomalous Zeeman
effect. Now, this is a prediction of the Dirac equation.

If we consider the system in a weak static magnetic field, B = Bk̂, in the z direction.
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We have

A =
1

2
B ∧ r =

B

2





−y
x
0



 (4.565)

Since B is a weak field, we neglect the term A2 in Eq. (4.563) and find finally

H = eA0 +
1

2m

[

p2 − e(p ·A+A · p)
]

− e

m

σ

2
·B . (4.566)

In the case at hand we have that [pi, Ai] = 0 and therefore

(p ·A+A · p) = 2A · p = B(xpy − ypx) = L ·B , (4.567)

where L is the orbital angular momentum. Finally

H =
p2

2m
+ eA0 − e

2m
[L+ 2s] ·B , (4.568)

that gives a good description of the Zeeman effect.

The fine structure of the hydrogen atom

Let us now consider the case of a central potential (Hydrogen atom) such that

A = 0 , e A0 = V (r) = −α
r
, (4.569)

where α ∼ 1
137 is the fine structure constant. Eqs. (4.554) become

{

(E − V (r))φ̃ = σ · pχ̃
(E − V (r) + 2m)χ̃ = σ · pφ̃

(4.570)

Moreover, let us expand in the non relativistic regime keeping consistently terms of the order p2/m2

correcting the energy p2/(2m) and V . We then keep up to terms in p4/m3 and p2V/m2. This will
give rise to the “relativistic corrections” to the non relativistic treatment of the hydrogen atom. The
equation for χ̃ now becomes

χ̃ =
σ · p

(E − V (r) + 2m)
φ̃ ≃ 1

2m

(

1− E − V (r)

2m

)

σ · p φ̃ . (4.571)

There is another correction to take into account (see Maggiore) according to which the wave function
is corrected by a factor

φ̃ =

(

1− p2

8m2

)

ψ . (4.572)

Finally we have

χ̃ =
σ · p

(E − V (r) + 2m)
φ̃ ≃ 1

2m

(

1− E − V (r)

2m

)

σ · p
(

1− p2

8m2

)

ψ , (4.573)

≃ 1

2m

[

σ · p
(

1− p2

8m2

)

+
E − V (r)

2m
σ · p

]

ψ . (4.574)

Substituting Eq. (4.572) and Eq. (4.574) in the first equation of (4.570), we find

(E − V (r))

(

1− p2

8m2

)

ψ = σ · p 1

2m

[

σ · p
(

1− p2

8m2

)

+
E − V (r)

2m
σ · p

]

ψ , (4.575)
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=

[

p2

2m

(

1− p2

8m2

)

+
Ep2

4m2
− σ · pV (r)σ · p

4m2

]

ψ . (4.576)

On the left-hand side we have

(E − V (r))

(

1− p2

8m2

)

ψ =

(

(E − V (r))− Ep2

8m2
+
V p2

8m2

)

ψ (4.577)

and, neglecting terms of order Ep4/m4, we can write

Ep2

8m2
ψ ≃ p2

8m2

(

p2

2m
+ V (r)

)

ψ . (4.578)

Finally, we get

i
∂

∂t
ψ = Hψ , (4.579)

where

H =

(

p2

2m
+ V (r)

)

− p4

8m3
+

1

4m2

[

σ · pV (r)σ · p− 1

2

(

p2V (r) + V (r)p2
)

]

. (4.580)

Let us analyse the two terms in the square brackets. We have

σ · pV (r)σ · p = σiσj piV (r)pj = σiσj
(

i∂iV (r)pj + V (r)pipj
)

, (4.581)

= σiσj
(

ieEipj + V (r)pipj
)

, (4.582)

= | since σiσj = δij + iǫijkσk |
= ieE · p+ V (r)p2 − e σ · (E ∧ p) , (4.583)

where we introduced the electric field ∂iV (r) = eEi and we used the fact that iǫijkσkV (r)pipj = 0 for
the antisymmetry of the epsilon tensor. Moreover, we have

p2V (r) + V (r)p2 = pipiV (r) + V (r)p2 = pi
(

ieEi + V pi
)

+ V (r)p2 , (4.584)

= iep · E+ ieE · p+ 2V (r)p2 , (4.585)

= e∇ ·E+ 2ieE · p+ 2V (r)p2 . (4.586)

Finally

1

4m2

[

σ · pV (r)σ · p− 1

2

(

p2V (r) + V (r)p2
)

]

=
1

4m2

[

−e
2
∇ · E− e σ · (E ∧ p)

]

. (4.587)

Since

eE = −∇V (r) = −r
(

1

r

dV (r)

dr

)

, (4.588)

therefore

− e

4m2
σ · (E ∧ p) = − 1

2m2

(

1

r

dV (r)

dr

)

σ

2
· (−r ∧ p) =

1

2m2

(

1

r

dV (r)

dr

)

s · L , (4.589)

where L = r ∧ p is the orbital angular momentum.
The resulting hamiltonian is

H =

(

p2

2m
+ V (r)

)

− p4

8m3
+

1

2m2

(

1

r

dV (r)

dr

)

s · L− e

8m2
(∇ ·E) , (4.590)

= H0 +Hpert , (4.591)
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where

H0 =

(

p2

2m
+ V (r)

)

(4.592)

is the central-potential hamiltonian of a spinless particle, with energy levels

En = −mα
2

2n2
, (4.593)

and eigenfunctions
ψnlm = Rnl(r)Y

m
l (θ, φ) . (4.594)

The term

Hpert = −
p4

8m3
+

1

2m2

(

1

r

dV (r)

dr

)

s · L− e

8m2
(∇ ·E) (4.595)

can be treated in perturbation theory and it is constituted by the so-called “relativistic correction”

Hr = −
p4

8m3
, (4.596)

the spin-orbit interaction

HSO =
1

2m2

(

1

r

dV (r)

dr

)

s · L , (4.597)

and the Darwin term
HD = − e

8m2
(∇ ·E) . (4.598)

The hamiltonian (4.595) does not resolve completely the degeneracy of the energy levels of the hydrogen
atom13. In particular the two levels 2S 1

2
and 2P 1

2
are still degenerate, while in Nature we register a

small difference, of about 1000 MHz (Lamb shift). This difference can be accounted for treating
correctly the system in quantum field theory, calculating higher-order QED quantum corrections.

4.3.15 Parity

So far we considered proper Lorentz transformations. In this section we will see how discontinuous
transformations, as Parity or Time Reversal, act on the field.

Parity is a Lorentz tranformation. Moreover, it can be represented via a unitary operator. On the
space-time point, Parity acts as follows:

{

x → −x
t → t

. (4.599)

Therefore, in matrix notation we have

ΛP =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









, (4.600)

which is basically the metric.
If we want that Dirac’s equation is invariant under Parity transformations, we have to require that

Eq. (4.297) holds for S(ΛP ) as well:

S−1(ΛP )γνS(ΛP ) = ΛµP νγ
ν , (4.601)

13This is the case also for the complete Dirac’s equation. It is not a problem of the fact that we afforded the calculation
perturbatively.
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or, in components, multiplying on the left by S(ΛP ) and bringing both terms of the equation on the
l.h.s.

[γ0, S(ΛP )] = 0 e [γi, S(ΛP )]+ = 0 . (4.602)

Eqs. (4.602) are satisfied by the following choice:

S(ΛP ) = ηP γ
0 , (4.603)

where ηP is a constant to be determined. Note that we have to have

[S(ΛP )]
2 = 1 , (4.604)

since applying twice Parity we would like to find the identity operator. Therefore Eq. (4.604) implies

ηP = ±1 , (4.605)

i.e. ηP is a phase, that for the moment we put = 1:

S(ΛP ) = γ0 . (4.606)

We note that such choice respects the fact that S(ΛP ) must be unitary. In fact

[S(ΛP )]
† = γ0 † = γ0 = S(ΛP ) . (4.607)

The interacting Dirac’s equation is indeed covariant under the Parity transformation. In fact we
have

ψ′(X ′) = S(ΛP )ψ(X) , (4.608)

where X ′µ = (t,−x), and

0 = (i 6∂ − e 6A−m)ψ(X) = (i 6∂ − e 6A−m)S−1(ΛP )ψ
′(X ′) . (4.609)

Multiplying by S(ΛP ) on the left we have

S(ΛP )i 6∂S−1(ΛP ) = i 6∂′ , (4.610)

S(ΛP ) 6AS−1(ΛP ) = 6A′ , (4.611)

since A0 does not change under parity but A changes sign and ∂′0 = ∂0, ∂′i = −∂i.
Finally we have

(i 6∂′ − e 6A′ −m)ψ′(X ′) = 0 . (4.612)

4.3.16 Time Reversal

Time Reversal invariance means that if we have a sequence of observations made on a state described
by a certain wave function and we invert the temporal order of the sequence, we still find a physically
realizable sequence of observations.

The action of Time Reversal on the space-time point is
{

x → x

t → −t
, (4.613)

such that in matrix notation we have

ΛT =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, (4.614)
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which is −ηµν .
We know that Time Reversal has to be represented by an anti-unitary anti-linear operator, therefore

via an operator Ũ such that
{

Ũ †Ũ = 1

Ũ(α|φ〉 + β|ψ〉) = α∗Ũ |φ〉+ β∗Ũ |ψ〉
. (4.615)

Therefore Ũ is defined through

〈φ|Ũ †ψ〉 = 〈Uφ|ψ〉∗ = 〈ψ|Uφ〉 . (4.616)

Such operator can be constructed as a product of a unitary operator U times the operation of complex
conjugation K:

Ũ = U K . (4.617)

In fact, we have

Ũ(α|φ〉+β|ψ〉) = U K(α|φ〉+β|ψ〉) = U (α∗K|φ〉+β∗K|ψ〉) = α∗U K|φ〉+β∗U K|ψ〉 = α∗Ũ |φ〉+β∗Ũ |ψ〉 .
(4.618)

If
|φ′〉 = Ũ |φ〉 , and |ψ′〉 = Ũ |ψ〉 , (4.619)

then we have

〈φ′|ψ′〉 = 〈φ′|
(

UK
∑

β

|β〉〈β|ψ〉
)

, (4.620)

= 〈φ′|
∑

β

〈ψ|β〉UK|β〉 , (4.621)

=
∑

ββ′

〈β′|φ〉〈β′|U †U |β〉〈ψ|β〉 , (4.622)

=
∑

ββ′

〈ψ|β〉 〈β′|β〉 〈β′|φ〉 , (4.623)

= 〈ψ|φ〉 = 〈φ|ψ〉∗ , (4.624)

as it should be.
The representation of Time Reversal on the Dirac field can be found imposing the invariance of

Dirac’s equation. Let us consider Dirac’s equation in the original form (replacing nevertheless αi and
β matrices with the gamma’s)

i
∂

∂t
ψ = H ψ , (4.625)

where, including electromagnetic interactions, we have

H = eA0 + γ0γi(−i∂i − eAi) + γ0m. (4.626)

We define the Time Reversal operator K = TK, where T †T = 1, such that

ψ′(X ′) = K ψ(X) , ψ(X) = K−1ψ′(X ′) (4.627)

where X ′ = (−t,x). Then

i
∂

∂t
K−1ψ′(X ′) = −i ∂

∂t′
K−1ψ′(X ′) = HK−1ψ′(X ′) . (4.628)
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Multiplying on the left by K and remembering the anti-linear nature of K we get

∂

∂t′
K(−i)K−1ψ′(X ′) = i

∂

∂t′
ψ′(X ′) = KHK−1ψ′(X ′) . (4.629)

We now should have
KHK−1 = T H∗(t)T−1 = H(t′) . (4.630)

We have
H∗(t) = eA0(t) + (γ0γi)∗(i∂i − eAi(t)) + γ0m. (4.631)

Therefore, since
A0(t) = A0(t′) , A(t) = −A(t′) , (4.632)

because A0 is generated by a static charge distribution, while A is generated by a current (and therefore
when we invert the sign of time the current flows in the opposite direction and changes sign to the
vector potential), we must have

T H∗(t)T−1 = eA0(t′) + T (γ0γi ∗)T−1(i∂i + eAi(t
′)) + Tγ0T−1m. (4.633)

This gives the two conditions

Tγ0T−1 = γ0 , (4.634)

T (γ0γi ∗)T−1 = −γ0γi . (4.635)

Using the first equation into the second

T (γ0γi ∗)T−1 = Tγ0T−1(Tγi ∗T−1) = γ0(Tγi ∗T−1) = −γ0γi , (4.636)

we find that we have to impose
Tγi ∗T−1 = −γi . (4.637)

Eq. (4.637) is satisfied by
T = iγ1γ3 , (4.638)

which is an operator such that
T †T = 1 , T 2 = 1 , (4.639)

as it should.
We could have used directly the relation (4.297) in order to find K = S(ΛT ). However, we have to

remember that in order to find relation (4.297) we already assumed the operator S(Λ) to be unitary
and linear. In fact, we commuted without a sign the “i′′ that multiplies the gamma’s. For Time
Reversal, we should use the proper relation

S−1(ΛT )iγ
νS(ΛT ) = i(ΛT )

ν
µγ

µ . (4.640)

This means
−iT−1γν ∗T = i(ΛT )

ν
µγ

µ (4.641)

and therefore

T−1γ0T = γ0 , (4.642)

T−1γi ∗T = −γi . (4.643)

The solution of Eqs. (4.642,4.643) is again Eq. (4.638), since γ0 ∗ = γ0, γ1 ∗ = γ1, γ2 ∗ = −γ2, γ3 ∗ = γ3

and since T 2 = 1.
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4.3.17 Charge Conjugation

There is another discontinuous symmetry which plays a big role in QFT: Charge Conjugation. So
to say, it is the symmetry that relates positive energy with negative energy solutions (or particles to
anti-particles, when we speak about states).

Let us start with the interacting Dirac equation

(i 6∂ − e 6A−m) ψ(X) = 0 . (4.644)

We look for a transformation C such that the solution of Eq. (4.644), ψ(X), is transformed in ψC(X),
which will have to represent a fermion with the same mass as ψ(X), but with opposite electric charge:

ψ(X) −→ ψC(X) = C (ψ(X)) . (4.645)

The field ψC(X) will have to satisfy the Dirac equation for a field in which −e became +e:

(i 6∂ + e 6A−m) ψC(X) = 0 . (4.646)

We require that this transformation is such that if it acts twice, it brings the field ψ(X) back to
its original configuration, apart from a possible phase

C (C (ψ(X))) = ηC ψ(X) . (4.647)

In order to transform Eq. (4.644) into Eq. (4.646), we need to change the relative sign between the
terms i 6∂ and −e 6A. This can be done, taking the adjoint of Eq. (4.644):

ψ†
(

i 6∂† + e 6A† +m
)

= 0 . (4.648)

Multiplying on the r.h.s. by γ0, and remembering that γµ †γ0 = γ0γ
µ, we find:

ψ̄ (i 6∂ + e 6A+m) = 0 . (4.649)

If we take the transposed of Eq. (4.649), we find:
(

i 6∂t + e 6At +m
)

ψ̄t = 0 . (4.650)

If we now would find a transformation C (a 4×4 matrix acting in the space of psinors), such that:

C γtµ C
−1 = − γµ , (4.651)

we could multiply on the l.h.s. Eq. (4.650) by C and, changing an overall sign, we would obtain:

(i 6∂ + e 6A−m) C ψ̄t = (i 6∂ + e 6A−m) ψC(X) = 0 , (4.652)

where
ψC(X) = ηC C ψ̄

t , (4.653)

with ηC a phase factor.
Let us look for C in our representation for the γ matrices, in which γ0 is diagonal:

γt0 = γ0 ; γ1 t = −γ1 ; γ2 t = γ2 ; γ3 t = −γ3 . (4.654)

Since Eq. (4.651) should be valid, C has to anti-commute with γ0 and γ2 and to commute with γ1 and
γ3. This means that we have to have

C = i γ2γ0 =

(

0 −iσ2
−iσ2 0

)

. (4.655)
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In fact, using Eq. (4.655) we have

C γµ =

{

−γµ C se µ = 0, 2 ;

γµ C se µ = 1, 3 .
(4.656)

The matrix C fullfils the following properties:

C† = Ct = C−1 = −C . (4.657)

Therefore, we found the transformation C such that, if ψ(X) is solution of the Dirac equation for
the “electron”, then

ψC(X) = C (ψ(X)) = ηC C ψ̄
t = ηC iγ

2ψ∗ (4.658)

is a solution for the Dirac equation of the “positron” (and vice versa).
Let us see how C acts on a field with a given energy and spin:

ψ′(X) =

(± 6P +m

2m

) (

1 + γ5 6n
2

)

ψ(X) . (4.659)

We have

ψ′
C(X) = C ψ̄′t(X) = ηC C γ0

(± 6P ∗ +m

2m

) (

1 + γ5 6n∗
2

)

ψ∗(X) . (4.660)

Since, moreover, the following equations hold

γ0γ
µ ∗ = γµ tγ0 ; γ0γ5 = −γ5γ0 ; [C, γ5] = 0 , (4.661)

we get

ψ′
C(X) = ηC C

(± 6P t +m

2m

) (

1− γ5 6nt
2

)

γ0ψ
∗(X) = (4.662)

= ηC

(∓ 6P +m

2m

) (

1 + γ5 6n
2

)

C ψ̄t(X) = (4.663)

= ηC

(∓ 6P +m

2m

) (

1 + γ5 6n
2

)

ψC(X) . (4.664)

We see that ψ′
C(X) is described by the same Pµ and nµ of ψ′(X), but the sign of the energy is

reversed. This means that also the spin is reversed. In particular, let us consider a plane wave solution,
in the rest frame of the particle, with negative energy and spin down:

ψ(X) = u(4)(m,0) eimt = eimt









0
0
0
1









. (4.665)

Its charge conjugated solution will be

ψC(X) = iηCγ
2 ψ∗ = ηCe

−imt









0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

















0
0
0
1









= ηC e
−imt









1
0
0
0









, (4.666)

i.e. a solution with positive energy and spin up.
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The transformation C, shows a symmetry of Dirac equation. In fact, if we consider the electroma-
gnetic field Aµ(X), we can understand how, under charge conjucation, it simply gets a minus sign14.
Therefore, the following transformation on the Dirac equation

{

ψ(X)
C−→ ψC(X)

Aµ(X) −→ −Aµ(X)
(4.667)

gives a formal invariance of Eq. (4.644).

4.3.18 PCT transformation

Although Parity, Charge Conjugation and Time Reversal are not basic symmetries for Physics, it can
be demonstrated that for a local Quantum Field Theory the product of the three, PCT , is indeed a
symmetry of Physics.

In the case of electromagnetic interactions, the three transformations are individually a symmetry
for the the Lagrangian density (and therefore of the action). Therefore, it is not surprising that PCT
is a symmetry. However, this holds also in cases in which they are individually broken.

Let us find the action of CPT = Θ on our field ψ(X). We have (neglecting the possible phases)

ψ′(X ′) = Θψ(X) = PCTψ(X) = PCiγ1γ3ψ∗(X) , (4.668)

= Piγ2γ0γ0
(

iγ1γ3ψ∗(X)
)∗

= Piγ2(−i)γ1∗γ3∗ψ(X) = Pγ2γ1γ3ψ(X) , (4.669)

= γ0γ2γ1γ3ψ(X) = iγ5ψ(X) . (4.670)

Moreover, under CPT the point of the Minkowski space goes in Xµ → −Xµ and the electromagnetic
field transforms as Aµ(X) → Aµ′(X ′) = −Aµ(X). Therefore, the Dirac equation does not change in
form after the transformation Θ:

0 = (i 6∂ − e 6A−m)ψ(X) = (i 6∂ − e 6A−m)(−iγ5)ψ′(X ′) , (4.671)

= (−iγ5)(i 6∂′ − e 6A′(X ′)−m)ψ′(X ′) (4.672)

and multiplying by iγ5 we get (i 6∂′ − e 6A′(X ′)−m)ψ′(X ′) = 0.

Consequences of the CPT theorem ...

4.3.19 Massless fermionic field: the neutrino

Oltre ai fermioni di massa m 6= 0, nel Modello Standard delle interazioni fondamentali sono previsti
anche fermioni che sperimentalmente sembrano avere massa nulla: i neutrini. Per essi, l’equazione di
Dirac si riduce alla:

i 6∂ ψν(X) = 0 , (4.673)

dove il pedice ν sta per neutrino.
Il fatto che il termine di massa non sia presente nella (??) permette di disaccoppiare i due spinori

a due componenti φR(X) e φL(X), mediante i quali avevamo costruito lo spinore di Dirac15 ψν(X).
Inoltre, come abbiamo già accennato nel primo capitolo, la massa nulla del campo fermionico in
considerazione fa sì che le sue polarizzazioni possibili siano date dagli autovalori dell’elicità: ±1

2 lungo
la direzione del moto. È conveniente, allora, non utilizzare per le γµ la rappresentazione (??), ma

14This is indeed the case, because charge conjugation flips the sign of the charges. Therefore, since A0 comes from a
static distribution of charge, if the sign of this charge changes, we have to have that A0 → −A0. The same happens for
A. It comes from a current and if we change the sign to the charges that generate the current, this changes sign to the
vector potential generated by the current, A→ −A.

15Cfr. Capitolo 1.
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introdurre la rappresentazione di Weyl o rappresentazione chirale, nella quale è diagonale la γ5 (legata,
come vedremo, all’elicità):

γ0 =

(

0 1
1 0

)

, γi =

(

0 σi

−σi 0

)

, γ5 = iγ0γ1γ2γ3 =

(

−1 0
0 1

)

. (4.674)

Se poniamo, allora:

ψν(X) =

(

φL(X)
φR(X)

)

, (4.675)

la (4.673) si divide in due equazioni differenziali disaccoppiate per la componente destra, φR(X), e
sinistra, φL(X), di ψν(X):

i∂0 φL(X)− i σ · ∇φL(X) = 0 , (4.676)

i∂0 φR(X) + i σ · ∇φR(X) = 0 , (4.677)

ovvero, ponendo p = −i∇:

i∂0 φL(X) + σ · pφL(X) = 0 , (4.678)

i∂0 φR(X) − σ · pφR(X) = 0 . (4.679)

L’operatore ĥ = σ·p
2‖p‖ è detto elicità del neutrino e, come si vede, rappresenta in pratica la

componente dello spin lungo la direzione del moto ( p
‖p‖ ).

Siccome il neutrino ha massa nulla, avrà un quadrivettore energia-impulso di tipo luce, P 2 = 0,
da cui risulta che:

E = ±‖p‖ . (4.680)

Consideriamo l’Eq. (4.678) in cui φL(X) sia un’onda piana ad energia positiva E = ‖p‖ (negativa
E = −‖p‖):

φL(X) = φ0L e
∓iPµXµ

, (4.681)

cioè quello che identificheremo con una “particella” (“antiparticella”). Sostituendo (4.681) in (4.678) si
ottiene:

ĥ φL(X) = ∓ 1

2
φL(X) . (4.682)

Questo vuol dire che l’Eq. (4.678) descrive neutrini ad elicità −1
2 (neutrini left-handed) e neutrini

ad energia negativa ed elicità 1
2 . Consistentemente con la quantizzazione del campo di Dirac, che

affronteremo nel prossimo capitolo, la seconda ipotesi è analoga ad asserire che l’Eq. (4.678) descrive
anche antineutrini (cioè antiparticelle ad energia positiva) con elicità 1

2 (antineutrini right-handed).
Se facciamo lo stesso ragionamento per l’Eq. (4.679), troviamo che questa descrive antineutrini ad

elicità −1
2 (antineutrini left-handed) e neutrini ad elicità 1

2 (neutrini right-handed).
A questo punto abbiamo a che fare con due funzioni d’onda perfettamente analoghe da un punto di

vista teorico. Sperimentalmente, però, si può vedere che in natura sono presenti soltanto neutrini left-
handed ed antineutrini right-handed. Inoltre, siccome il neutrino interviene soltanto nelle interazioni
deboli e i due stati adesso menzionati non si possono connettere attraverso una trasformazione di
parità, le interazioni deboli violano la parità.

Introduciamo i due seguenti prioettori:

PL =
(1− γ5)

2
, PR =

(1 + γ5)

2
. (4.683)

Come i può verificare facilmente, PL e PR godono di tutte le proprietà peculiari di un proiettore:

P 2
L,R = PL,R , PL + PR = 1 , PLPR = 0 , (4.684)
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dove abbiamo usato la proprietà γ25 = 1.
PL e PR proiettano rispettivamente su φL(X) e φR(X):

PL ψ(X) =
(1− γ5)

2
ψ(X) =

1

2

(

2 0
0 0

) (

φL
φR

)

=

(

φL
0

)

, (4.685)

PR ψ(X) =
(1 + γ5)

2
ψ(X) =

1

2

(

0 0
0 2

) (

φL
φR

)

=

(

0
φR

)

, (4.686)

per cui, nelle interazioni deboli compariranno soltanto le espressioni:

(1− γ5)
2

ψν(X) , e ψ̄ν(X)
(1 + γ5)

2
. (4.687)

La prima distrugge neutrini left-handed e crea antineutrini right-handed, mentre la seconda crea
neutrini left-handed e distrugge antineutrini right-handed.

La teoria così viluppata si chiama teoria del neutrino a due componenti e fu proposta da Weyl
nel 1929 e ripresa solo nel 1957, quando evidenze sperimentali confermarono che le interazioni deboli
violano la parità.

A questo punto bisogna puntualizzare alcune cose.

• Da un punto di vista di teoria dei gruppi, il fatto che sia possibile descrivere il neutrino con
uno spinore a due componenti deriva dal fatto che la rappresentazione spinoriale del Gruppo di
Poincaré per massa nulla è riducibile nelle due rappresentazioni irriducibili φR e φL del Gruppo
di Lorentz che avevamo incontrato nel primo capitolo. Se nella lagrangiana L è presente, invece,
un termine di massa mψ̄ψ, questo mescola le due componenti φR e φL in un termine misto e L
non è più invariante separatamente sotto i due tipi di trasformazioni di Lorentz.

• L’operatore γ5 è detto chiralità. Per campi a massa nulla, la chiralità e l’elicità coincidono, ma
questo non è vero per campi massivi. Si riottiene l’uguaglianza nel caso di alte energie, cioè
quando la massa della particella è trascurabile in confronto alla sua energia. Questa osservazione
fa comodo poiché in questo caso si può far ricorso alla simmetria chirale approssimata anche se
stiamo trattando particelle massive, come l’elettrone, o i quarks e ricavare importanti relazioni
fra gli elementi della matrice S (“regole di somma” in QCD).

• La teoria del neutrino a due componenti è invariante sotto trasformazioni chirali:

ψν(X) → eiγ5Λ ψν(X) , (4.688)

ψ̄ν(X) → ψ̄ν(X) eiγ5Λ . (4.689)

La simmetria è violata da termini di massa.

4.4 Quantization of the Dirac Field

The quantization of the Dirac field should follow some basic principles, as in the case of the Klein-
Gordon field. Firstly, we have to find a procedure that can accomodate the description of the particle
and anti-particle states, both with positive energy. Moreover, we are dealing with fermionic states.
Therefore, we would like to have a theory that incorporates directly the Pauli exclusion principle, or
better the fact that fermions should obey Fermi-Dirac statistics.

The expression of the Dirac field in normal modes is the following:

ψ(X) =
∑

±n

∫

d3p

(2π)
3
2

√

m

E

[

b(p, n)u(P, n)e−iPµXµ

+ d∗(p, n)v(P, n)eiPµXµ]

. (4.690)
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If we want to quantize the field, we should promote to operators the coefficients b(p, n), d(p, n), b∗(p, n),
d∗(p, n) (in particular b∗(p, n), d∗(p, n) will become b†(p, n), d†(p, n)). However, we have to understand
how they can act on a possible Fock space. In order to do that, let us see which is the expression of
the hamiltonian

H =

∫

d3XH = i

∫

d3X ψ† ∂
∂t
ψ , (4.691)

in terms of b(p, n), d(p, n) and b∗(p, n) d∗(p, n).
We need to remember the ortogonality and completeness relations for the spinors. We have

u(P, n)u(P, n′) = −v(P, n)v(P, n) = δnn′ , (4.692)

u†(P, n)u(P, n′) = −v†(P, n)v(P, n) = E

m
δnn′ , (4.693)

v(P, n)u(P, n′) = v†(P, n)u(P̃ , n′) = u†(P, n)v(P̃ , n′) = 0 , (4.694)

where Pµ = (E,p) and P̃µ = (E,−p). We already demonstrated the first equations, we should
demonstrate the last two. We have

u†(P, n)v(P̃ , n′) =
u†(α)(m,0)(6P +m)†(− 6 P̃ +m)v(β)(m,0)

2m(E +m)
, (4.695)

=
u(α)(m,0)γ

0(6P +m)†γ0γ0(− 6 P̃ +m)v(β)(m,0)

2m(E +m)
, (4.696)

=
u(α)(m,0)(6P +m)(− 6P +m)γ0v(β)(m,0)

2m(E +m)
, (4.697)

= 0 . (4.698)

Moreover

v†(P, n)u(P̃ , n′) =
v†(α)(m,0)(− 6P +m)†(6 P̃ +m)u(β)(m,0)

2m(E +m)
, (4.699)

=
v(α)(m,0)γ

0(− 6P +m)†γ0γ0(6 P̃ +m)u(β)(m,0)

2m(E +m)
, (4.700)

=
v(α)(m,0)(− 6P +m)(6P +m)γ0u(β)(m,0)

2m(E +m)
, (4.701)

= 0 . (4.702)

Now let us substitute Eq. (4.690) in Eq. (4.691). We have

H = i

∫

d3X
∑

±n,±n′

∫

d3p

(2π)
3
2

√

m

E

d3p′

(2π)
3
2

√

m

E′

[

(

d(p, n)v†(P, n)e−iPµXµ

+ b†(p, n)u†(P, n)eiPµXµ
)

×

×(−iE′)
(

b(p′, n′)u(P ′, n′)e−iP
′
µX

µ − d†(p′, n′)v(P ′, n′)eiP
′
µX

µ
)]

,(4.703)

=
∑

±n,±n′

∫

d3p d3p′

(2π)3
mE′
√
EE′

∫

d3X
[

d(p, n)v†(P, n)b(p′, n′)u(P ′, n′)e−i(Pµ+P ′
µ)X

µ

−d(p, n)v†(P, n)d†(p′, n′)v(P ′, n′)e−i(Pµ−P ′
µ)X

µ

+b†(p, n)u†(P, n)b(p′, n′)u(P ′, n′)ei(Pµ−P ′
µ)X

µ

−b†(p, n)u†(P, n)d†(p′, n′)v(P ′, n′)ei(Pµ+P ′
µ)X

µ
]

, (4.704)
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=
∣

∣ the integral in d3X gives delta functions
∣

∣

=
∑

±n,±n′

∫

d3p d3p′
mE′
√
EE′

[

v†(P, n)u(P̃ ′, n′) d(p, n)b(p′, n′)e−i(E+E′)tδ(p+ p′)

−v†(P, n)v(P ′, n′) d(p, n)d†(p′, n′)e−i(E−E′)tδ(p− p′)

+u†(P, n)u(P ′, n′) b†(p, n)b(p′, n′)ei(E−E′)tδ(p− p′)

−u†(P, n)v(P̃ ′, n′) b†(p, n)d†(p′, n′)ei(E+E′)tδ(p+ p′)
]

, (4.705)

=
∣

∣using the ortogonality relations and the delta’s for the integration in d3p′
∣

∣

=
∑

±n

∫

d3pE
[

b†(p, n)b(p, n)− d(p, n)d†(p, n)
]

. (4.706)

Then as in the case of the charged KG field, we have to kinds of particle states. The peculiarity of the
Dirac case, however, lies in the fact that there is the minus sign between the term with “particles” of kind
“b” and those of kind “d”. If we would impose commutation relations among the creation-annihilation
operators, we would produce a state with negative energy. Moreover, commutation relations give rise,
as we already noticed in the KG case, to symmetric wave functions and instead we would like to have
anti-symmetric wave fuinctions, to satisfy Fermi-Dirac statistics.

Therefore, we will impose the following quantization rules:

[b(p, n), b†(p′, n′)]+ = [d(p, n), d†(p′, n′)]+ = δnn′δ(p− p′) , (4.707)

[b(p, n), b(p′, n′)]+ = [d(p, n), d(p′, n′)]+ = .... = 0 . (4.708)

Using anticommutators (instead of commutators) we can write the energy in normal ordering as
follows

: H :=
∑

±n

∫

d3pE
[

b†(p, n)b(p, n) + d†(p, n)d(p, n)
]

. (4.709)

The momentum operator has the same structure as the hamiltonian and then we find

: P i :=
∑

±n

∫

d3ppi
[

b†(p, n)b(p, n) + d†(p, n)d(p, n)
]

. (4.710)

The spectrum is recovered defining the action of b(p, n) and d(p, n) on the vacuum

b(p, n)|0〉 = 0 , d(p, n)|0〉 = 0 , (4.711)

while the creation operators b†(p, n) and d†(p, n) create one-particle stated with definite energy and
momentum

b†(p, n)|0〉 = |p〉 , d†(p, n)|0〉 = |p〉 , (4.712)

If we refer only to H and P, states of kind “b” and states of kind “d” are degenerate

: H : b†(p, n)|0〉 = Eb†(p, n)|0〉 , (4.713)

: H : d†(p, n)|0〉 = Ed†(p, n)|0〉 , (4.714)

: P : b†(p, n)|0〉 = pb†(p, n)|0〉 , (4.715)

: P : d†(p, n)|0〉 = pd†(p, n)|0〉 . (4.716)

However, the Dirac lagrangian is invariant under global phase transformations and the conserved
quantity, for the Nöther’s theorem, is the “charge”

Q =

∫

d3X ψ†ψ . (4.717)
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If we substitute the expression of the field in normal modes in Eq. (4.717) and we integrate as in the
case of the hamiltonian, we find

∫

d3X ψ†ψ =
∑

±n

∫

d3p
[

b†(P, n)b(P, n) + d(P, n)d†(P, n)
]

(4.718)

and therefore, in normal ordering

: Q :=
∑

±n

∫

d3p
[

b†(p, n)b(p, n)− d†(p, n)d(p, n)
]

. (4.719)

The charge operator is able to distinguish between states of kind “b” and states of kind “d”.
Let’s remember that the current that gives rise to the conserved charge of the Nöther’s theorem is

jµ = ψγµψ (4.720)

and that the interacting term of the Dirac’s field with the electromagnetic field in the lagrangian
density is

Lint = −Hint = −eψγµψAµ . (4.721)

Therefore
Jµ = eψγµψ (4.722)

can be interpreted as the electric current, while

: Q :=
∑

±n

∫

d3pe
[

b†(p, n)b(p, n)− d†(p, n)d(p, n)
]

(4.723)

will be interpreted as the electric charge of the Dirac state.
This means that b†(p, n) will create a particle with energy E, momentum p and charge e = −|e|

(the electron), while d†(p, n) will create the anti-particle, with energy E, momentum p and charge −e
(the positron).

Two-particle states. Fermions

If we now consider a two-particle state, for instance a state with two electrons, since we have

b†(p1, n)b
†(p2, n

′)|0〉 = −b†(p2, n′)b†(p1, n)|0〉 (4.724)

(and the same happens for antiparticle states) we will have totally antisymmetric states in the exchange
of the two particles.

Anti-commutation rules for the fields

We quantized the Dirac’s field imposing anti-commutation rules on the creation-annihilation operators
in order to have a physical insight of what we were doing. These anti-commutations rules induce on
the fields analogous anti-commutations rules. We have

[ψα(x, t), ψ
†
β(y, t)]+ =

∑

±n,±n′

∫

d3p d3p′

(2π)3
m√
EE′

{[

b(p, n)uα(P, n)e
−iPµXµ

+ d†(p, n)vα(P, n)e
iPµXµ

]

×

×
[

p′, n′)v†β(P
′, n′)e−iP

′
µY

µ

+ b†(p′, n′)u†β(P
′, n′)eiP

′
µY

µ
]

+
[

d(p′, n′)v†β(P
′, n′)e−iP

′
µY

µ

+ b†(p′, n′)u†β(P
′, n′)eiP

′
µY

µ
]

×
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×
[

b(p, n)uα(P, n)e
−iPµXµ

+ d†(p, n)vα(P, n)e
iPµXµ

]}

(X0=Y 0)
, (4.725)

=
∑

±n,±n′

∫

d3p d3p′

(2π)3
m√
EE′

{

[b(p, n), d(p′, n′)]+ uα(P, n)v
†
β(P

′, n′)e−iPµXµ

e−iP
′
µY

µ

+[b(p, n), b†(p′, n′)]+ uα(P, n)u
†
β(P

′, n′)e−iPµXµ

eiP
′
µY

µ

+[d†(p, n), d(p′, n′)]+ vα(P, n)v
†
β(P

′, n′)eiPµXµ

e−iP
′
µY

µ

+[d†(p, n), b†(p′, n′)]+ vα(P, n)u
†
β(P

′, n′)eiPµXµ

eiP
′
µY

µ
}

(X0=Y 0)
, (4.726)

= |using anti-commutation relations |

=
∑

±n,±n′

∫

d3p d3p′

(2π)3
m√
EE′

{

+uα(P, n)u
†
β(P

′, n′)eip·(x−y)δnn′δ(p− p′)

+vα(P, n)v
†
β(P

′, n′)e−ip·(x−y)δnn′δ(p− p′)
}

(X0=Y 0)
, (4.727)

=
∑

±n

∫

d3p

(2π)3
m

E

{

uα(P, n)u
†
β(P, n) + vα(P̃ , n)v

†
β(P̃ , n)

}

e−ip·(x−y) . (4.728)

Remembering the expression of the sum over polarizations, we have

∑

±n
uα(P, n)u

†
β(P, n) =

{( 6 P +m

2m

)

γ0
}

αβ

,
∑

±n
vα(P̃ , n)v

†
β(P̃ , n) =

{(

6 P̃ −m
2m

)

γ0

}

αβ

. (4.729)

Therefore

{( 6 P +m

2m

)

γ0
}

αβ

+

{(

6 P̃ −m
2m

)

γ0

}

αβ

=

{(

6 P+ 6 P̃
2m

)

γ0

}

αβ

=
E

m
δαβ . (4.730)

Substituting in the previous expression we have

[ψα(x, t), ψ
†
β(y, t)]+ =

∫

d3p

(2π)3
δαβe

−ip·(x−y) = δαβδ(x− y) . (4.731)

Analogously we find

[ψα(x, t), ψβ(y, t)]+ = [ψ†
α(x, t), ψ

†
β(y, t)]+ = 0 . (4.732)

4.4.1 Microcausality and Dirac fields

4.5 The Electromagnetic Field (classical field)

In this section we will consider the case of a vector field, the electromagnetic field.
Maxwell’s equations, in the Heaviside-Lorentz system, have the following form:

∇ ·E = ρ , (4.733)

∇ ·H = 0 , (4.734)

∇∧E+
1

c

∂H

∂t
= 0 , (4.735)
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∇∧H− 1

c

∂E

∂t
= j . (4.736)

Taking the divergence of Eq. (4.736), we find the continuity equation

1

c

∂ρ

∂t
+∇ · j = 0 , (4.737)

conservation of the electric charge.
Since the divergence of the magnetic field H is identically zero, we can introduce a vectorial function

A(x, t) such that:
H = ∇∧A . (4.738)

A is called vector potential.
Substituting Eq. (4.738) into Eq. (4.735) we obtain:

∇∧E+
1

c

∂

∂t
∇∧A = ∇∧

(

E+
1

c

∂A

∂t

)

= 0 . (4.739)

Eq. (4.739) inplies the existence of a scalar function, φ(x, t), such that:

E+
1

c

∂A

∂t
= −∇φ . (4.740)

The electric field E can then be expressed as follows:

E = −∇φ− 1

c

∂A

∂t
. (4.741)

The scalar function φ is called scalar potential.
The Maxwell’s equations can be written in terms of the potentials. In this way we find that only

two equations survive and the other two are identically satisfied.
In fact, Eq. (4.734) is identically satisfied. Eq. (4.733), with the electric field defined in (4.741),

becomes

∇2φ+
1

c

∂

∂t
∇ ·A = −ρ . (4.742)

Eq. (4.735) is identically satisfied. Finally, Eq. (4.738) becomes

∇2A− 1

c2
∂2

∂t2
A = −j+∇

(

∇ ·A+
1

c

∂

∂t
φ

)

. (4.743)

In total, therefore, the four Eqs.(4.733, 4.734, 4.735, 4.736) are reduced to the following two:

∇2φ+
1

c

∂

∂t
∇ ·A = −ρ , (4.744)

∇2A− 1

c2
∂2

∂t2
A = −j+∇

(

∇ ·A+
1

c

∂

∂t
φ

)

. (4.745)

Eqs. (4.744 , 4.745) exhibit an important invariance under the following redefinition of the poten-
tials:

{

A → A′ = A+∇ψ
φ → φ′ = φ− 1

c
∂ψ
∂t

(4.746)

where ψ(x, t) is a generic function C2 of its arguments.
This invariance is called gauge invariance. We find that the fields E and H are gauge-invariant

quantities.
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We can use gauge invariance in order to simplify Eqs. (4.744, 4.745). In fact, if we perform a
transformation (4.746) of the potentials (φ,A) to the potentials (φ′,A′), with ψ such that

∇2ψ − 1

c2
∂2

∂t2
ψ = −∇ ·A− 1

c

∂φ

∂t
, (4.747)

in the new gauge we will have

∇ ·A′ +
1

c

∂

∂t
φ′ = 0 (4.748)

and Eqs. (4.744,4.745) will be simplified as follows:

∇2φ′ − 1

c2
∂2

∂t2
φ′ = −ρ , (4.749)

∇2A′ − 1

c2
∂2

∂t2
A′ = −j , (4.750)

(where we should remember that Eq. (4.748) holds). This choice of the gauge is called Lorentz gauge.
We have to notice that this choice of the function ψ does not determine in a univoque way the

potentials φ′ and A′. It is possible to make another gauge transformation, staying in the Lorentz
gauge. In fact, if

∇2χ− 1

c2
∂2

∂t2
χ = 0 , (4.751)

the transformation (4.746) with χ at the place of ψ gives two new potentials (φ′′,A′′) for which a
relation like the one in Eq. (4.748) holds:

∇ ·A′′ +
1

c

∂

∂t
φ′′ = ∇ ·A′ +

1

c

∂

∂t
φ′ +∇2χ− 1

c2
∂2

∂t2
χ =

≡ 0 , (4.752)

where we used Eq. (4.748) and Eq. (4.751).
Gauge invariance tells us that not all the four components of the potentials are independent. In

fact, Eq. (4.748) and Eq. (4.752) constitute two constraints for the four components of (φ,A). In total,
therefore, only two components are independent, as we will see explicitely below.

4.5.1 Covariant form of Maxwell’s equations

The charge density ρ and the current j transform, under Lorentz transformations, as the temporal and
spatial parts of a four-vector

Jµ = (ρ, j) . (4.753)

The continuity equation, then, becomes simply forma:

∂µJ
µ = 0 . (4.754)

The differential D’Alambert operator

1

c2
∂2

∂t2
−∇2 , (4.755)

can be expressed in covariant form as follows

1

c2
∂2

∂t2
−∇2 = ∂µ∂

µ = ∂2 , (4.756)
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that manifestly shows the fact that it is a Lorentz scalar. Finally, the scalar, φ, and vector, A,
potentials transform, again, as temporal and spatial parts of a four-vector

Aµ = (φ,A) . (4.757)

We can then write Eqs. (4.744, 4.745) in a manifestly covarian form as:

∂2Aµ − ∂µ (∂νA
ν) = Jµ , (4.758)

which are invariant also under a gauge transformation

Aµ −→ A′µ = Aµ + ∂µψ . (4.759)

In the Lorentz gauge, we will have
{

∂2Aµ = Jµ

∂µA
µ = 0

(4.760)

and in the free-field case
{

∂2Aµ = 0

∂µA
µ = 0

(4.761)

4.5.2 Electromagnetic tensor

We can write a manifestly covariant form of Maxwell’s equations, introducing the electromagnetic
tensor, that has, as components, the components of the electric and magnetic fields, E and H, that
are dirtectly gauge invariant.

Let us define the following anti-symmetric rank-2 tensor:

Fµν = ∂µAν − ∂νAµ = −F νµ . (4.762)

Since we have
{

E = −∇φ− 1
c
∂A
∂t

H = ∇∧A
=⇒

{

Ei = ∂iA0 − ∂0Ai
H i = ǫijk∂

jAk
(4.763)

we get immediately that Fµν can be represented in form of a matrix 4× 4 as follows:

Fµν =









0 −E1 −E2 −E3

E1 0 −H3 H2

E2 H3 0 −H1

E3 −H2 H1 0









. (4.764)

Using Fµν we can express the two Maxwell’s equations with sources as

∂µF
µν = Jν . (4.765)

The second pair of equations can be obtained by the Bianchi identities for Fµν :

∂µF νσ + ∂σFµν + ∂νF σµ = 0 , (4.766)

or we can introduce the dual of Fµν , Fµν , via the following definition:

Fαβ =
1

2
ǫαβµνFµν , (4.767)
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where ǫαβµν is the Levi-Civita tensor. The tensor Fµν has the following matrix representation:

Fµν =









0 −H1 −H2 −H3

H1 0 E3 −E2

H2 −E3 0 E1

H3 E2 −E1 0









, (4.768)

and therefore it gives the opportunity to write the second pair of Maxwell’s equation in the following
form

∂µFµν = 0 . (4.769)

4.5.3 Lagrangian density of the elettromagnetic field

Let us look for the Lagrangian density for the field Aµ in the vacuum, i.e. with Jµ = 0. L should
be a Lorentz scalar (invariant under proper Lorentz transformations), gauge invariant and, since the
equations of motion are linear in the fields, L should contain quadratic terms. We have, at our disposal,
the four-vector Aµ and the tensor Fµν with which we can construct scalars like

FµνF
µν ; FµνFµν ; FµνFµν . (4.770)

Other terms like FµνAµAν , Fµν dXµ dXν , etc... are identically zero for the anti-symmetry of Fµν .
Moreover, we have to discart also terms like AµAµ. In fact, although it is a Lorentz scalar, it is not
gauge invariant.

Of the three terms in Eq. (4.770) only one survives. In fact,

FµνF
µν = 2 (H2 − E2) , (4.771)

while the second term gives

FµνFµν = 2 (E2 −H2) = −FµνFµν , (4.772)

i.e. analogous to the first. The third is a pseudo-scalar and therefore it has to be discarted.
In total we have

L = aFµνF
µν , (4.773)

where a is a proportionality constant that has to be found.
We find the correct equations of motion imposing a = −1

4 . Finally

L = −1

4
FµνF

µν . (4.774)

Note: this “constructive” way to the Lagrangian density would have allowed also the presence of
other terms. One could add for instance a term which is a Lorentz scalar and also gauge invariant,
like FµλF λσ F

σµ. This term, however, is an operator of dimension 6 and it is not renormalizable. This
criterion will be clear when we will introduce radiative corrections.

We can find the Lagrangian density for the electromagnetic field in a more standard way, using
Hamilton’s principle. Considering a variation of the field, δAν , that vanishes on the boundary of the
integration volume, we have

0 = δS =

∫

d4X
[

∂2Aν − ∂ν(∂µAµ)
]

δAν =

∫

d4X [∂µ∂
µAν δA

ν − ∂ν(∂µAµ) δAν ] , (4.775)

= | integrating by parts |

=

∫

d4X [∂µ(∂µAν δA
ν)− ∂µAν δ(∂µAν)− ∂µ(∂νAµ δAν) + ∂νAµ δ(∂

µAν)] , (4.776)
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= | the surface terms integrate to zero |

=

∫

d4X [−∂µAν δ(∂µAν) + ∂νAµ δ(∂
µAν)] , (4.777)

=

∫

d4X

[

−1

2
∂µAν δ(∂

µAν)− 1

2
∂νAµ δ(∂

νAµ) +
1

2
∂νAµ δ(∂

µAν) +
1

2
∂µAν δ(∂

νAµ)

]

,(4.778)

= | since Fµν = ∂µAν − ∂νAµ |

=

∫

d4X

[

−1

2
Fµν δF

µν

]

, (4.779)

= δ

∫

d4X

[

−1

4
FµνF

µν

]

. (4.780)

Therefore, we have

L = −1

4
FµνF

µν = −1

2
∂µAν∂

µAν +
1

2
∂µAν∂

νAµ , (4.781)

which is Lorentz invariant, gauge invariant and local. The overall sign is important in order to have
an energy density which is positive definite.

We can check that with this Lagrangian density we get the correct Maxwell’s equation as Euler-
Lagrange equations

∂L
∂Aµ

− ∂ν
∂L
∂Aµ,ν

= 0 . (4.782)

In fact, we have
{

∂L
∂Aµ

= 0 ,
∂L

∂Aµ,ν
= ∂µAν − ∂νAµ ,

(4.783)

and therefore
∂2Aµ − ∂µ(∂νAν) = 0 . (4.784)

We can express the Lagrangian density in terms of the electric and magnetic fields. We have

F 00 = F ii = 0 , (4.785)

F 0i = ∂0Ai − ∂iA0 = ∂0Ai + ∂iA
0 = −Ei = −F i0 = −F0i , (4.786)

F ij = ∂iAj − ∂jAi = −∂iAj + ∂jA
i = −ǫijk(∇ ∧A)k = −ǫijkHk , (4.787)

and therefore
FµνF

µν = F0iF
0i + Fi0F

i0 + FijF
ij + FjiF

ji = −2|E|2 + 2|H|2 . (4.788)

In total

L =
|E|2 − |H|2

2
. (4.789)

4.5.4 Energy-Momentum tensor

From Nöther’s theorem we have

T µν =
∂L

∂(∂µAα)
∂νAα − ηµνL , (4.790)

= (−∂µAα + ∂αAµ) ∂νAα +
1

4
ηµνFαβF

αβ , (4.791)

= −Fµα ∂νAα +
1

4
ηµνFαβF

αβ , (4.792)

such that
∂µT

µν = 0 . (4.793)
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This form, (4.792), is not symmetric in the exchange µ ↔ ν and not even gauge invariant. In fact,
under a gauge transformation

Aµ → Aµ + ∂µχ , (4.794)

we have

T µν → T ′µν = −Fµα ∂ν(Aα + ∂αχ) +
1

4
ηµνFαβF

αβ = T µν − Fµα ∂ν∂αχ . (4.795)

However, the conserved charges are gauge invariant (this is the important thing!). In fact, we have

Fµα ∂ν∂αχ = ∂α(F
µα ∂νχ)− (∂αF

µα) ∂νχ = ∂α(F
µα ∂νχ) , (4.796)

since for the equations of motion, ∂αFµα = 0. Therefore, under the gauge transformation (4.794) we
have

P ν =

∫

d3X T 0ν →

→ P ′ν =

∫

d3X T ′0ν =

∫

d3X T 0ν −
∫

d3X F 0α ∂ν∂αχ , (4.797)

= P ν −
∫

d3X ∂α(F
0α ∂νχ) , (4.798)

= P ν −
∫

d3X ∂i(F
0i ∂νχ) = P ν , (4.799)

since F 00 = 0 and since the last integral gives a surface term that is zero in the limit of infinite volume
(we understand always the fact that the fields go to zero sufficiently rapidly at infinity).

We can define a gauge invariant energy-momentum tensor adding to the form in Eq. (4.792) the
following term

Cµν = ∂α(F
µαAν) , (4.800)

which satisfies
∂µC

µν = 0 , (4.801)

and it is such that
∫

d3X C0ν =

∫

d3X ∂iF
0iAν = 0 . (4.802)

The new energy-momentum tensor (symmetric in µ↔ ν and gauge-invariant) is

T̃ µν = T µν + Cµν = FµαF να +
1

4
ηµνFαβF

αβ . (4.803)

Using (4.803) we get the usual expressions for the energy density and the momentum:

H = T̃ 00 =
|E|2 + |H|2

2
, (4.804)

Pi = T̃ 0i = (E ∧H)i , (4.805)

which is the Poynting vector.
The two expressions T µν and T̃ µν are physically equivalent. The additional term is a total derivative

in the Lagrangian density and, therefore, it does not affect the equations of motion. It is interesting
to notice that such a piece changes the currents, while the charges are always the same.

4.5.5 Number of degrees of freedom

We describe the electromagnetic field with the four-vector Aµ. However, due to gauge invariance, the
physical degrees of fredom are not 4 (as the fact that we use an object with four components would
suggest) but 2. We can perform the calculation of the actual degrees of freedom in a covariant gauge
or in a physical gauge, like the Coulomb gauge.
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Covariant gauge

We can show that the field Aµ has only two degrees of freedom using the equations of motion and
gauge invariance.

Consider the Fourier tranform of the field

Aµ(X) =

∫

d4KeiKνXν

Aµ(K) . (4.806)

Substituting into the equations of motion we get

−K2Aµ(K) +Kµ(K
νAν(K)) = 0 . (4.807)

Now, let us write the field Aν(K) as a combination of 4 vectors of a basis for the Minkowski space.
We can choose the following vectors:

Kµ = (E,k) , K̃µ = (E,−k) , ǫ(λ)µ(K) , λ = 1, 2 , (4.808)

with
Kµǫ(λ)µ (K) = 0 . (4.809)

We can write
Aµ(K) = a(λ)(K)ǫ(λ)µ (K) + b(K)Kµ + c(K)K̃µ . (4.810)

Substituting in Eq. (4.807) we get

0 = −K2
[

a(λ)(K)ǫ(λ)µ (K) + b(K)Kµ + c(K)K̃µ

]

+Kµ

{

Kν
[

a(λ)(K)ǫ(λ)ν (K) + b(K)Kν + c(K)K̃ν

]}

,

= −K2 a(λ)(K)ǫ(λ)µ (K)−K2c(K)K̃µ + (KνK̃ν)c(K)Kµ . (4.811)

Since the 4 vectors form a basis, we have to have

K2 a(λ)(K) = K2 c(K) = (KνK̃ν)c(K) = 0 (4.812)

and therefore, since (KνK̃ν) 6= 0 we have c(K) = 0 and since we want a(λ)(K) 6= 0 we have to have
K0 = 0. The coefficient b(K) is indeterminate and we can choose it in such a way to be 0. This fact
is connected to gauge invariance. In fact, if

Aµ(X)→ Aµ(X) + ∂µχ(X) , (4.813)

the Fourier transform is such that

Aµ(K)→ Aµ(K) + iKµχ(K) , (4.814)

where

χ(X) =

∫

d4KeiKνXν

χ(K) . (4.815)

Under (4.814) we have

Aµ(K) = a(λ)(K)ǫ(λ)µ (K) + b(K)Kµ + c(K)K̃µ →
→ A′

µ(K) = a′(λ)(K)ǫ(λ)µ (K) + b(K)Kµ + iχ(K)Kµ + c′(K)K̃µ , (4.816)

= a′(λ)(K)ǫ(λ)µ (K) + c′(K)K̃µ , (4.817)

where
a′(λ)(K) = a(λ)(K) , b′(K) = b(K) + iχ(K) = 0 , c′(K) = c(K) . (4.818)
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Therefore, choosing a gauge transformation such that χ(K) = ib(K) we can always remove the term
proportional to Kµ. We remain, then with two degrees of freedom (since b(K) = c(K) = 0):

Aµ(K) = a(λ)(K)ǫ(λ)µ (K) , (4.819)

with
KµAµ(K) = a(λ)(K)Kµǫ(λ)µ (K) = 0 , (4.820)

which in coordinate space can be written as

∂µAµ(K) = 0 , (4.821)

i.e. the Lorentz gauge.

Coulomb gauge

In Coulomb gauge the number of degrees of freedom is even more evident. In fact, in the vacuum we
can always choose a gauge such that

A0 = ∇ ·A = 0 , (4.822)

that are two constraints on the four components of Aµ (therefore two degrees of freedom left).
Let us show that this is possible. Let us make a gauge transformation as in Eq. (4.813) with

χ(X) = −
∫ t

0
A0(x, t′) dt′ , (4.823)

in such a way that

Aµ → A′
µ = Aµ − ∂µ

∫ t

0
A0(x, t′) dt′ . (4.824)

Clearly we have

A′
0 = A0 − ∂0

∫ t

0
A0(x, t′) dt′ = 0 . (4.825)

Let us perform now an additional gauge transformation

A′
µ → A′′

µ = A′
µ + ∂µχ̃(X) , (4.826)

such that ∇ ·A′′ = 0. To this end we choose χ̃(X) such that

∇ ·A′′ = ∇ ·A′ −∇2χ̃(X) = 0 , (4.827)

or
∇2χ̃(X) = ∇ ·A′ . (4.828)

A solution for this equation is16

χ̃(X) = − 1

4π

∫

d3X ′ ∇′ ·A′(x′, t)
|x− x′| . (4.831)

16In fact we have

∇2 1

|x| = −4πδ
3(x) , (4.829)

and therefore

∇2χ(X) = − 1

4π

∫

d3X ′∇′ ·A′(x′, t)∇2 1

|x− x′| =
1

4π

∫

d3X ′∇′ ·A′(x′, t) 4πδ3(x− x
′) = ∇ ·A′(X) . (4.830)
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for which we have

∂0χ̃(X) = − 1

4π

∫

d3X ′ ∇′ · Ȧ′(x′, t)
|x− x′| = 0 , (4.832)

since for the Gauss equation

0 = ∇ · E = ∇ ·
(

∇Ȧ′0 − ∂0A′
)

= −∇ · A′(X) . (4.833)

In the end, in the gauge in which we defined A′′
µ we have

A′′
0 = A′

0 + ∂0χ̃ = 0 + 0 = 0 , and ∇ ·A′′ = 0 , (4.834)

as we wanted to show.

4.6 Quantization of the Electromagnetic Field

We are now ready to consider the quantization of the electromagnetic field. We would like to mantain
the general covariance of the theory and therefore we require to find non-trivial commutation relations
among all the components of Aµ and the conjugated momentum

Πµ =
∂L
∂Ȧµ

. (4.835)

We would impose the following equal time commutation relations

[Aµ(x, t),Πν(y, t)] = iηµνδ
3(x− y) ,

[Aµ(x, t), Aν(y, t)] = [Πµ(x, t),Πν(y, t)] = 0 . (4.836)

In order to evaluate the conjugated momentum, we refer to Eq. (4.781). We find

Πµ =
∂L
∂Ȧµ

= −∂0Aµ + ∂µA0 = Fµ0 . (4.837)

Since Fµν is antisymmetric, we have Π0 = 0, at the operator level, and we are not able to impose the
commutation relation

[A0(x, t),Π0(y, t)] = iδ3(x− y) . (4.838)

This is a problem that emerges from our requirement to mantain a manifestly covariant form of
the quantization, while we know already that the time-degree of freedom is not physical. A possible
solution is to get rid of the general covariance and to quantize only the two transverse degrees of
freedom. This could be done, for instance, using a physical gauge, like the Coulomb gauge, in which
we reduce from the beginning only to the two transverse degrees of freedome. However, in such
approach we loose covariance, that is quite important in computations. We therefore choose to quantize
the electromagnetic field preserving general covariance and renouncing to explicit gauge invariance
(although we will recover gauge invariance checking that two computations in two different gauges give
rise to the same result). This approach was introduced by Gupta and Bleuler.

The idea is to renounce to gauge invariance in order to cure the relation Π0 = 0 in such a way that
this does not hold at the operator level, but only when we evaluate the operator on a physical state.

Let us choose a lagrangian density that gives the correct equations of motion (Maxwell’s equations)
but only in Lorentz gauge:

∂2Aµ = 0 . (4.839)

These equations come from the lagrangian density

L = −1

2
∂µAν∂

µAν , (4.840)
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as can be easyly checked. The difference between the lagrangian density given in Eq. (4.781) and the
one in Eq. (4.840) is

LGF = −1

4
FµνF

µν +
1

2
∂µAν∂

µAν , (4.841)

= −1

2
∂µAν∂

µAν − 1

2
∂µAν∂

νAµ +
1

2
∂µAν∂

µAν , (4.842)

= −1

2
∂µAν∂

νAµ , (4.843)

= ∂ν
(

1

2
(∂µAν)A

µ

)

− 1

2
(∂ν∂µAν)A

µ , (4.844)

= ∂ν
(

1

2
(∂µAν)A

µ

)

− ∂µ
(

1

2
(∂νAν)A

µ

)

+
1

2
(∂νAν)

2 , (4.845)

= |up to total derivatives that do not affect the eqs of motion |

=
1

2
(∂νAν)

2 . (4.846)

Therefore, we quantive the lagrangian density

L = LEM + LGF = −1

4
FµνF

µν − 1

2
(∂νAν)

2 . (4.847)

The lagrangian LGF is called “gauge fixing” lagrangian.
If we look for the Euler-Lagrange equations for the lagrangian density in Eq. (4.847) we find

∂L
∂Aµ

= 0 ,
∂L
∂Aµ,ν

= −Aµ,ν +Aν,µ − ηµν(∂λAλ) (4.848)

and therefore

0 = −∂ν
∂L
∂Aµ,ν

= ∂2Aµ − ∂µ(∂νAν) + ∂µ(∂λAλ) = ∂2Aµ , (4.849)

that are the Maxwell’s equations in the Lorentz gauge17.
Using the lagrangian density (4.847) we can recompute the momentum conjugated to Aµ finding

Πµ = Fµ0 − ηµ0(∂νAν) . (4.852)

Now the temporal component is not anymore identically equal to zero. We have

Π0 = −(∂νAν) . (4.853)

It is clear thet the Lorentz gauge gives ∂νAν = 0; however, we are now speaking about operators. We
can require that in general

∂νAν 6= 0 , (4.854)

but it is zero only when evaluated between two physical states

〈phys|∂νAν |phys〉 = 0 . (4.855)

17We can in general use the lagrangian

L = −1

4
FµνF

µν − λ

2
(∂νAν)

2 , (4.850)

with λ a constant (actually a Lagrange multiplier). The equations of motion would then be

∂2Aµ − (1− λ)∂µ(∂νAν) = 0 , (4.851)

that give ∂2Aµ = 0 when λ = 1. The case λ = 1 is called “Lorentz-Feynman gauge”.
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The condition (4.855) defines the physical states. Imposing (4.854) at the operator level, with (4.855)
on the physical states, means that we enlarged the Fock space. We have states that are physical and
non-physical states on which, in general, 〈φ|∂νAν |φ〉 6= 0. The enlargement of the Fock space is the
price to pay for the covariant quantization. The states corresponding to temporal and longitudinal
photons will be non physical, while the transverse polarization states will be the physical ones.

We will comment more closely on Eq. (4.855) in a while.
Since now at the operator level we have Π0 6= 0, we can proceed imposing the quantization relations

(4.836) that can be simplyfied as follows. We have

Π0 = −∂0A0 − ∂iAi , (4.856)

Πi = −∂0Ai + ∂iA0 . (4.857)

Therefore, for the temporal component

iδ3(x− y) = [A0(x, t),Π0(y, t)] = [A0(x, t),−∂0A0(y, t) − ∂iAi(y, t)] = [A0(x, t),−Ȧ0(y, t)] , (4.858)

since

[A0(x, t),−∂iAi(y, t)] = −A0(x, t)

(

∂

∂yi
Ai(y, t)

)

+

(

∂

∂yi
Ai(y, t)

)

A0(x, t) , (4.859)

= − ∂

∂yi
[A0(x, t), A

i(y, t)] = 0 . (4.860)

For the spatial part we have

−iδ3(x−y) = [Ai(x, t),Πi(y, t)] = [A0(x, t),−∂0Ai(y, t)+∂iA0(y, t)] = [A0(x, t),−Ȧi(y, t)] , (4.861)

since, again, we have
[A0(x, t), ∂iA0(y, t)] = 0 . (4.862)

Finally we have

[Aµ(x, t), Ȧν(y, t)] = −iηµνδ3(x− y) ,

[Aµ(x, t), Aν(y, t)] = [Ȧµ(x, t), Ȧν(y, t)] = 0 . (4.863)

4.6.1 Plane wave solutions

In order to get the quanta (photons) we need to express the field in normal modes (plane wave solu-
tions). We have to express Aµ in a basis of the Minkowski space. We do not have the opportunity to
move to the rest frame, since the photons travel at the speed of light. However, in the frame in which
the momentum is Pµ = (p, 0, 0, p), we choose the following 4 vectors:

1. The unit time-like vector (that defines the time axis)

nµ(p) = (1, 0, 0, 0) = ǫ(0)µ(p) (4.864)

such that
ǫ(0)µ(p)ǫ(0)µ (p) = 1 . (4.865)

2. The two transverse space-like vectors

ǫ(λ)µ(p) , λ = 1, 2 , (4.866)

such that

ǫ(λ)µ (p)ǫ(0)µ(p) = ǫ(λ)µ (p)Pµ = 0 , (4.867)

ǫ(λ)µ (p)ǫ(λ
′)µ(p) = −δλλ′ . (4.868)

We have
ǫ(1)µ(p) = (0, 1, 0, 0) , ǫ(2)µ(p) = (0, 0, 1, 0) . (4.869)
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3. A fourth space-like vector
ǫ(3)µ(p) , (4.870)

such that

ǫ(3)µ (p)ǫ(0)µ(p) = ǫ(3)µ (p)ǫ(λ)µ(p) = 0 , (4.871)

ǫ(3)µ p)ǫ(3)µ(p) = −1 . (4.872)

For instance we can choose

ǫ(3)µ(p) =
Pµ − (ǫ

(0)
ν (p)P ν)ǫ(0)µ(p)

(ǫ
(0)
ν (p)P ν)

= (0, 0, 0, 1) . (4.873)

These 4 vectors are orthonormal in the Minkowski space and satisfy completeness relations:

ǫ(λ)µ (p)ǫ(λ
′)µ(p) = ηλλ

′
, λ = 0, 1, 2, 3 , (4.874)

ǫ(λ)µ (p)ǫ(λ
′)

ν (p)ηλλ′ = ηµν . (4.875)

We can prove the relation (4.875) in the frame in which Pµ = (p, 0, 0, p) noting that ǫ(λ)µ = δλµ and
since it is a covariant equation it holds unchanged in form in any other frame.

The expansion of Aµ in plane waves is therefore18

Aµ(X) =

∫

d3p
√

(2π)32E

3
∑

λ=0

ǫ(λ)µ (p)
[

a(λ)(p)e
−iPµXµ

+ a†(λ)(p)e
iPµXµ

]

, (4.877)

where we considered the fact thet the field Aµ is a real field and where we normalized already the
expression, because for every µ = 0, 1, 2, 3 we find a Klein-Gordon field

A0(X) =

∫

d3p
√

(2π)32E

[

ã0(p)e
−iPµXµ

+ ã†0(p)e
iPµXµ

]

, (4.878)

A1(X) =

∫

d3p
√

(2π)32E

[

ã1(p)e
−iPµXµ

+ ã†1(p)e
iPµXµ

]

, (4.879)

. .

. .

where ã0(p) =
∑3

λ=0 ǫ
(λ)
0 (p)a(λ)(p), ã1(p) =

∑3
λ=0 ǫ

(λ)
1 (p)a(λ)(p) ... etc.

Remembering the form of f (+)
p (X) and f (+)∗

p (X) we can write

Aµ(X) =

∫

d3p

3
∑

λ=0

ǫ(λ)µ (p)
[

a(λ)(p)f
(+)
p (X) + a†(λ)(p)f

(+)∗
p (X)

]

, (4.880)

We would like to check that, imposing the quantization relations on the fields, the opertators
a(λ)(P ) and a†(λ)(P ) are actually annihilation/creation operators (they obay the correct commutation

relations). We can project out the operators a(λ)(P ) and a†(λ)(P ) in terms of the fields and then use

18If we consider circular polarization we have to introduce two complex vectors for the transverse states. Therefore,
we have

Aµ(X) =

∫

d3p
√

(2π)32E

3
∑

λ=0

[

ǫ(λ)µ (p)a(λ)(p)e
−iPµXµ

+ ǫ(λ) ∗µ (p)a†(λ)(p)e
iPµXµ

]

. (4.876)

145



the quantization relations for the fields and check that these relations induce the correct commutation
relations of the annihilation/creation operators. We have

3
∑

λ=0

ǫ(λ)µ (p)a(λ)(p) = i

∫

d3Xf (+)∗
p (X)

←→
∂0Aµ(X) . (4.881)

If now we multiply on the left by ǫ(λ
′)µ(p) we find

ǫ(λ
′)µ(p)

3
∑

λ=0

ǫ(λ)µ (p)a(λ)(p) = ηλ
′λa(λ)(p) = i

∫

d3Xǫ(λ
′)µf (+)∗

p (X)
←→
∂0Aµ(X) . (4.882)

Then, multiplying on the left by ησλ′ we find

a(σ)(p) = iησλ′

∫

d3Xǫ(λ
′)µf (+)∗

p (X)
←→
∂0Aµ(X) , (4.883)

= iησλ′

∫

d3Xǫ(λ
′)µ
[

f (+)∗
p (X)Ȧµ(X) − (∂0f

(+)∗
p (X))Aµ(X)

]

. (4.884)

Analogously we find

a†(σ)(p) = −iησλ′
∫

d3Xǫ(λ
′)µf (+)

p (X)
←→
∂0Aµ(X) = iησλ′

∫

d3Xǫ(λ
′)µAµ(X)

←→
∂0 f

(+)
p (X) ,(4.885)

= iησλ′

∫

d3Xǫ(λ
′)µ
[

(∂0f
(+)
p (X))Aµ(X) − f (+)

p (X)Ȧµ(X)
]

. (4.886)

With these expressions we find, for instance

[a(λ)(p), a
†
(λ′)(p

′)] = a(λ)(p)a
†
(λ′)(p

′)− a†(λ′)(p
′)a(λ)(p) , (4.887)

= −ηλδηλ′δ′
∫

d3X d3Y ǫ(δ) µ(p)ǫ(δ
′) ν(p′)

{

[

f (+)∗
p (X)Ȧµ(X)− (∂0f

(+)∗
p (X))Aµ(X)

]

×

×
[

(∂0f
(+)
p′ (Y ))Aν(Y )− f (+)

p′ (Y )Ȧν(Y )
]

−
[

(∂0f
(+)
p′ (Y ))Aν(Y )− f (+)

p′ (Y )Ȧν(Y )
]

×

×
[

f (+)∗
p (X)Ȧµ(X) − (∂0f

(+)∗
p (X))Aµ(X)

]}∣

∣

∣

X0=Y 0
,

= −ηλδηλ′δ′
∫

d3X d3Y ǫ(δ) µ(p)ǫ(δ
′) ν(p′)

{

f (+)∗
p (X)(∂0f

(+)
p′ (Y )) Ȧµ(X)Aν(Y )

−f (+)∗
p (X)f

(+)
p′ (Y ) Ȧµ(X)Ȧν(Y )

−(∂0f (+)∗
p (X))(∂0f

(+)
p′ (Y ))Aµ(X)Aν(Y )

+(∂0f
(+)∗
p (X))f

(+)
p′ (Y )Aµ(X)Ȧν(Y )

−(∂0f (+)
p′ (Y ))f (+)∗

p (X)Aν(Y )Ȧµ(X)

+(∂0f
(+)
p′ (Y ))(∂0f

(+)∗
p (X))Aν(Y )Aµ(X)

+f
(+)
p′ (Y )f (+)∗

p (X) Ȧν(Y )Ȧµ(X)

−f (+)
p′ (Y )(∂0f

(+)∗
p (X)) Ȧν(Y )Aµ(X)

}∣

∣

∣

X0=Y 0
,
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= −ηλδηλ′δ′
∫

d3X d3Y ǫ(δ) µ(p)ǫ(δ
′) ν(p′)

{

f (+)∗
p (X)(∂0f

(+)
p′ (Y )) [Ȧµ(X), Aν(Y )]X0=Y 0

−f (+)∗
p (X)f

(+)
p′ (Y ) [Ȧµ(X), Ȧν(Y )]X0=Y 0

−(∂0f (+)∗
p (X))(∂0f

(+)
p′ (Y )) [Aµ(X), Aν(Y )]X0=Y 0

+(∂0f
(+)∗
p (X))f

(+)
p′ (Y ) [Aµ(X), Ȧν(Y )]X0=Y 0

}

,

= −ηλδηλ′δ′
∫

d3X d3Y ǫ(δ) µ(p)ǫ(δ
′) ν(p′)

{

f (+)∗
p (X)(∂0f

(+)
p′ (Y )) iηµνδ

3(x− y)

+(∂0f
(+)∗
p (X))f

(+)
p′ (Y ) (−iηµν)δ3(x− y)

}

,

= −ηλδηλ′δ′ǫ(δ)µ(p)ǫ(δ
′)

µ (p′) i
∫

d3X f (+)∗
p (X)

←→
∂0 f

(+)
p′ (X) ,

= −ηλδηλ′δ′ηδδ
′
δ3(p− p′)

= −ηλλ′δ3(p− p′) (4.888)

and, in the same way we find

[a(λ)(p), a(λ′)(p
′)] = [a†(λ)(p), a

†
(λ′)(p

′)] = 0 . (4.889)

Finally, in summary:

[a(λ)(p), a
†
(λ′)(p

′)] = −ηλλ′δ3(p− p′) , (4.890)

[a(λ)(p), a(λ′)(p
′)] = [a†(λ)(p), a

†
(λ′)(p

′)] = 0 . (4.891)

Note the “wrong” sign in Eq. (4.890) for the component 00! This has an important consequence. In
fact, if we define a one-particle state as

|1, λ〉 =
∫

d3p f(p) a†λ(p)|0〉 , (4.892)

its norm comes out to be negative in the case λ = 0. In fact

〈1, λ|1, λ′〉 =

∫

d3p d3p′ f∗(p)f(p′)〈0|aλ(p)a†λ′(p′)|0〉 , (4.893)

=

∫

d3p d3p′ f∗(p)f(p′)〈0|[aλ(p), a†λ′(p′)]|0〉 , (4.894)

= −ηλλ′
∫

d3p|f(p)|2 . (4.895)

For λ = λ′ = 0 we find a state with negative norm and therefore it is not physical.

4.6.2 Physical states

Let us consider again the condition (4.855). We want to impose a linear condition on the operators
acting on a physical state, such that (4.855) is fulfilled. The field Aµ(X) has two components

Aµ(X) = A(+)
µ (X) +A(−)

µ (X) =

∫

d3p
√

(2π)32E

3
∑

λ=0

ǫ(λ)µ (p)a(λ)(p)e
−iPµXµ

,
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+

∫

d3p
√

(2π)32E

3
∑

λ=0

ǫ(λ)µ (p)a†(λ)(p)e
iPµXµ

. (4.896)

If we impose that a physical state satisfies the following condition

∂µA(+)
µ |phys〉 = 0 , (4.897)

since A(−)
µ = (A

(+)
µ )† we have that (4.855) is automatically satisfied. In fact

0 = 〈phys|(∂µA(+)
µ )† = 〈phys|∂µA(−)

µ (4.898)

and therefore
0 = 〈phys|∂µA(−)

µ + ∂µA(+)
µ |phys〉 = 〈phys|(∂µAµ)|phys〉 . (4.899)

Eq. (4.897) is the Gupta-Bleuler condition. Let us see what is ∂µA(+)
µ in terms of creation/annihilation

operators. We have

∂µA(+)
µ = −i

∫

d3p
√

(2π)32E
e−iPµXµ

Pµ
3
∑

λ=0

ǫ(λ)µ (p)a(λ)(p) , (4.900)

= | sincePµǫ(1)µ (p) = Pµǫ(2)µ (p) = 0 and Pµǫ(3)µ (p) = −Pµǫ(0)µ (p) |

= −i
∫

d3p
√

(2π)32E
e−iPµXµ

(Pµǫ(0)µ (p))
[

a(0)(p)− a(3)(p)
]

. (4.901)

Therefore, ∂µA(+)
µ |phys〉 = 0 implies the condition

[

a(0)(p)− a(3)(p)
]

|phys〉 = 0 . (4.902)

This means that |phys〉 are constructed as follows:

|phys〉 = |n(0), n(3)〉 =

[

a†(0)(p)− a
†
(3)(p)

]n

n!
|0〉 . (4.903)

In fact we have

[a(0)(p
′)− a(3)(p′), a†(0)(p)− a

†
(3)(p)] = −δ

3(p− p′) + δ3(p− p′) = 0 (4.904)

and then

[

a(0)(p)− a(3)(p)
]

|n(0), n(3)〉 =
[

a(0)(p)− a(3)(p)
]

[

a†(0)(p)− a
†
(3)(p)

]n

n!
|0〉 , (4.905)

=

[

a†(0)(p)− a
†
(3)(p)

]n

n!

[

a(0)(p)− a(3)(p)
]

|0〉 = 0 . (4.906)

|n(0), n(3)〉 is the state with n temporal photons and n longitudinal photons. Note that a state
|n(0), n(3)〉 is the vacuum state for transverse photons

a(1)(p)|n(0), n(3)〉 = a(2)(p)|n(0), n(3)〉 = 0 . (4.907)

The requirement for a physical state is that it contains the same number of temporal and longi-
tudinal photons but there is no constraint on the number of transverse photons. We then have the
following combination

|phys〉 = |ψT 〉+ δ|φ〉 , (4.908)
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where
|ψT 〉 = αa†(1)(p1)|0〉+ β a†(2)(p2)|0〉 , |φ〉 = |n(0), n(3)〉 . (4.909)

Other states with a†
(0)

(p)|0〉 and a†
(3)

(p)|0〉 not in the combination |n(0), n(3)〉 are not physical.

The state vector |φ〉 is quite peculiar. It has zero norm. In fact

〈φ|φ〉 = 〈0|(a(0)(p)− a(3)(p))(a†(0)(p)− a
†
(3)(p))|0〉 , (4.910)

= 〈0|(a(0)(p)a†(0)(p) + a(3)(p)a
†
(3)(p))|0〉 , (4.911)

= | since [a(0)(p), a
†
(3)(p)] = [a(3)(p), a

†
(0)(p)] = 0 |

= 〈0|([a(0)(p), a†(0)(p)] + [a(3)(p), a
†
(3)(p)])|0〉 , (4.912)

= | since [a(0)(p), a
†
(0)(p)] = −[a(3)(p), a

†
(3)(p)] |

= 0 . (4.913)

Moreover, |φ〉 is ortogonal to |ψT 〉 = αa†(1)(p1)|0〉+ β a†(2)(p2)|0〉:

〈ψT |φ〉 = 〈0|
[

α∗ a(1)(p1) + β∗ a(2)(p2)
]

[

a†(0)(p)− a
†
(3)(p)

]

|0〉 = 0 . (4.914)

This means that any scalar product between physical states are only given by scalar products between
the transverse states.

4.6.3 Energy and momentum

Let us look for the expression of the energy and the momentum operators in terms of creation-
annihilation operators. Let us note that we are considering the following lagrangian density

L = −1

2
∂µAν∂

µAν = −1

2
∂µA0∂

µA0 +
1

2
∂µA

i∂µAi , (4.915)

which is the sum of three Lagrangian densities of the real fields Ai minus the lagrangian density of the
real field A0. We can therefore immediately understand that we have

:H :=

∫

d3XH =

∫

d3X
[

ΠµȦµ − L
]

=

∫

d3pE

[

−a†(0)(p)a(0)(p) +
3
∑

λ=1

a†(λ)(p)a(λ)(p)

]

. (4.916)

The same expression holds for the momentum

:P i :=

∫

d3p pi

[

−a†(0)(p)a(0)(p) +
3
∑

λ=1

a†(λ)(p)a(λ)(p)

]

. (4.917)

If we now evaluate the energy or the momentum of a physical state, we see that they get contribu-
tions only from the transverse states. In fact, we have

[

a(0)(p)− a(3)(p)
]

|phys〉 = 0 (4.918)

and

〈phys|
[

−a†(0)(p)a(0)(p) + a†(3)(p)a(3)(p)
]

|phys〉 = 〈phys|
[

−a†(0)(p) + a†(3)(p)
]

a(0)(p)|phys〉 = 0 .

(4.919)
Therefore

〈phys| :H : |phys〉 =
∫

d3pE 〈phys|
2
∑

λ=1

a†(λ)(p)a(λ)(p)|phys〉 , (4.920)
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and

〈phys| :P i : |phys〉 =
∫

d3p pi 〈phys|
2
∑

λ=1

a†(λ)(p)a(λ)(p)|phys〉 , (4.921)

We can conclude that the physical state is determined only by the transverse modes. |ψT 〉 and
|ψT 〉+ c|φ〉 are physically equivalent. They have the same energy, momentum, angular momentum ...
they are physically indistinguishable. They represent the photon.

4.7 Propagator of the Klein-Gordon field

We studied so far the equations of motion of the scalar field without sources. Let us now consider the
case in which we are in presence of a source, j(X), which can be for instance a known function of the
space-time point. The differential equation fullfiled by the field is

(∂2 +m2)φ(X) = j(X) , (4.922)

to be intended as a classical equation. The solution of Eq. (4.922) can be obtained calculating the
Green function, which is the solution of Eq. (4.922) in presence of a point-like source19

(∂2 +m2)G(X −X ′) = δ4(X −X ′) , (4.923)

such that

φ(X) = φ0(X) +

∫

d4X ′G(X −X ′)j(X ′) , (4.924)

where φ0(X) is a solution of the homogeneous equation, respecting the given boundary conditions. It
is easy to verify that (4.924) satisfies (4.922):

(∂2 +m2)

[

φ0(X) +

∫

d4X ′G(X −X ′)j(X ′)

]

=

= (∂2 +m2)φ0(X) +

∫

d4X ′ (∂2 +m2)G(X −X ′)j(X ′) , (4.925)

=

∫

d4X ′ δ4(X −X ′)j(X ′) = j(X) . (4.926)

The problem now is to calculate the Green function. In order to do that, we Fourier transform:

G(X −X ′) =

∫

d4p

(2π)4
e−iPµ(X−X′)µG̃(P ) , (4.927)

δ4(X −X ′) =

∫

d4p

(2π)4
e−iPµ(X−X′)µ . (4.928)

Substituting in Eq. (4.923) we find

(−P 2 +m2) G̃(P ) = 1 , (4.929)

and therefore

G̃(P ) = − 1

P 2 −m2
. (4.930)

Finally

G(X −X ′) = −
∫

d4P

(2π)4
e−iPµ(X−X′)µ 1

P 2 −m2
. (4.931)

19For translationally invariant systems the Green function is a function of (X −X ′)
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The calculation of Eq. (4.931) has to be done in the complex plane, puting attention to the fact that
the integrand has poles in the domain of integration. We can for instance integrate in dP 0. In this
case we have two single poles on the real axis at

P 2 −m2 = 0 =⇒ P 0 = ±
√

p2 +m2 = ±ω . (4.932)

Therefore, in order to perform the integration we have different choices, according to how we avoid the
singularity in integrating in dP 0. The integration will be done in principal value and the infinitesimal
arc with which to circumvent the poles can be chosen in the upper or in the lower complex semi-plane.
The difference will be a residue, i.e. the solution of the homogeneous equation. The coice on the path
depends on the boundary conditions.

4.7.1 Closed paths and residues

Let us consider the integration in P 0 on a closed path around one of the poles.
If C+ is a closed positive path around P 0 =

√

p2 +m2 = ω, we can apply the residue theorem
finding

∆+ = −i
∫

d3P

(2π)3

∫

C+

dP 0

(2π)

e−iPµXµ

(P 0 − ω)(P 0 + ω)
(4.933)

=

∫

d3P

(2π)32ω
e−i(ωt−p·x) . (4.934)

If C− is a closed positive path around P 0 = −
√

p2 +m2 = −ω, instead, we get

∆− = −i
∫

d3P

(2π)3

∫

C−

dP 0

(2π)

e−iPµXµ

(P 0 − ω)(P 0 + ω)
, (4.935)

= −
∫

d3P

(2π)32ω
ei(ωt+p·x) , (4.936)

= | transforming p→ −p |

= −
∫

d3P

(2π)32ω
ei(ωt−p·x) . (4.937)

Both ∆± are solution of the homogeneous equation. In fact

(∂2 +m2)∆± = −i
∫

d3P

(2π)3

∫

C±

dP 0

(2π)
(∂2 +m2)

e−iPµXµ

(P 2 −m2)
, (4.938)

= i

∫

d3P

(2π)3

∫

C±

dP 0

(2π)
(P 2 −m2)

e−iPµXµ

(P 2 −m2)
, (4.939)

= i

∫

d3P

(2π)3

∫

C±

dP 0

(2π)
e−iPµXµ

= 0 , (4.940)

for Cauchy’s theorem.

4.7.2 Open paths

The integration on an open path gives the solution for the non-homogeneous differential equation.
Of particular interest are the so-called “retarded” and “advanced” Green functions. These provide the
correct solutions for a classical field that preserves causality. They depend on how we regularize the two
singularities on the real P 0 axis, that occur at P 0 = ±ω, where ω =

√

p2 +m2. In principle, we have
four possibilities to perform the integral: we can get around both singularities with a vanishing circle
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on the upper complex half-plane, or both with a vanishing circle on the lower complex half-plane, or
we can use a circle on the upper half-plane and one in the lower one (with two evident configurations).

ℑ(P 0)

ℜ(P 0)0−ω
ω

Using a different language (but same result), instead of considering a vanishing circle around the
pole, we can displace the pole (using a vanishing imaginary part) keeping the integration on the real
axis, as in the figure

limǫ→0
ǫ limη→0

ω
ω − iη

such that

lim
ǫ→0

∫

γǫ

dP 0

(2π)

f(P 0)

P 0 − ω = lim
η→0

∫

dP 0

(2π)

f(P 0)

P 0 − ω + iη
(4.941)

and usually the “limit” procedure is understood. Therefore, the situation becomes as follows:

ℑ(P 0)

ℜ(P 0)0−ω ω

retarded

advanced

time-ordered

Retarded Green functions

The first case to be considered is the one in which the two poles are both displaced below the real axis.
In this way, the Green function vanishes for t < t′. In fact, we define

G̃ret(P ) = −
1

(P 0 + iη)2 − p2 −m2
= − 1

(P 0 − ω + iη)(P 0 + ω + iη)
. (4.942)

If we close the integration contour in the upper half-plane, for the case t < t′,
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ℑ(z)

ℜ(z)−R R0
−ω − iη ω − iη

Γ+

γR

γ1

and we let R→∞. For Cauchy’s theorem we have

0 = − lim
R→∞

∫

d3P

∫

Γ+

dP 0 e−iPµ(X−X′)µ

(P 0 − ω + iη)(P 0 + ω + iη)
, (4.943)

= − lim
R→∞

∫

d3P

∫ R

−R
dP 0 e−iPµ(X−X′)µ

(P 0 − ω + iη)(P 0 + ω + iη)

− lim
R→∞

∫

d3P

∫

γR

dP 0 e−iPµ(X−X′)µ

(P 0 − ω + iη)(P 0 + ω + iη)
, (4.944)

and for Jordan’s lemma, we have that (for t− t′ < 0)

lim
R→∞

∫

d3P

∫

γR

dP 0 e−iPµ(X−X′)µ

(P 0 − ω + iη)(P 0 + ω + iη)
= 0 . (4.945)

Therefore:
Gret(X −X ′) = 0 , for t− t′ < 0 . (4.946)

If t− t′ > 0, instead, we have to close the integration contour in the lower half P 0 plane, in order to
use Jordan’s lemma. This means that we are including in the contour the two poles.

ℑ(z)

ℜ(z)−R R0

−ω − iη ω − iη

Γ−
γRγ1

Now the residues theorem gives us (remember we are closing the contour clock-wise):

−2πi
∑

Res(f,±ω) = − lim
R→∞

∫

Γ−

dP 0 e−iPµ(X−X′)µ

(P 0 − ω + iη)(P 0 + ω + iη)
, (4.947)

= − lim
R→∞

∫ R

−R
dP 0 e−iPµ(X−X′)µ

(P 0 − ω + iη)(P 0 + ω + iη)
. (4.948)

Finally

Gret(X −X ′) = −θ(X
0 −X ′0)
(2π)4

∫

d4P
e−iPµ(X−X′)µ

(P 0 + iη)2 − p2 −m2
, (4.949)
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= −θ(X
0 −X ′0)
(2π)4

∫

d4P

2ω
e−iPµ(X−X′)µ

[

1

(P 0 − ω + iη)
− 1

(P 0 + ω + iη)

]

,(4.950)

= −θ(X
0 −X ′0)
(2π)4

∫

d3P

2ω
eip·(x−x′)

∫

dP 0 e−iP0(X0−X′0)
[ 1

(P 0 − ω + iη)

− 1

(P 0 + ω + iη)

]

, (4.951)

=

∣

∣

∣

∣

∣

for the residues theorem Res

(

e−iP0(X0−X′0)

(P 0 ± ω + iη)
,∓ω

)

= −2πie±iω(X0−X′0)

∣

∣

∣

∣

∣

= i
θ(X0 −X ′0)

(2π)3

∫

d3P

2ω

[

e−iω(X
0−X′0)+ip·(x−x′) − eiω(X0−X′0)+ip·(x−x′)

]

(4.952)

= |p→ −p in the second integral |

= i
θ(X0 −X ′0)

(2π)3

∫

d3P

2ω

[

e−iω(X
0−X′0)+ip·(x−x′) − eiω(X0−X′0)−ip·(x−x′)

]

(4.953)

= θ(X0 −X ′0)
(

i∆+ + i∆−) . (4.954)

The Green function Gret(X −X ′) is real and transports in the future both solutions, with positive
or negative frequency. It has to be used in problems in which we have the boundary at a certain t′

and we ask what happens in consequence of that, for t > t′. It is a causal Green function in the sense
that it is different from zero in the future light-cone of X ′. For space-like separations, (X −X ′)2 < 0,
since it is invariant under proper Lorentz transformations, it vanishes. In fact, if (X −X ′)2 < 0, we
can find a frame in which t < t′, for which then Gret(X −X ′) = 0 and it remains zero in every frame.

Advanced Green functions

The second case is constituted by the advanced Green function, which is defined to vanish for t−t′ > 0.
We define

G̃adv(P ) = −
1

(P 0 − iη)2 − p2 −m2
= − 1

(P 0 − ω − iη)(P 0 + ω − iη) . (4.955)

If we close the integration contour in the lower half-plane, for the case t > t′,

ℑ(z)

ℜ(z)−R R0
−ω + iη ω + iη

Γ−
γRγ1

and we find
Gadv(X −X ′) = 0 , for t− t′ > 0 . (4.956)

If t− t′ < 0, instead, we have to close the integration contour in the upper half P 0 plane, in order to
use Jordan’s lemma. This means that we are including in the contour the two poles.

154



ℑ(z)

ℜ(z)−R R0

−ω + iη ω + iη

Γ+

γR

γ1

For the residues theorem we have

Gadv(X −X ′) = −θ(X
′0 −X0)

(2π)4

∫

d4P
e−iPµ(X−X′)µ

(P 0 − iη)2 − p2 −m2
, (4.957)

= −θ(X
′0 −X0)

(2π)4

∫

d4P

2ω
e−iPµ(X−X′)µ

[

1

(P 0 − ω − iη) −
1

(P 0 + ω − iη)

]

,(4.958)

=

∣

∣

∣

∣

∣

for the residues theorem Res

(

e−iP0(X0−X′0)

(P 0 ± ω − iη) ,∓ω
)

= 2πie±iω(X
0−X′0)

∣

∣

∣

∣

∣

= −iθ(X
′0 −X0)

(2π)3

∫

d3P

2ω

[

e−iω(X
0−X′0)+ip·(x−x′) − eiω(X0−X′0)+ip·(x−x′)

]

(4.959)

= |p→ −p in the second integral |

= −iθ(X
0 −X ′0)
(2π)3

∫

d3P

2ω

[

e−iω(X
0−X′0)+ip·(x−x′) − eiω(X0−X′0)−ip·(x−x′)

]

(4.960)

= −θ(X ′0 −X0)
(

i∆+ + i∆−) . (4.961)

Also Gadv(X − X ′) is real and it transports in the past both solutions, with positive or negative
frequency. It has to be used in problems in which we have the boundary at a certain t′ in the future
and we ask what happens in the present in order to cause this boundary in the future. It is not obvious,
but it is possible. It is a causal Green function in the sense that it is different from zero in the past
light-cone of X ′ and for space-like separations, (X−X ′)2 < 0, since it is invariant under proper Lorentz
transformations, it vanishes (like Gret(X −X ′)).

Feynman propagator

ℑ(z)

ℜ(z)−R R0

−ω + iη

ω − iη

Γ+

Γ−

Quantum-mechanically the correct pro-
pagator, that propagates “particle” and
“anti-particle” states in the future, is
the Feynman propagator. It is defined
giving a vanishing positive immaginary
part to the pole in −ω and a vanishing
negative immaginary part to the pole
in ω (see figure).

This time, for t − t′ > 0 we have to close the countour in the lower half P 0 plane (Γ−), while for
t− t′ < 0 in the upper (Γ+). We have

DF (X −X ′) = −θ(X
0 −X ′0)
(2π)4

∫

d3P

2ω
eip·(x−x′)

∫

Γ−

dP 0 e−iP0(X0−X′0)
[ 1

(P 0 − ω + iη)

− 1

(P 0 + ω − iη)
]

, (4.962)

−θ(X
′0 −X0)

(2π)4

∫

d3P

2ω
eip·(x−x′)

∫

Γ+

dP 0 e−iP0(X0−X′0)
[ 1

(P 0 − ω + iη)
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− 1

(P 0 + ω − iη)
]

, (4.963)

= iθ(X0 −X ′0)
∫

d3P

(2π)32ω
e−iω(t−t

′)+ip·(x−x′)

+iθ(X ′0 −X0)

∫

d3P

(2π)32ω
eiω(t−t

′)+ip·(x−x′) , (4.964)

= iθ(X0 −X ′0)
∫

d3P

(2π)32ω
e−iω(t−t

′)+ip·(x−x′)

+iθ(X ′0 −X0)

∫

d3P

(2π)32ω
eiω(t−t

′)−ip·(x−x′) , (4.965)

= θ(X0 −X ′0) i∆+(X −X ′)− θ(X ′0 −X0) i∆−(X −X ′) . (4.966)

Now, the Green function is complex and it propagates in the future the positive frequency solutions
and in the past the negative frequency ones. This is consistent with Dirac’s “hole theory” interpretation
of particle and anti-particle states propagating both in the future.

We can have a physical interpretation of the meaning of the propagator considering the following
simple “quantum process” associated to the charged KG field φ(X). Let us consider the creation of a
particle (one-particle state) at the time t in y. We will have

|ψ(y, t)〉 = φ†(Y )|0〉 =
∫

d3P
[

f (+)
p b(p)|0〉 + f (+)∗

p a†(p)|0〉
]

, (4.967)

=

∫

d3P
√

(2π)32ω
eiPµY µ

a†(p)|0〉 . (4.968)

The probability amplitude of finding the particle in x at t′ > t is given by

θ(t′ − t)〈ψ(x, t′)|ψ(y, t)〉 = θ(t′ − t)〈0|φ(X)φ†(Y )|0〉 , (4.969)

that can be interpreted as the creation of a particle of charge q = +1 in (y, t) by φ†(Y ), its propagation
up to (x, t′) and its annihilation in this point by φ(X).

(y, t)

(x, t′)

t

Such a relation enters a scattering process, where two nucleons (a proton and a neutron) exchange
a charged pion (see Fig. 4.1 (a)). The same “effect” can be recovered creating a negative charge in
(x, t′), that then propagates up to (y, t) and is annihilated in this point, with t > t′. Therefore we
have to consider also the amplitude

θ(t− t′) 〈0|φ†(Y )φ(X)|0〉 , (4.970)

that enters for instance the diagram in Fig. 4.1 (b). The complete amplitude will be the sum of the
two amplitudes:

〈0|T (φ(X)φ†(Y ))|0〉 = 〈0|T (φ†(Y )φ(X))|0〉 (4.971)
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(y, t)

(x, t′)

tΠ+

p

n p

n

(x, t′)

(y, t)

Π−

p

np

n

(a) (b)

Figura 4.1: Scattering of a proton and a neutron

= θ(X0 − Y 0)〈0|φ(X)φ†(Y )|0〉 + θ(Y 0 −X0)〈0|φ†(Y )φ(X)|0〉 (4.972)

=

∫

d3P d3P ′

(2π)3
√
4ωω′

[

θ(X0 − Y 0)ei(PµY µ−P ′
µX

µ)〈0|a(p′)a†(p)|0〉

+θ(Y 0 −X0)e−i(PµY µ−P ′
µX

µ)〈0|b(p)b†(p′)|0〉
]

, (4.973)

= | since 〈0|a(p′)a†(p)|0〉 = δ(p− p′)... |

=

∫

d3P

(2π)32ω

[

θ(X0 − Y 0)e−iPµ(X−Y )µ + θ(Y 0 −X0)eiPµ(X−Y )µ
]

,(4.974)

= −iDF (X − Y ) . (4.975)

Where we defined the time-ordered product of the two bosonic fields φ(X) and φ†(Y )) as follows:

T (φ(X)φ†(Y )) = T (φ†(Y )φ(X)) = θ(X0 − Y 0)φ(X)φ†(Y ) + θ(Y 0 −X0)φ†(Y )φ(X) . (4.976)

A more convenient way to write the Feynman propagator is using the following integral represen-
tation for the step function:

θ(t) = lim
η→0+

i

2π

∫ ∞

−∞
dω

e−iωt

ω + iη
. (4.977)

In fact,

ℑ(z)

ω−R R

0

−iη

Γ+

Γ−
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for t < 0 the integral contour has to be chosen to be Γ+ in such a way that we can apply Cauchy’s
theorem and Jordan’s lemma, getting

0 = θ(t) + lim
R→∞

∫

γR+

i

2π
dω

e−iωt

ω + iη
= θ(t) . (4.978)

For t > 0, instead, we close the integral contour in the lower complex plane (Γ−) getting

−2πiRes(θ,−iη) = θ(t) + lim
R→∞

∫

γR−

i

2π
dω

e−iωt

ω + iη
= θ(t) , (4.979)

where

−2πiRes(θ,−iη) = −2πi lim
η→0+

i

2π
e−ηt = 1 . (4.980)

Including the integral representation of the Heaviside θ in Eq. (4.975) we find

−iDF (X − Y ) =

∫

d3P

(2π)32ωp

[

θ(X0 − Y 0)e−iPµ(X−Y )µ + θ(Y 0 −X0)eiPµ(X−Y )µ
]

, (4.981)

= i

∫

d3P

(2π)4

∫

dω

2ωp

[e−iω(X
0−Y 0)

ω + iη
e−iPµ(X−Y )µ +

eiω(X
0−Y 0)

ω + iη
eiPµ(X−Y )µ

]

,(4.982)

= |we substitute P 0 = ω + ωp , such that ω = P 0 − ωp and dω = dP 0 |

= i

∫

d4P

(2π)4
1

2ωp

[e−iP
0(X0−Y 0)+iωp(X0−Y 0) e−iωp(X0−Y 0)+ip·(x−y)

(P 0 − ωp + iη)

+
eiP

0(X0−Y 0)−iωp(X0−Y 0) eiωp(X0−Y 0)−ip·(x−y)

(P 0 − ωp + iη)

]

, (4.983)

= i

∫

d4P

(2π)4
1

2ωp

[ e−iPµ(X−Y )µ

(P 0 − ωp + iη)
+

eiPµ(X−Y )µ

(P 0 − ωp + iη)

]

, (4.984)

= | substituting in the second integral Pµ → −Pµ |

= i

∫

d4P

(2π)4
1

2ωp
e−iPµ(X−Y )µ

[ 1

(P 0 − ωp + iη)
− 1

(P 0 + ωp − iη)
]

, (4.985)

= i

∫

d4P

(2π)4
e−iPµ(X−Y )µ

P 2 −m2 + iη
. (4.986)

Finally

DF (X − Y ) = −
∫

d4P

(2π)4
e−iPµ(X−Y )µ

P 2 −m2 + iη
. (4.987)

We can check again that DF is a Green function for the KG operator:

(∂2 +m2)XDF (X − y) = − lim
η→0

∫

d4P

(2π)4
(∂2 +m2)X

e−iPµ(X−Y )µ

P 2 −m2 + iη
, (4.988)

= − lim
η→0

∫

d4P

(2π)4
(−P 2 +m2)

e−iPµ(X−Y )µ

P 2 −m2 + iη
, (4.989)

=

∫

d4P

(2π)4
e−iPµ(X−Y )µ = δ4(X − Y ) . (4.990)

The same result can be found, acting with (∂2 +m2)X (derivatives with respect to X) directly on
i〈0|T (φ(X)φ†(Y ))|0〉. In fact:

(∂2 +m2)X i〈0|T (φ(X)φ†(Y ))|0〉 = ∂20 i〈0|T (φ(X)φ†(Y ))|0〉
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+i〈0|T ((−∇ +m2)Xφ(X)φ†(Y ))|0〉 , (4.991)

= ∂0 i〈0|δ(X0 − Y 0)[φ(X), φ†(Y )]|0〉 + ∂0 i〈0|T (φ̇(X)φ†(Y ))|0〉
+i〈0|T ((−∇ +m2)Xφ(X)φ†(Y ))|0〉 , (4.992)

= ∂0 i〈0|T (φ̇(X)φ†(Y ))|0〉
+i〈0|T ((−∇ +m2)Xφ(X)φ†(Y ))|0〉 , (4.993)

= i〈0|δ(X0 − Y 0)[φ̇(X), φ†(Y )]|0〉 + i〈0|T (φ̈(X)φ†(Y ))|0〉
+i〈0|T ((−∇ +m2)Xφ(X)φ†(Y ))|0〉 , (4.994)

= δ4(X − Y ) , (4.995)

where we used the fact that20

∂0θ(X
0 − Y 0) = δ(X0 − Y 0) , and ∂0θ(Y

0 −X0) = −δ(X0 − Y 0) (4.998)

and we used the commutation relations of the fields.
The propagator for the real KG field is

i〈0|T (φ(X)φ(Y ))|0〉 = DF (X − Y ) . (4.999)

Propagators and commutators

4.8 Propagator of the Dirac field

In the case of the Dirac field we define the propagator as in the case of KG field

SF (X − Y )αβ = −i〈0|T (ψα(X)ψβ(Y ))|0〉 , (4.1000)

but now, since we are dealing with fermions, the T -ordered product is defined as follows:

T (ψα(X)ψβ(Y )) = −T (ψβ(Y )ψα(X)) = θ(X0−Y 0)ψα(X)ψβ(Y )−θ(Y 0−X0)ψβ(Y )ψα(X) . (4.1001)

SF (X − Y ) is indeed a Green’s function for the Dirac equation. In fact

(i 6∂X −m)αβ〈0|T (ψβ(X)ψγ(Y ))|0〉 = 〈0|iγ0αβδ(X0 − Y 0)[ψβ(X), ψ†
δ(Y )]+γ

0
δγ |0〉 ,

+〈0|T (iγ0αβ∂0ψβ(X)ψγ(Y ))|0〉 ,
+〈0|T ([iγiαβ∂i −m]ψβ(X)ψγ(Y ))|0〉 , (4.1002)

= | since [ψβ(x, t), ψ
†
δ(y, t)]+ = δβδδ

3(x− y) |
= 〈0|iγ0αβδ(X0 − Y 0)δβδδ

3(x− y)γ0δγ |0〉 ,
+〈0|T ([iγµαβ∂µ −m]ψβ(X)ψγ(Y ))|0〉 , (4.1003)

= iδαγδ
4(X − Y ) . (4.1004)

Therefore
(i 6∂X −m)αβSF (X − Y )βγ = δαγδ

4(X − Y ) . (4.1005)

20These relations can be demonstrated using the integral representation for the Heaviside function. We have

∂

∂t
θ(t) = lim

η→0+

∂

∂t

i

2π

∫ ∞

−∞

dω
e−iωt

ω + iη
= lim

η→0+

∫ ∞

−∞

dω

2π

ωe−iωt

ω + iη
=

∫ ∞

−∞

dω

2π
e−iωt = δ(t) , (4.996)

∂

∂t
θ(−t) = lim

η→0+

∂

∂t

i

2π

∫ ∞

−∞

dω
eiωt

ω + iη
= − lim

η→0+

∫ ∞

−∞

dω

2π

ωeiωt

ω + iη

= |ω → −ω | = −
∫ ∞

−∞

dω

2π
e−iωt = −δ(t) (4.997)
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The Green’s function SF (X − Y )βγ can be expressed in terms of DF (X − Y ) as follows

SF (X − Y )βγ = −(i 6∂X +m)βγDF (X − Y ) . (4.1006)

In fact, we have

(i 6∂X −m)αβSF (X − Y )βγ = −(i 6∂X −m)αβ(i 6∂X +m)βγDF (X − Y ) ,

= δαγ(∂
2 +m2)DF (X − Y ) = δαγδ

4(X − Y ) . (4.1007)

Therefore

SF (X − Y )βγ = −(i 6∂X +m)βγ

∫

d4P

(2π)4

[

− e−iPµ(X−Y )µ

P 2 −m2 + iη

]

, (4.1008)

=

∫

d4P

(2π)4
e−iPµ(X−Y )µ (6P +m)βγ

P 2 −m2 + iη
. (4.1009)

4.9 Propagator of the Electromagnetic field

Finally, the propagator for the electromagnetic field will be given by the following expression:

〈0|T (Aµ(X)Aν(Y )) |0〉 = iηµνD(X − Y ) =

∫

d4P

(2π)4
e−iPµXµ −iηµν

P 2 + iη
. (4.1010)

The field Aµ(X) is a bosonic field and the T -ordered product has to be defined as in the case of the
KG field:

T (Aµ(X)Aν(Y )) = T (Aν(Y )Aµ(X)) = θ(X0−Y 0)Aµ(X)Aν(Y )+θ(Y 0−X0)Aν(Y )Aµ(X) . (4.1011)

We can check that the expression in Eq. (4.1010) is indeed a Green function for the equation of
motion21

∂2Aµ(X) = Jµ(X) , (4.1015)

i.e. a function Gµν(X − Y ) such that

∂2XGµν(X − Y ) = ηµνδ
4(X − Y ) . (4.1016)

In fact we have

∂2X (−i〈0|T (Aµ(X)Aν(Y )) |0〉) = −i ∂0〈0|δ(X0 − Y 0)[Aµ(X), Aν(Y )]|0〉
−i∂0〈0|T

(

Ȧµ(X)Aν(Y )
)

|0〉

+i〈0|T
(

∇2
XAµ(X)Aν(Y )

)

|0〉 , (4.1017)

= −i 〈0|δ(X0 − Y 0)[Ȧµ(X), Aν(Y )]|0〉 , (4.1018)

= δ4(X − Y ) . (4.1019)

21We can construct the propagator in the general case in which the lagrangian density is

L = −1

4
FµνF

µν − λ

2
(∂αA

α)2 , (4.1012)

i.e. the equations of motion are
∂2Aµ(X)− (1− λ)∂µ(∂αA

α) = Jµ(X) . (4.1013)

We find

〈0|T (Aµ(X)Aν(Y )) |0〉 =
∫

d4P

(2π)4
e−iPµXµ

[

−iηµν
P 2 + iη

− i1− λ
λ

PµPν

(P 2 + iη)2

]

, (4.1014)

that for λ = 1 gives back the propagator in the so-called Feynman gauge. The physical quantities in the end should be
independent of λ.
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Capitolo 5

Interactions among fields

In this chapter we will consider interactions among fields. As usual, we will start our study consi-
dering the classical lagrangian density and then, afterwards, we will quantize the theory, considering
interactions among particles.

5.1 Possible interaction terms

In general, each fundamental constituent is represented by a separate quantum field. If we have free
fields, the lagrangian density will be sum of the free lagrangian densities of the various fields. The
interaction is done adding an additional term to the lagrangian such that

L = L0 + Lint , (5.1)

where
L0 =

∑

i

L0 i (5.2)

and Lint will contain products of fields with relative coupling constants.
The form of Lint has to fulfill some requirements, that are usually connected to symmetries that

we believe the system has to obay. The more general requirements are

1. Lint has to be Poincaré invariant.

2. Lint must be hermitian

3. Lint should be local, meaning with this statement that it should be given in terms of products
of fields evaluated in the same space-time point.

On top of these very general requirements, one can add specific requirements for instance driven by
phenomenology or by additional theoretical constraints. For instance, as a guiding principle, one can
choose “simplicity”, requiring that the interaction terms should depend on “as few free parameters as
possible”, or that we should get a renormalizable theory (and this forces the interacting term to have
a peculiar form).

An example to understand how to construct Lint can be represented by a “Yukawa” interaction,
that couples a fermionic field with a scalar field in the following way:

Lint = g ψ(X)ψ(X)φ(X) . (5.3)

This lagrangian density obays to all the requirements we listed above. It is invariant under Poincaré
transformations. It is hermitian, provided that φ(X) is a scalar real field and g is a real number. It
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is a local term, since all the fields depend on the same space-time point. The number g is called the
“coupling” and it measures the strenght of the interaction.

Another possible interaction is the one between an isospin doublet (neutron and proton) with a
meson isotopic vector φi with three components: φ (pseudo-scalar neutral field, corresponding to the
π0 meson) and φ± (charged fields corresponding to the π± mesons):

Lint = g
∑

i

ψ(X)γ5τiψ(X)φi(X) , (5.4)

where τi are the three Pauli matrices.
Other interesting lagrangians are self interacting terms of scalar fields, as

Lint = λ (φ(X))4 , (5.5)

(but we can also think about g(φ(X))3), with φ a real field.
Very important are the so-called “Gauge Theories”, as Quantum Electrodynamics for which the

interaction lagrangian is
Lint = −eψ(X)γµψ(X)Aµ(X) (5.6)

and we will se below how it is found.

Mass dimension

One of the possible constraints we can impose to Lint is the fact that it has to be a term that does
not spoil the renormalizability of the lagrangian density. It can be proved that this feature is linked to
the dimensions of the couplings (and operators) present in the lagrangian density. If in our theory we
have terms with couplings that have nevative mass dimensions, in a 4-dimensional Minkowski space,
renormalizability is lost. Therefore, it is important to know the dimensions of different ingredients
that enter our lagrangians.

In our system of units1 we put ~ = 1. This means that the action is dimensionless and therefore,
since

S =

∫

d4X L , with [S] = [m]0 , (5.8)

we have
[d4X] = [m]−4 , and therefore [L] = [m]4 (5.9)

(the lagrangian density must have dimension 4 in mass). In this way we can find the dimensions of the
different fields and coupling constants present in the lagrangian density.

Let us consider an n-dimensional space time. We have, for instance

[ψ 6∂ψ] ≡ [m]n . (5.10)

Therefore, since [∂µ] = [m], we have for the fermionic field

[ψ] = [m]
n−1
2 . (5.11)

In 4 dimensions [ψ] = [m]3/2.
The other kinetic term, the one for the electromagnetic field, gives the dimensions of the components

of Aµ. In fact
[∂µAν∂

µAν ] ≡ [m]n . (5.12)

1We have that the dimensions of a lenght are equivalent to the dimensions of an inverse mass or an inverse energy

[X] =
1

[E]
=

1

[m]
. (5.7)
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Therefore, since [∂µ] = [m], we have

[Aµ] = [m]
n−2
2 (5.13)

and this is the case also for the scalar field.
Studying the massive term, we have

[mψψ] ≡ [m]n . (5.14)

Therefore, since [ψ] = [m]
n−1
2 , we have that [m] = [m], as it should! The parameter m has indeed the

dimensions of a mass.
For the electric charge, instead, we have

[eψ 6Aψ] ≡ [m]n (5.15)

and since [ψ] = [m]
n−1
2 and [Aµ] = [m]

n−2
2 , we find

[e] = [m]
4−n
2 . (5.16)

The electric charge is dimensionless in 4 dimensions. It follows that QED is a renormalizable theory.
This is also the case for the self-interacting terms gφ3 and λφ4. In fact

[g] = [m]n−
3(n−2)

2 = [m]3−
n
2 (5.17)

and in 4 dimensions [g] = [m]. Moreover

[λ] = [m]n−2(n−2) = [m]4−n (5.18)

and in 4 dimensions λ is dimensionless.

5.2 Classical interaction of a point-like charged particle with the

electromagnetic field. Minimal substitution

Let us consider the electromagnetic interaction of a classical point-like charged particle with the elec-
tromagnetic field. Electromagnetic interactions are usually introduced using the so-called "minimal
substitution" that prescribes the following change in the momentum of the particle

Pµ → Pµ − eAµ (5.19)

Eq. (5.19) comes from the dynamics of the charged particle subjected to the electromagnetic field and,
therefore, to the Lorentz force

F = e

(

E+
1

c
v ∧H

)

, (5.20)

where v is the velocity of the particle. The relativistic equation of motion

d

dt
q =

d

dt

mv
√

1− β2
= eE +

e

c
v ∧H , (5.21)

can be found as Euler-Lagrange equations from the lagrangian

L = −mc2
√

1− β2 − eφ+
e

c
v ·A , (5.22)

where
L0 = −mc2

√

1− β2 (5.23)
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is the free Lagrangian and

Lint = −eφ+
e

c
v ·A (5.24)

is the interacting one. In fact, we have

∂L

∂x
− d

dt

∂L

∂v
= 0 , (5.25)

where

∂L

∂x
= −e∇φ+

e

c
∇(v ·A) , (5.26)

∂L

∂v
=

mv
√

1− β2
+
e

c
A . (5.27)

Remembering that

e

c
v ∧H =

e

c
v ∧ (∇∧A) =

e

c
(∇(v ·A)− (∇ · v)A) = ∇(v ·A) , (5.28)

since (∇ · v) = 0, we find

d

dt

mv
√

1− β2
= e

(

−∇φ− 1

c

∂A

∂t

)

+
e

c
v ∧ (∇ ∧A) = eE+

e

c
v ∧H . (5.29)

The momentum and energy of the interacting particle are

p =
∂L

∂v
=

mv
√

1− β2
+
e

c
A , (5.30)

H = p · v − L =
mv2

√

1− β2
+
e

c
v ·A−

(

−mc2
√

1− β2 − eφ+
e

c
v ·A

)

,

=
mc2

√

1− β2
+ eφ . (5.31)

In the free particle case we have

p =
mv

√

1− β2
, (5.32)

H =
mc2

√

1− β2
, (5.33)

in such a way that the on-shell condition holds:

H2

c2
− p2 = m2c2

1− β2 −
m2v2

1− β2 = m2c2 . (5.34)

In the interacting case we have

(

H

c
− e

c
φ

)2

−
(

p− e

c
A
)2

= m2c2 . (5.35)

This relation explains the “minimal substitution”.
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5.3 Electromagnetic Interaction of the Dirac field

Let us consider now a fermionic field, ψ(X), in interaction with the electromagnetic field, Aµ. The
free lagrangian density of the system is the following

L0 = ψ̄ (i 6∂ −m)ψ − 1

4
FµνF

µν . (5.36)

In order to introduce the interaction lagrangian, we use the minimal substitution

∂µ → ∂µ + ieAµ . (5.37)

and therefore we find:

L = ψ̄ (i 6∂ − e 6A−m)ψ − 1

4
FµνF

µν = ψ̄ (i 6∂ −m)ψ − 1

4
FµνF

µν − eψ̄γµψAµ , (5.38)

= L0 + Lint . (5.39)

The term
Lint = −eψ̄6Aψ = −eψ̄γµψAµ (5.40)

constitutes the interaction lagrangian.
The lagrangian density (5.39) is symmetric under Poincaré transformations (including parity and

time reversal). Moreover, as in the case of the free lagrangian, L is invariant under global phase
transformations

ψ(X)→ ψ′(X) = e−iθψ(X) , ψ̄(X)→ ψ̄′(X) = e−iθψ̄(X) . (5.41)

The conserved current is again jµ = eψ̄γµψ, keeping the form of the free case. Therefore, we see that
the electromagnetic interaction is the coupling of the conserved fermionic current with the field Aµ.

Although the free lagrangian (5.36) is invariant under gauge tranformations

Aµ → A′µ = Aµ + ∂µΛ , (5.42)

the interacting lagrangian (5.39) is not. In fact, we have:

L → L′ = L0 − eψ̄γµψA′µ = L0 − eψ̄γµψAµ − eψ̄γµψ∂µΛ = L − eψ̄γµψ ∂µΛ . (5.43)

In the transformed lagrangian, the following additional term appears:

−eψ̄γµψ ∂µΛ . (5.44)

We can actually cancel this additional term, restoring a symmetry of the lagrangian, if we consider,
together to the gauge transformation of the electromagnetic field, a “local” phase transformation of the
fermionic field:

ψ(X)→ e−ieΛ(X)ψ(X) . (5.45)

The action of (5.45) on the lagrangian density is:

L → L′ = ψ̄eieΛ(X)(i 6∂ −m)(e−ieΛ(X)ψ)− 1

4
FµνF

µν − eψ̄γµψAµ , (5.46)

= ψ̄(i 6∂ −m)ψ + ψ̄eieΛ(X)i(−ie 6∂Λ(X))e−ieΛ(X)ψ − 1

4
FµνF

µν − eψ̄γµψAµ , (5.47)

= L+ eψ̄γµψ∂
µΛ . (5.48)

Note that the interaction term, since it does not contain derivatives of the fields, remains unchanged
under the local phase transformation.
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Finally, under the following tramsformation

∂µ → ∂′µ = ∂µ + ieAµ (5.49)

ψ → ψ′ = e−ieΛ(X)ψ (5.50)

ψ → ψ′ = ψeieΛ(X) , (5.51)

that will be called gauge transformation, the lagrangian density (5.39) is invariant.
We can introduce a formal derivative, called covariant derivative, defined as follows:

Dµ = ∂µ + ieAµ , (5.52)

that under gauge transformations transforms as the field

(Dµψ)′ = e−ieΛ(X)(Dµψ) , (5.53)

with wich we can write the QED lagrangian density in a more compact way:

L = ψ̄ (i 6D −m)ψ − 1

4
FµνF

µν , (5.54)

form which is manifestly invariant under gauge transformations.
Eq. (5.53) can be easily proven. In fact, under gauge transformations we have

Dµψ → (Dµψ)′ = (∂µ + ieAµ + ie∂µΛ)(e−ieΛψ) , (5.55)

= (∂µe−ieΛ)ψ + e−ieΛ∂µψ + ieAµe−ieΛψ + ie∂µΛe−ieΛψ , (5.56)

= −ie∂µΛe−ieΛψ + e−ieΛ∂µψ + ieAµe−ieΛψ + ie∂µΛe−ieΛψ , (5.57)

= e−ieΛ(∂µ + ieAµ)ψ , (5.58)

= e−ieΛDµψ . (5.59)

The Gauge Principle

We understood the theoretical structure of the electromagnetic lagrangian starting from phenomeno-
logically proven elements (Maxwell’s theory). We found gauge invariance. We may try, now, to invert
the view point and use gauge invariance as an instrument to find the “correct” interacting lagrangian
starting from the free lagrangians (the kinetic terms that have to be in any case there). In order to do
that, we should go through the following steps:

1. We start with the free matter lagrangian L0 = ψ̄ (i 6∂ −m)ψ and we look for a “generalization”
that is invariant under local phase transformations ψ′ = e−ieΛ(X)ψ.

2. In order to do that, we introduce a “gauge field” Aµ, that has to transform as A′µ = Aµ + ∂µΛ
and replace the derivative with a covariant derivative Dµ = ∂µ + ieAµ.

3. The kinetic term of the gauge field has to be part of the lagrangian density.

The local phase transformations, U = e−ieΛ(X), form a Lie group with one parameter U(1), which
is abelian.

We can thing about generalizations of the gauge group to non abelian groups (that therefore give
more complicated lagrangians).
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5.3.1 Non-Abelian Gauge theories. Quantum Chromodynamics (QCD)

Let us suppose to consider a non abelian gauge group, as SU(N). This is a Lie group, that depends
on (N2 − 1) parameters (and therefore has (N2 − 1) generators). The general transformation

U = e−igθ
ata , a = 1, ..., N2 − 1 , (5.60)

will act on the fields ψ
ψ′(X) = Uψ(X) = e−igθ

ataψ(X) . (5.61)

The field will have to be in a certain representation of the SU(N) group. Accordingly, the generators
ta will be linear hermitian operators on that representation. They obay the usual Lie algebra

[ta, tb] = ifabctc , (5.62)

where fabc are the structure constants of SU(N), totally anti-symmetric in a, b, c.
The spinor fields will be defined in the fundamental representation of SU(N) and therefore are

“vectors” with N components in this space: ψi(X), with i = 1, ..., N . The generators ta are therefore
N × N matrices, in this representation, acting on the N -tuple ψi(X). In components: taij , with
i, j = 1...N . The structure constants belong to the adjoint representation. We can define

T abc = −ifabc , (5.63)

that are (N2 − 1) matrices of dimensionality (N2 − 1)× (N2 − 1) that obey the Lie algebra:

[T a, T b] = ifabcT c , (5.64)

They act on the gauge field, defined in the adjoint representation, Aaµ, with (N2−1) components (each
one carrying a Lorentz index µ).

The structure of SU(N) is linked to the fact that in order to explain certain phenomenological
properties it was necessary to introduce a new quantum number, the “color”. Experimentally, we see
that phenomenology can be explained using three colors, i.e. N = 3. Therefore, the gauge group of
QCD is SU(3).

Using the gauge principle we now construct a lagrangian density which is invariant under SU(3)
gauge transformations.

We start with the free matter lagrangian density

L = ψ̄iq(i 6∂ −mq)ψ
i
q , (5.65)

where the subscript q labels the flavor (different kind of quarks of the three families) and the superscript
i labels the colors. The lagrangian in Eq. (5.65) is invariant under global SU(3) transformations

U = e−igθ
ata (5.66)

with θa ∈ R.
We impose invariance under local transformations, considering now θa = θa(X). We have, therefore,

to introduce a gauge field Aaµ and a covariant derivative

Dµ = ∂µ − igtaAaµ , (5.67)

or, in components in the color space, (Dµ)ij = δij∂µ− igtaijAaµ. The constant g is the coupling constant
of the interaction and it is unique for every color component.

We now impose that the gauge field, Aaµ, transform under gauge transformations in such a way to
let

L = ψ̄iq(i 6Dij −mqδij)ψ
j
q (5.68)
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invariant. This means that Dµψ has to transform as ψ (Eq. (5.61)) itself:

(Dµψ)
′ ≡ U (Dµψ) = U (∂µψ − igtaAaµψ) . (5.69)

Since we have
(Dµψ)

′ = (∂µ − igtaA′a
µ )ψ

′ = (∂µU)ψ + U(∂µψ)− igtaA′a
µ Uψ , (5.70)

we have to impose
(∂µU)− igtaA′a

µ U = −igU taAaµ . (5.71)

This gives the following transformation rule for taA′a
µ

taA′a
µ = U

(

taAaµ −
i

g
U−1(∂µU)

)

U−1 . (5.72)

Now we need the kinetic term for the gauge field Aaµ, which is invariant under Eq. (5.72). Taking
inspiration from QED, one could choose

L = −1

4
F aµνF

aµν = −1

4
(∂µA

a
ν − ∂νAaµ)(∂µAa ν − ∂νAaµ) . (5.73)

However, this term is not invariant under (5.72). In order to demonstrate this, we use infinitesimal
transformations

U = e−igθ
ata ≃ 1− igθata . (5.74)

Eq. (5.72) becomes

taA′a
µ ≃ ... = ta

(

Aaµ + gfabcθbAcµ − ∂µθa
)

. (5.75)

Therefore
A′a
µ −Aaµ = δAaµ = g fabcθbAcµ − ∂µθa . (5.76)

With this transformation we find

F ′a
µν = .... = (δac + g fabcθb)F cµν + g fabc

[

(∂µθ
b)Acν − (∂νθ

b)Acµ

]

(5.77)

and we see that, defined as in Eq. (5.73), the term F aµνF
aµν is not invariant.

Let us start from another property of the QED covariant derivative. In QED, we have

[Dµ,Dν ] = (∂µ + ieAµ)(∂ν + ieAν)− (∂ν + ieAν)(∂µ + ieAµ) = ieFµν . (5.78)

Let us impose that in QCD
[Dµ,Dν ] ≡ −ig taF aµν . (5.79)

We have

[Dµ,Dν ] = (∂µ − igtaAaµ)(∂ν − igtbAbν)− (∂ν − igtbAbν)(∂µ − igtaAaµ) = ... (5.80)

= −igta
[

∂µA
a
ν − ∂νAaµ + g fabcAbµA

c
ν

]

. (5.81)

We can then define
F aµν = ∂µA

a
ν − ∂νAaµ + g fabcAbµA

c
ν . (5.82)

With this definition we can check that indeed F ′a
µνF

′aµν = F aµνF
aµν .

Finally, we find the following lagrangian density

L = ψ̄iq(i 6Dij −mqδij)ψ
j
q −

1

4
F aµνF

aµν , (5.83)
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with F aµν defined in Eq. (5.82) and Dµ defined in Eq. (5.67). The lagrangian (5.83) is invariant under
Poincaré transformations (other than parity, time reversal and charge conjugation) and under gauge
trasformations:

ψ′(X) = e−igθ
a(X)taψ(X) , (5.84)

ψ̄′(X) = eigθ
a(X)ta ψ̄(X) , (5.85)

taA′a
µ = U

(

taAaµ −
i

g
U−1(∂µU)

)

U−1 . (5.86)

The lagrangian has a unique coupling, g. In 4 dimensions, we can see that g is dimensionless. QCD
is a renormalizable theory. In the interacting QCD lagrangian we have vertices, like in QED, that
couple ψ̄ψAaµ, but, unlike QED, now we have also gluon (gauge field) self-interacting vertices (three
and four gluons coupled). These difference comes from the fact that the photon is not charged, while
the gluon carries color.

5.3.2 Quantization of the electromagnetic Lagrangian

The canonical quantization of the lagrangian (5.39) follows the same procedure we outlined for the
free lagrangians. Commutation or anticommutation rules have to be imposed between the field and
the conjugated momentum (the only difference lies in the fact that now we have interacting fields
and therefore we cannot in general express them in terms of annihilation/creation operators). If we
generally refer to the field present in the lagrangian as φi(X), the conjugated momentum is defined as
usual:

Πi =
∂L
∂φ̇i

=
∂L0
∂φ̇i

+
∂Lint
∂φ̇i

. (5.87)

In the case of the electromagnetic interactions of the Dirac field, Eq. (5.39), the interaction lagrangian
does not contain derivatives of the fields. Therefore

∂Lint
∂φ̇i

= 0 . (5.88)

This property implies that the conjugated momentum has the same expression as in the free field case

Πi =
∂L
∂φ̇i

=
∂L0
∂φ̇i

. (5.89)

We say that we are in presence of a “non-derivative interaction”. For the Dirac field, in fact, we have

Πψ =
∂L
∂ψ̇

= iψ† . (5.90)

The same happens for Aµ. For the canonical quantization of the gauge field we have to add the gauge
fixing lagrangian and then

Πµ =
∂L
∂Ȧµ

=
∂L0
∂Ȧµ

= Fµ0 − ηµ0(∂αAα) . (5.91)

We can quantize imposing the usual equal time rules

[ψ(x, t), ψ†(y, t)]+ = δ3(x− y) , [Aµ(x, t), Ȧν(y, t)] = −iηµνδ3(x− y) (5.92)

and the other commutators and anticommutators that have to vanish.
Non-derivative interactions have an additional feature. Since the conjugated momenta are the same

as in the free case, the interaction hamiltonian is minus the interaction lagrangian. We have

H = Πφ̇−L = Πφ̇− L0 − Lint , (5.93)

= H0 − Lint (5.94)

and therefore:
Hint = −Lint . (5.95)
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Scalar QED

The non-derivative interaction simplifies the structure of the theory, but of course not all the inte-
ractions are non derivative. Just to remain the the case of electromagnetic interactions, a different
behaviour is plaied by the scalar field. Let us consider a charged Klein-Gordon field in interaction with
Aµ. We have:

L = (Dµφ)
†Dµφ−m2φ†φ− 1

4
FµνF

µν , (5.96)

= [(∂µ + ieAµ)φ]
†(∂µ + ieAµ)φ−m2φ†φ− 1

4
FµνF

µν , (5.97)

= (∂µ − ieAµ)φ† (∂µ + ieAµ)φ−m2φ†φ− 1

4
FµνF

µν , (5.98)

= L0 − ie[φ†(∂µφ)− (∂µφ†)φ]Aµ + e2A2φ†φ . (5.99)

Therefore
Lint = −ie[φ†(∂µφ)− (∂µφ†)φ]Aµ + e2A2φ†φ (5.100)

and it contains derivatives of the scalar field! Also in this case L is manifestly gauge invariant (by
construction). However, while for the Dirac field the gauge-invariant current is the same as the one
in the free field case, JDiracµ = −eψ̄γµψ, and the interaction term comes from the interaction of this
current with Aµ, for the KG field this is not the case. In fact, in the free field case we had

jµ = ie [φ†∂µφ− (∂µφ†)φ] . (5.101)

In the interacting case, the conserved current, in the sense of Nöther’s theorem, has an additional
piece:

Jµ =
∂L
∂φ,µ

δφ +
∂L
∂φ†,µ

δφ† , (5.102)

= ie [φ†∂µφ− (∂µφ†)φ]− 2e2Aµφ†φ , (5.103)

= jµ − 2e2Aµφ†φ , (5.104)

that comes from gauge invariance. In fact we have:

Jµ = ie[φ†(Dµφ)− [(Dµφ)
†]φ] , (5.105)

therefore the free case current in which we replace the derivatives with the covariant derivatives. The
additional term, −2e2Aµφ†φ, that preserves gauge invariance, gives rise to interection vertices with
four fields, which are not present in spinor-QED.

Concerning the quantization, conjugated momenta to φ and φ† are not the same as in the free field
case. In fact we have:

Πφ =
∂L
∂φ̇

= φ̇† − ieφ†Ao , (5.106)

Πφ† =
∂L
∂φ̇†

= φ̇+ ieφAo . (5.107)

Therefore, they can change the commutation rules. In this specific case, the presence of A0 does not
change the rules just because, considering independent the degrees of freedom relative to different
fields, we have to impose:

[φ(x, t), φ†(x, t)] = [φ(x, t), A0(x, t)] = 0 . (5.108)
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Therefore, in the end

iδ3(x− y) = [φ(x, t),Πφ(y, t)] , (5.109)

= [φ(x, t), φ̇†(y, t) − ieφ†(y, t)A0(y, t)] =

= [φ(x, t), φ̇†(y, t)] + [φ(x, t),−ieφ†(y, t)A0(y, t)] , (5.110)

= [φ(x, t), φ̇†(y, t)] − ie[φ(x, t), φ†(y, t)]A0(y, t)

−ieφ†(y, t)[φ(x, t), A0(y, t)] , (5.111)

= [φ(x, t), φ̇†(y, t)] , (5.112)

and the same for [φ†(x, t),Πφ†(y, t)]. Also in this case we can limit ourselves to impose the quantization
rules between fields as in the free case. We have, however, differences in the hamiltonian density.

5.3.3 Quantization of the electromagnetic Lagrangian and gauge invariance

The quantum QED lagrangian density is

L = ψ̄ (i 6D −m)ψ − 1

4
FµνF

µν − λ

2
(∂αA

α)2 , (5.113)

where we added the gauge-fixing lagrangian for the quantization of the gauge field (the so-called
“Feynman gauge” is recovered with the choice λ = 1). Although we started with a classical lagrangian
invariant under gauge transformations, the lagrangian defined in Eq. (5.113) is not anymore gauge
invariant. The gauge fixing term spoils gauge invariance. Let us consider infinitesimal gauge transfor-
mations, in which Λ(x) = ǫ ω(x) with ǫ a small real parameter and ω(X) a scalar real field. At first
order in ǫ we have

ψ(X) → ψ′(X) ≃ (1− ieǫω(X))ψ(X) , (5.114)

Aµ(X) → A′
µ(X) = Aµ(X) + ǫ ∂µω(X) . (5.115)

The gauge fixing lagrangian, under this infinitesimal gauge transformations behaves as follows:

LGF → L′GF = −λ
2
(∂αA

α + ǫ∂2ω(X))2 , (5.116)

≃ LGF − λǫ(∂αAα)∂2ω(X) , (5.117)

where we kept only first-order terms in ǫ.
In order to “cure” the additional term, let us consider the field ω(X) as a dynamical field, adding

to the lagrangian density a kinetic term

Lω = −1

2
∂µω(X)∂µω(X) , (5.118)

and considering the following transformation for the field ω(X)

ω(X)→ ω′(X) ≃ ω(X) + ǫλ(∂αA
α) . (5.119)

In so doing, le lagrangian density Lω changes as follows

Lω → L′ω = −1

2
∂µω

′(X)∂µω′(X) , (5.120)

≃ −1

2
∂µω(X)∂µω(X)− ǫλ∂µω(X)∂µ(∂αA

α) , (5.121)

≃ −1

2
∂µω(X)∂µω(X)− ǫλ

{

∂µ [∂
µω(X)(∂αA

α)]− ∂2ω(X)(∂αA
α)
}

, (5.122)
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≃ −1

2
∂µω(X)∂µω(X) + ǫλ∂2ω(X)(∂αA

α) , (5.123)

where we droped a total divergence.
In total, the lagrangian density

L = ψ̄ (i 6D −m)ψ − 1

4
FµνF

µν − λ

2
(∂αA

α)2 − 1

2
∂µω(X)∂µω(X) (5.124)

is invariant under the following generalized gauge transformations

ψ(X) → ψ′(X) ≃ (1− ieǫω(X))ψ(X) , (5.125)

Aµ(X) → A′
µ(X) = Aµ(X) + ǫ ∂µω(X) , (5.126)

ω(X) → ω′(X) ≃ ω(X) + ǫλ(∂αA
α) , (5.127)

that are called BRST transformations (from Becchi-Rouet-Stora-Tyutin).
It is important to note that in the case of QED the field ω(X) is a free field. It does not interact

with ψ(X) and Aµ(X). Therefore, it does not change the dynamics of the system under study; it is
totally decoupled. This is not, for instance, the case in QCD, where the BRST fields are called “ghosts”
and couple to the gauge fields.

The BRST transformations are the extension of gauge transformations to the quantized lagrangian.

5.4 The Scattering (S) Matrix

The typical measurement done in Particle Physics regards a scettering process: a beam of particles,
prepared in a certain state of momentum and polarization, collide on a target (fixed target experiments)
or against another beam (for instance in a collider machine). After the collision, the final state is
studied and the cross section (that is connected essentially to the probability of a certain transition)
is measured. The cross section can also be predicted in Quantum Field Theory, using perturbation
theory (as we will see). It depends upon the interaction between fields. The comparison between the
theoretical prediction and the result of the measurement gives the possibility to confirm of nullify the
theoretical description of the scattering (and, therefore, of the nature of the interaction itself).

The theoretical description of the scattering process goes as follows. In the initial state the particles
that will collide are so far apart from each other that they can be considered as non interacting.
Actually, a detailed description has to take into account the fact that also in absence of the colliding
particle, the free particle is never “actually free”, since it interacts with its own field. We can think about
the particle as surrounded by a cloud of virtual particles that are created and reabsorbed continuously.
This phenomenon will be described through the renormalization of the external field, that we will not
consider in our “tree-level” description. After the collision has taken place, the scattered particles are
again so far apart that they can be considered as free particles. The scattering take place effectively
in a very limited space, for a very limited time, such that we can consider the initial time back in the
past (t = −∞), while the final time forward in the future (t = +∞).

The time evolution of the state in the scattering is governed by an operator, S, that transforms
the initial state |φi〉 = |φ(t = −∞)〉 to a possible final state |φ(t = +∞)〉:

|φ(t = +∞)〉 = S |φ(t = −∞)〉 . (5.128)

We will be interested to calculate the probability amplitude that the initial state, after the scattering
gives rise to a particular final state |φf 〉, therefore the scalar product of the transformed state |φ(t =
+∞)〉 with the particular final state |φf 〉:

〈φf |φ(t = +∞)〉 = 〈φf |S |φ(t = −∞)〉 = 〈φf |S |φi〉 = Sfi . (5.129)

The modulous squared of this matrix element will give the probability and will be instrumental for the
calculation of the cross section (which is an observable). The S matrix describes the interaction and,
therefore, depends on the Hamiltonian of the system.
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5.4.1 Schrödinger, Heisenberg pictures

We consider a system with an Hamiltonian of the following form

H = H0 +Hint , (5.130)

where H0 is the free Hamiltonian (containing the kinetic and, possibly mass, terms of the different
fields, but not interaction terms) and Hint is the interaction Hamiltonian (and of course they do not
commute). For a closed system, H does not depend on time (it is a constant of motion).

We also consider the situation in which Hint can be considered a perturbation of the free Hamilto-
nian H0 (see later on).

In the so-called Schrödinger picture, the system is described by a state vector, |ψS(t)〉, that depends
on time (while the operators do not) and whose time evolution is given by the following relation

|ψS(t)〉 = e−iH(t−t0)|ψS(t0)〉 . (5.131)

Another way to say the same thing is that |ψ(t)〉 has to obey the following differential equation in time

i
∂

∂t
|ψS(t)〉 = H |ψS(t)〉 , (5.132)

with certain initial conditions.
An operator OS , which correspond to a certain observable, in this picture does not depend on time

and the dependence on time of the expectation value of OS on physical states

〈O〉(t) = 〈ψ′
S(t)|OS |ψS(t)〉 (5.133)

goes through the state vector.
Using Eq. (5.131), we can also write

〈O〉(t) = 〈ψ′
S(t0)|eiH(t−t0)OSe

−iH(t−t0)|ψS(t0)〉 = 〈ψ′(t0)|OH(t)|ψ(t0)〉 , (5.134)

and express the expectation value 〈O〉(t) using state vectors that are now frozen at the time t0 (i.e.
they do not depend anymore on time) and the operator

OH(t) = eiH(t−t0)OSe
−iH(t−t0) , (5.135)

that depends on time through the evolution operator e−iH(t−t0) and is called the operator O in the
Heisenberg picture. We have

|ψH〉 = eiH(t−t0)|ψS(t)〉 = |ψS(t0)〉 , (5.136)

OH(t) = eiH(t−t0)OSe
−iH(t−t0) (5.137)

and
〈O〉(t) = 〈ψ′

S(t)|OS |ψS(t)〉 = 〈ψ′
H |OH(t)|ψH〉 . (5.138)

In the Heisenberg picture the operators depend on time and therefore they obey the Hamilton’s
equation

i
d

dt
OH(t) = [OH(t),H] . (5.139)

In the case in which the interaction is absent (“switched off”), Hint = 0, in Schródinger picture the
state evolves with the free Hamiltonian (free state) and, equivalently, in the Heisenberg picture the
state is time-independent while the operators evolve with the free Hamiltonian (they are free operators)

i
d

dt
OH(t) = [OH(t),H0] . (5.140)
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5.4.2 Interaction picture

Both Schrödinger and Heisenberg pictures are not ideal in the case of interactions. We introduce
another picture, which is called Interaction Picture, such that the time evolution is spread out both on
the states and on the operators, but such that the states evolve with the interaction Hamiltonian (in
Interaction Picture) and the operators evolve with the free Hamiltonian. This means that the states
are constant if the interaction is switched off, and the operators are free operators and cn be written in
terms of creation/annihilation operators. This is crucial for the computation of transition amplitudes.

If |ψS(t)〉 is the state in Schrödinger representation, we define

|ψI(t)〉 = eiH0t|ψS(t)〉 . (5.141)

Analogously, an operator in this representation can be written, with respect to the time-independent
operator in Schrödinger representation, as

OI(t) = eiH0tOSe
−iH0t . (5.142)

Note that the operator eiH0t “anti-evolves” (so to say) the state, but only using the free Hamiltonian
(not the full Hamiltonian). The consequence of that is that if we compute the time evolution of |ψI(t)〉
we find

i
∂

∂t
|ψI(t)〉 = i

∂

∂t

(

eiH0t|ψS(t)〉
)

= −H0e
iH0t|ψS(t)〉+ eiH0ti

∂

∂t
|ψS(t)〉 , (5.143)

= −H0e
iH0t|ψS(t)〉+ eiH0t (H0 +Hint) |ψS(t)〉 , (5.144)

= −H0e
iH0t|ψS(t)〉+H0e

iH0t|ψS(t)〉+ eiH0tHint|ψS(t)〉 , (5.145)

= eiH0tHinte
−iH0t|ψI(t)〉 . (5.146)

The operator
eiH0tHinte

−iH0t = Hint,I (5.147)

is the interaction Hamiltonian in Interaction Representation:

i
∂

∂t
|ψI(t)〉 = Hint,I |ψI(t)〉 . (5.148)

On the other hand, the time evolution of the operator OI(t) is given by the free Hamilton equation

i
d

dt
OI(t) = [OI(t),H0] (5.149)

and we will be able to write OI(t) in terms of free fields and, therefore, in terms of creation/annihilation
operators.

We can write, then, the expectation value of the S operator between the initial and final states in
Interaction Picture (and it will be equal to the same expectation value in another picture):

Sfi = 〈ψIf (t = +∞)|SI |ψIi(t = −∞)〉 , (5.150)

In the limit at t→ −∞ and at t→∞ after the scattering, the interaction is supposed to vanish and,
therefore, the states |ψIi(t = +∞)〉 and |ψIi(t = −∞)〉 are free states, independent of t. We consider
eigenstates of the energy and momentum (plane waves). The S operator in Interaction Picture is
constructed, then, with free field operators and can be expressed in terms of creation/annihilation
operators.
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5.4.3 Dyson formula

In order to find an expression for S, let us consider Eq. (5.148). We can write it in an integral form as
follows

|ψI(t)〉 = |ψI(t = −∞)〉 − i
∫ t

−∞
Hint,I(t1)|ψI(t1)〉 dt1 . (5.151)

For the sake of simplicity in the notation, let us drop the subscript “I” everywhere (from now on we
understand that we are in Interaction Picture). Eq. (5.151) is totally equivalent to Eq. (5.148), but it
can be used for a recursive solution that is “justified” by the use of perturbation theory. In fact, using
a second time Eq. (5.151), we have

|ψ(t)〉 = |ψ−∞〉 − i
∫ t

−∞
dt1Hint(t1)

(

|ψ−∞〉 − i
∫ t1

−∞
Hint(t2)|ψI(t2)〉 dt2

)

, (5.152)

= |ψ−∞〉 − i
∫ t

−∞
dt1Hint(t1)|ψ−∞〉

+(−i)2
∫ t

−∞

∫ t1

−∞
dt1 dt2Hint(t1)Hint(t2)|ψI(t2)〉 , (5.153)

where t ≥ t1 ≥ t2. Substituting recursively Eq. (5.151) we have, after N iterations

|ψ(t)〉 = |ψ−∞〉+
N
∑

n=1

(−i)n
∫ t

−∞
dt1

∫ t1

−∞
dt2...

∫ tn−1

−∞
dtnHint(t1)Hint(t2)...Hint(tn)|ψ−∞〉

+(−i)N+1

∫ t

−∞
dt1

∫ t1

−∞
dt2 ...

∫ tn

−∞
dtn+1Hint(t1)Hint(t2)...Hint(tn+1)|ψI(t2)〉 ,(5.154)

where, again, t ≥ t1 ≥ t2 ≥ ... ≥ tn. Note that Eq. (5.154) is constituted by an operator which is
applied to |ψ−∞〉 and a “rest” with an additional power of the interaction Hamiltonian that, if we
consider Hint as a perturbation of H0, can be considered small with respect to the first term. We
assume2 that the rest goes to zero when N →∞ and we take this limit. In so doing we find

|ψ(t)〉 =
∞
∑

n=0

(−i)n
∫ t

−∞
dt1

∫ t1

−∞
dt2...

∫ tn−1

−∞
dtnHint(t1)Hint(t2)...Hint(tn)|ψ−∞〉 (5.155)

Now we want to uncorrelate the integrations, in such a way that every integral goes from t = −∞ to
t. If we do that, we are introducing also integrations in which the time is not strictly ordered and it
can be that ti < ti+n although at the beginning we had to have ti > ti+n. In order to correct for this,
we have to introduce the “Time Ordering" of the product of Hamiltonians evaluated at different times
and we have to devide by the number of permutations of the n terms:

|ψ(t)〉 =
∞
∑

n=0

(−i)n
n!

∫ t

−∞
dt1

∫ t

−∞
dt2...

∫ t

−∞
dtn T (Hint(t1)Hint(t2)...Hint(tn)) |ψ−∞〉 . (5.156)

If we take the limit t→∞, we can identify the S operator as

S =
∞
∑

n=0

(−i)n
n!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2...

∫ ∞

−∞
dtn T (Hint(t1)Hint(t2)...Hint(tn)) , (5.157)

than can also be written in a formal way as follows:

S = T
(

e−i
∫∞
−∞Hint(t) dt

)

= T
(

e−i
∫
d4XHint(X)

)

. (5.158)

We have to remember that Hint is the interaction Hamiltonian density in Interaction Picture, and
therefore it is written in terms of free fields.

2This assumption has to be considered with great care.
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Capitolo 6

Cross Section and Decay Rate

6.1 From transition amplitude to probability

The transition amplitude has the following form

Sfi = δfi + (2π)4δ4(
∑

i

Pi −
∑

f

Pf )
∏

ferm

√

m

VE

∏

bos

√

1

V 2E
M , (6.1)

where δfi represents the absence of scattering (since we want i 6= f this term is zero), the δ4 represents
the conservation of the total four-momentum, then we have normalization factors for the fermions and
for the bosons involved in the scattering and, finally, the matrix elementM that contains the external
fields, the interaction vertices and the propagators.

The transition amplitude is not an observable. In order to define a measurable quantity we have,
firstly, to move to a probability, taking the modulus squared of Sfi:

|Sfi|2 =
∣

∣

∣(2π)4δ4(
∑

i

Pi −
∑

f

Pf )
∣

∣

∣

2 ∏

ferm

m

VE

∏

bos

1

V 2E
|M|2 . (6.2)

Let us analyse first the modulus squared of the delta function. In order to do that, it is more
convenient to write the delta using its Fourier transform:

(2π)4δ4(Pf − Pi) = lim
T→∞,V→∞

∫

V
d3X

∫ T
2

−T
2

dt ei(Pf−Pi)µX
µ

. (6.3)

We focus on δ(Ef − Ei) (for the spatial part we obtain the same result). We have

(2π)δ(Ef − Ei) = lim
T→∞

∫ T
2

−T
2

dt ei∆E t = lim
T→∞

2 sin
(

∆E T
2

)

∆E
. (6.4)

Therefore
∣

∣

∣
(2π)δ(Ef − Ei)

∣

∣

∣
= lim

T→∞

4 sin2
(

∆E T
2

)

∆E2
= lim

T→∞
2π T δ(Ef − Ei) . (6.5)

The same happens for the spatial part and in the end we obtain
∣

∣

∣(2π)4δ4(
∑

i

Pi −
∑

f

Pf )
∣

∣

∣

2
lim

T→∞,V→∞
V T (2π)4δ4(

∑

i

Pi −
∑

f

Pf ) . (6.6)

We define the probability density per unit time, or probability density rate, as

wfi =
|Sfi|2
T

= V (2π)4δ4(
∑

i

Pi −
∑

f

Pf )
∏

ferm

m

VE

∏

bos

1

V 2E
|M|2 , (6.7)
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= V (2π)4δ4(
∑

i

Pi −
∑

f

Pf )
∏

ext

1

V 2E

∏

ferm

(2m) |M|2 . (6.8)

wfi is the probability density per unit time to have the final state “f ”, with momenta pf , starting
with the initial state “i”. However, from an experimental point of view, it is not possible to measure
an exact pf and one would like to have an interval of momentum, between pf and pf + dpf . In this
interval, we have a certain number of states, equally probable, on which we have to sum our probability
density. If we quantize in the box, the momentum is discrete

p =
2π

L
n , (6.9)

where n is an integer vector. Therefore, the number of states with momentum between pf and pf+dpf
is

d3n =
L3

(2π)3
d3pf =

V

(2π)3
d3pf . (6.10)

We then have

dwfi = V (2π)4δ4(
∑

i

Pi −
∑

f

Pf )
∏

ext

1

V 2E

∏

ferm

(2m) |M|2
∏

f

V

(2π)3
d3pf . (6.11)

6.2 Cross Section

We define now the observable for scattering processes, which is called Cross Section. We have in mind
a process in which a monochromatic beam of particles prepared at t = −∞ collides on a target in
which we have a certain density of scatter centers (if we perform a boost in the incoming momentum
direction, we can move to the center of mass frame, in which we see the two particles that take part to
the scattering that move one against the other). Let us suppose that the beam has a certain section
S. If n is the number of incoming particles per unit time and unit surface (Ni the total number of
incoming particles in a time interval ∆t, Ni = nS∆t), and N the number of scattered particles per
unit time and diffusing particle (Nd the total number of particles scattered per unit diffusing center in
∆t, Nd = N ∆t) we define the cross section as

σ =
N

n
. (6.12)

The cross section has the dimensions of a surface. In fact

σ =
N

n
=
Nd

∆t

S∆t

Ni
=
Nd

Ni
S (6.13)

and therefore [σ] = l2.
n is the incoming flux and can be expressed as the product of the density of incoming particles

times the relative velocity of those particles with respect to the diffusing center. In fact we have

n =
Ni

S∆t

L

L
=
Ni

V

L

∆t
= ρ |vrel| , (6.14)

where L is the linear dimension traveled in ∆t by the incoming particles (they all have the same
velocity).

If we consider the rate of scattered particles in a certain small region of the phase space, we can
define the differential cross section as

dσ =
dN

n
. (6.15)
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The dN is exactly the dwfi. Therefore

dσ =
dN

n
=
dwfi
n

=
1

ρ |vrel|
V (2π)4δ4(

∑

i

Pi −
∑

f

Pf )
∏

ext

1

V 2E

∏

ferm

(2m) |M|2
∏

f

L3

(2π)3
d3pf (6.16)

We consider the situation in which one particle at a time scatters on a diffusing center. In the
volume V we will have one incoming particle and therefore

ρ =
1

V
. (6.17)

Moreover, we have a 2→ n scattering and therefore

dσ =
V 2

|vrel|
(2π)4δ4(

∑

i

Pi −
∑

f

Pf )
∏

ext

1

V 2E

∏

ferm

(2m) |M|2
∏

f

V

(2π)3
d3pf ,

= (2π)4δ4(
∑

i

Pi −
∑

f

Pf )
1

4E1E2|vrel|
∏

ferm

(2m) |M|2
∏

f

d3pf
(2π)32Ef

, (6.18)

where all the volumes cancel.
The cross section is a Lorentz scalar. In Eq. (6.18) everything is manifestly Lorentz invariant except

the flux term, that we have to specify. In fact

E1E2|vrel| = E1E2|v1 − v2| = E1E2

∣

∣

∣

∣

p1

E1
− p2

E2

∣

∣

∣

∣

. (6.19)

In the frame in which particle 2 is at rest we have p2 = 0, E2 = m2 and therefore

E1E2|vrel| = E1m2
|p1|
E1

= m2|p1| = m2

√

E2
1 −m2

1 =
√

m2
2E

2
1 −m2

1m
2
2 =

√

(P1 µP
µ
2 )

2 −m2
1m

2
2 ,

(6.20)
which is now written in a manifestly covariant way.

Finally

dσ = (2π)4δ4(
∑

i

Pi −
∑

f

Pf )
1

4
√

(P1 µP
µ
2 )

2 −m2
1m

2
2

∏

ferm

(2m) |M|2
∏

f

d3pf
(2π)32Ef

. (6.21)

6.3 Decay Rate

The interaction can cause the decay of a particle, that in the free theory would be stable. This can
happen if the kinematic constraints are fulfilled. The process to consider is now a process 1 → n and
the initial state is constituted by one particle.

We define the decay rate as the probability density per unit time to have a certain final state starting
with the initial state constituted by the particle that decays (the decaying particle has momentum
Pµ = (E,p)):

dΓ = dwfi = (2π)4δ4(P −
∑

f

Pf )
1

2E

∏

ferm

(2m) |M|2
∏

f

d3pf
(2π)32Ef

. (6.22)

Some comments are in order:

• The decay rate is, again, independent on the volume.
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• The decay rate in Eq. (6.22) is the “partial decay rate” of the decaying particle in a certain final
state. It is governed by the matrix element |M|2. To understand better, consider the decay of a
Z boson in the Standard Model. The Z can decay in different final states. We can for instance
compute the decay rate of Z → e+e−. This would be

dΓZ→e+e− = (2π)4δ4(P − Pe− − Pe+)
1

2E

∏

ferm

(2m) |MZ→e+e− |2
d3pe−

(2π)32Ee−

d3pe+

(2π)32Ee+
. (6.23)

To have the decay rate in this channel, we have to integrate all over the phase space

ΓZ→e+e− =

∫

dΓZ→e+e− , (6.24)

which is a “partial decay rate” because it involves a single channel. The Z boson can decay also
into other leptonic pairs or quark pairs. Therefore, if we sum over all the possibilities that the
interaction that we are considering allows, we have the total decay rate

Γ =
∑

f

Γf . (6.25)

The ratio

Bf =
Γf
Γ

(6.26)

is called the “branching ratio” and it gives the probability of finding the state f among the
possible decay products.

• All the pieces of formula (6.22) are Lorentz invariant except the term 1
2E . In fact Γ is not a

Lorentz scalar, but it transforms as the inverse of the temporal component of a four-vector. In
the frame in which the decaying particle is at rest, this factor becomes 1

2M , where M is the mass
of the particle. In a generic frame in which the decaying particle has velocity β we have

E = γM =
M

√

1− β2
(6.27)

and therefore the rate in that frame is smaller than the one in the rest frame of the decaying
particle by a factor 1/γ

ΓE =
1

γ
ΓM . (6.28)

The lifetime of the particle, which is the inverse of the total rate τ = 1
Γ , therefore is bigger in

the frame in which the particle has velocity β (dilatation of time).

• In the rest frame we have

δ4(P −
∑

f

Pf )→ δ4(M −
∑

f

Pf ) = δ(M −
∑

f

Ef )δ
3(
∑

f

pf ) . (6.29)

Therefore
M =

∑

f

Ef =
∑

f

√

p2f +m2
f . (6.30)

This means that, in the case in which the decay products are massive we have to have M ≥
∑

f mf . The energy at disposal for the decay products is at most M . In the limiting case in
which also the decay products are produced at rest, we have pf = 0 and M =

∑

f mf , otherwise
the energy M has to go partly into the masses of the particles produced and partly into their
momenta.
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6.3.1 Two-body phase space

The part of both the cross section and the decay width formulas that has to do with the differentials
in the final state momenta is called n-body phase space:

dΦ(n) = (2π)4δ4(
∑

i

Pi −
∑

f

Pf )
∏

f

d3pf
(2π)32Ef

. (6.31)

Of particular importance is the two-body phase space. If we consider f = 3, 4 and
∑

i Pi = P , then

dΦ(2) = (2π)4δ4(P − P3 − P4)
d3p3

(2π)32E3

d3p4
(2π)32E4

. (6.32)

Let us consider, for instance, the case in which a particle of mass M decays into two particles of masses
m3 and m4. We can calculate dΦ(2) in the rest frame of the decaying particle. We have

dΦ(2) = (2π)4δ4(M − P3 − P4)
d3p3

(2π)32E3

d3p4
(2π)32E4

, (6.33)

= δ(M − E3 − E4)δ
3(p3 + p4)

d3p3 d
3p4

(2π)24E3E4
. (6.34)

Now suppose we have to integrate all over the phase space. We can integrate first of all in p4 using
the delta (p4 = −p3

dΦ(2) =
1

(2π)2
δ(M − E3 − E4)

d3p3
4E3E4

, (6.35)

where now
E3 =

√

p23 +m2
3 , and E4 =

√

p23 +m2
4 , (6.36)

since we have to replace everywhere p4 with −p3.
Now we have to integrate in d3p3. We can write

d3p3 = p23dp3dΩ = p23dp3dφd cos θ , (6.37)

where dΩ = dφd cos θ is the solid angle and where p3 > 0 is the modulus of p3. We can integrate in
dp3 as follows

dΦ(2) =
dΩ

(2π)2

∫ ∞

0
dp3

p23
4
√

p23 +m2
3

√

p23 +m2
4

δ

(

M −
√

p23 +m2
3 −

√

p23 +m2
4

)

. (6.38)

For the properties of the delta function

δ(f(x)) =
1

|f ′(x0)|
δ(x− x0) , (6.39)

where x0 is a zero of f(x). In the phase space p3 ≥ 0 we have a single zero which is

p3 =
1

2M

√

M4 +m4
3 +m4

4 − 2M2m2
3 − 2M2m2

4 − 2m2
3m

2
4 =

1

2M

√

λ(M2,m2
3,m

2
4) . (6.40)

Therefore, in the end we have (substituting the root in Eq. (6.40) into the square roots and
simplifying)

dΦ(2) =
dΩ

32π2M2

√

λ(M2,m2
3,m

2
4) . (6.41)
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In the case in which m3 = m4 = m the formula simplifies considerably:

dΦ(2) =
dΩ

32π2

√

1− 4m2

M2
. (6.42)

The same formula holds, mutatis mutandis, for the scattering 2 → 2, in which we calculate the
cross section in the c.m. frame. If P1 + P2 → P3 + P4 in the c.m. frame we will have

Pµ1 = (E1,p) , Pµ2 = (E2,−p) , (6.43)

where E1 =
√

p2 +m2
1 and E2 =

√

p2 +m2
2. If we define

S = (P1 + P2)
2 = (E1 + E2)

2 , (6.44)

the energy at disposal for the reaction is
√
S (which corresponds to M in the case of decay of one

particle. For the four-momenta 3 and 4 we will have

Pµ3 = (E3,p3) , Pµ4 = (E4,−p3) , (6.45)

where E3 =
√

p23 +m2
3 and E4 =

√

p23 +m2
4. Therefore, with respect to the case of a decay we just

have to substitute M with
√
S:

dΦ(2) =
dΩ

32π2S

√

λ(S,m2
3,m

2
4) , (6.46)

in which we have to remember that p4 = −p3 and

p3 =
1

2
√
S

√

S2 +m4
3 +m4

4 − 2Sm2
3 − 2Sm2

4 − 2m2
3m

2
4 . (6.47)

6.4 The process e+ + e− → µ+ + µ−

In this section we consider the process e+ + e− → µ+ + µ−. The cross section is given by

dσe+e−→µ+µ− = (2π)4δ4(p1 + p2 − p3 − p4)
(2me)

2(2mµ)
2

4
√

(p1 · p2)2 −m2
1m

2
2

d3p3
(2π)32E3

d3p4
(2π)32E4

|M|2 , (6.48)

where me and mµ are the masses of the electron and of the muon respectively. Let us now concentrate
on the different pieces of the calculation starting from the modulus squared of the transition amplitude.

6.4.1 Modulus Squared of the Transition Amplitude

In the Standard Model there are three families of leptons; in this section we consider only the first two:
electron and muons. They differ by the mass: me ∼ 0.5 MeV, mµ ∼ 105 MeV, but they have the same
electric charge.

The interaction Lagrangian density is

Lint = −e :
(

ψ̄e 6Aψe + ψ̄µ 6Aψµ
)

: (6.49)

We consider the second order expansion of the S matrix. The T -product inside the integral reads:

(−i e)2
2

T
(

:
(

ψ̄e 6Aψe + ψ̄µ 6Aψµ
)

X1
::
(

ψ̄e 6Aψe + ψ̄µ 6Aψµ
)

X2
:
)

=

(−i e)2
2

{

T
(

:
(

ψ̄e 6Aψe
)

X1
::
(

ψ̄e 6Aψe
)

X2
:
)

+ T
(

:
(

ψ̄µ 6Aψµ
)

X1
::
(

ψ̄µ 6Aψµ
)

X2
:
)
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+T
(

:
(

ψ̄e 6Aψe
)

X1
::
(

ψ̄µ 6Aψµ
)

X2
:
)

+ T
(

:
(

ψ̄µ 6Aψµ
)

X1
::
(

ψ̄e 6Aψe
)

X2
:
)}

. (6.50)

In order to evaluate the corresponding matrix elements, we apply the Wick’s theorem. Operators
belonging to different fields cannot be contracted. Moreover, we do not have to consider contractions
between two operators evaluated in the same point. Therefore, the only possibility consists in con-
tracting the photon field. The four terms above have matrix elements different from zero for different
initial and final states. The first and the second terms in Eq. (6.50) represent electron-positron to
electron-positron and muon-anti muon to muon-anti muon scattering processes, respectively. We are
interested, instead, in electron-positron to muon-anti muon scattering, that is represented by the third
and fourth terms of Eq. (6.50). Considering as initial state |e+e−〉 and final state |µ+µ−〉, these two
terms give the following contributions:

(−i e)2
2

{

T
(

:
(

ψ̄e 6Aψe
)

X1
::
(

ψ̄µ 6Aψµ
)

X2
:
)

+ T
(

:
(

ψ̄µ 6Aψµ
)

X1
::
(

ψ̄e 6Aψe
)

X2
:
)}

=

(−i e)2
2

(

:
(

ψ̄e 6Aψe
)

X1
: :
(

ψ̄µ 6Aψµ
)

X2
: + :

(

ψ̄µ 6Aψµ
)

X1
: :
(

ψ̄e 6Aψe
)

X2
:

)

. (6.51)

We have to select, in the first contribution, the annihilation of an electron and a positron in X1

and the creation of a muon and an anti-muon in X2, while, in the second contribution, the annihilation
of an electron and a positron in X2 and the creation of a muon and an anti-muon in X1. These two
contributions can be represented by the following Feynman diagrams (in X space):

X1 X2

e−

e+

µ−

µ+

X1 X2

e−

e+

µ−

µ+

When we integrate in X1 and X2, if we exchange X1 with X2 in the second term, we find the same
contribution coming from the first term, that therefore has to be considered twice:

S(2) = (−ie)2
∫

d4X1 d
4X2

(

:
(

ψ̄e 6Aψe
)

X1
: :
(

ψ̄µ 6Aψµ
)

X2
:

)

. (6.52)

Moving to momentum space we have then to consider the following Feynman diagram:

e−

e+

µ−

µ+

p1

p2

p3

p4

p1 + p2

The matrix element M and its complex conjugated are given by

M = ū(p3, n3)i
(

−ieγν
)

ij
v(p4, n4)j

−iηµν
(p1 + p2)2

v̄(p2, n2)k
(

−ieγµ
)

kl
u(p1, n1)l , (6.53)

= ie2ū3i(γν)ijv4j
1

(p1 + p2)2
v̄2k(γ

ν)klu1l , (6.54)
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M∗ = −ie2v̄4j′ (γρ)j′i′u3i′
1

(p1 + p2)2
ū1l′ (γ

ρ)l′k′v2k′ , (6.55)

where we wrote the products like ū3γνv4 making the components explicit. Finally,

|M|2 = e4

(p1 + p2)4
(

u3i′ ū3i(γν)ijv4j v̄4j′ (γρ)j′i′
) (

v2k′ v̄2k(γ
ν)klu1l ū1l′ (γ

ρ)l′k′
)

, (6.56)

where we grouped together the spinors that refer to the same external momentum.
The expression (6.56) has to be evaluated according to what we intend to measure experimentally.

Very often we are interested to unpolarized cross sections. Since we admit an undefined spin state of
the final state, quantum mechanically we have to sum over the final state spins. We can reach the
same final state both with a certain spin configuration of particle 1 and of particle 2. Therefore, we
can sum over the initial state provided that we devide by the different spin states available. In the
case of two fermions in the initial state, we have to consider 2 states for each particle and therefore a
1/4 factor overall:

|M|2 =⇒ 1

4

∑

n,n′

|M|2 ; (6.57)

this means: “sum over the final state spins” and “average over the initial state spins”.
Since we have a

∑

n,n′ , in Eq. (6.56) we can recognize the polarization sums:

∑

n

u(p, n)ū(p, n) =
6 p+m

2m
,
∑

n

v(p, n)v̄(p, n) =
6 p−m
2m

. (6.58)

We have
∑

n,n′

(

u3i′ ū3iγνijv4j v̄4j′γρj′i′
) (

v2k′ v̄2kγ
νklu1l ū1l′γ

ρl′k′
)

=

(6 p3 +mµ

2mµ

)

i′i

(γν)ij

(6 p4 −mµ

2mµ

)

jj′
(γρ)j′i′

(6 p2 −me

2me

)

k′k

(γν)kl

(6 p1 +me

2me

)

ll′
(γρ)l′k′ , (6.59)

= tr
( 6 p3 +mµ

2mµ
γν
6 p4 −mµ

2mµ
γρ

)

tr
( 6 p2 −me

2me
γν
6 p1 +me

2me
γρ
)

, (6.60)

which is the product of two traces on the Dirac indices. Therefore, we have:

1

4

∑

n,n′

|M|2 = |M|2 , (6.61)

=
e4

4(p1 + p2)4
tr
( 6 p3 +mµ

2mµ
γν
6 p4 −mµ

2mµ
γρ

)

tr
( 6 p2 −me

2me
γν
6 p1 +me

2me
γρ
)

, (6.62)

=
e4

64m2
em

2
µ(p1 + p2)4

tr
(

(6p3+mµ)γν(6p4−mµ)γρ

)

tr
(

(6p1+me)γ
ρ(6p2−me)γ

ν
)

. (6.63)

Let us evaluate the two traces, remembering that the trace of an odd number of γ matrices is zero.

Tr1 = tr
(

(6p3 +mµ)γν(6p4 −mµ)γρ

)

= tr
(

6p3γν 6p4γρ−m2
µγνγρ

)

, (6.64)

= 4p3νp4ρ + 4p3ρp4ν − 4(p3 · p4)gνρ − 4m2
µgνρ , (6.65)

Tr2 = tr
(

(6p1+me)γ
ρ(6p2−me)γ

ν
)

= ... = 4p1ρp2ν + 4p1νp2ρ − 4(p1 · p2)gνρ − 4m2
egνρ . (6.66)

Therefore, the product of the two traces is

Tr1 Tr2 = 16
[

(p1 · p4)(p2 · p3) + (p1 · p3)(p2 · p4)− (p1 · p2)(p3 · p4)
]

− 16m2
e(p3 · p4)
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+16
[

(p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3)− (p1 · p2)(p3 · p4)
]

− 16m2
e(p3 · p4)

−16
[

(p1 · p2)(p3 · p4) + (p1 · p2)(p3 · p4)− 4(p1 · p2)(p3 · p4)
]

+ 64m2
e(p3 · p4)

−16m2
µ(p1 · p2)− 16m2

µ(p1 · p2) + 64m2
µ(p1 · p2) + 64m2

em
2
µ , (6.67)

= 32(p1 · p3)(p2 · p4) + 32(p1 · p4)(p2 · p3) + 32m2
e(p3 · p4) + 32m2

µ(p1 · p2)
+64m2

em
2
µ . (6.68)

In total, we have:

|M|2 = e4

2m2
em

2
µ(p1 + p2)4

[

(p1 ·p3)(p2 ·p4)+(p1 ·p4)(p2 ·p3)+m2
e(p3 ·p4)+m2

µ(p1 ·p2)+2m2
em

2
µ

]

. (6.69)

6.4.2 Kinematics

In order to express the scalar products, we choose a reference system. Since |M|2 is invariant it is
convenient to calculate it in the center of mass (c.m.) frame. In this frame we have the following
situation:

θp1 p2

p3

p4

where θ is the so-called scattering angle. Therefore, we have:

pν1 = (E1,p) , pν2 = (E2,−p) . (6.70)

Since p21 = m2
e = p22, it follows that E1 = E2 = E, then

pν1 = (E,p) , pν2 = (E,−p) (6.71)

and
(p1 + p2)

2 = 4E2 . (6.72)

Also p3 and p4 are back-to-back and therefore if we call

pν3 = (E3,p
′) , pν4 = (E4,−p′) , (6.73)

with p23 = m2
µ = p24, we have to have E4 = E3. Moreover, since p1 + p2 = p3 + p4, we also have

p1 + p2 = 2E = p3 + p4 = 2E3 =⇒ E3 = E . (6.74)

Finally
pν3 = (E,p′) , pν4 = (E,−p′) . (6.75)

The various scalar products can be expressed in terms of E, p, p′ and the scattering angle θ:

p1 · p2 = E2 + p2 , (6.76)

p3 · p4 = E2 + p′2 , (6.77)

p1 · p3 = E2 − p · p′ = E2 − pp′ cos θ = p2 · p4 , (6.78)

p1 · p4 = E2 + p · p′ = E2 + pp′ cos θ = p2 · p3 , (6.79)
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(6.80)

therefore we find:

|M|2 =
e4

2m2
em

2
µ16E

4

[

(E2 − pp′ cos θ)2 + (E2 + pp′ cos θ)2 +m2
e(E

2 + p′2)

+m2
µ(E

2 + p2) + 2m2
em

2
µ

]

, (6.81)

=
e4

2m2
em

2
µ16E

4

[

2E4 + 2p2p′2 cos2 θ + (m2
e +m2

µ)E
2+m2

ep
′2+m2

µp
2+ 2m2

em
2
µ

]

. (6.82)

In the cross section, the term |M|2 is multiplied by a factor (2me)
2(2mµ)

2 and then we have

(2me)
2(2mµ)

2|M|2= e4

2E4

[

2E4 + 2p2p′2 cos2 θ + (m2
e +m2

µ)E
2+m2

ep
′2+m2

µp
2+ 2m2

em
2
µ

]

. (6.83)

This means that in the cross section we do not have mass terms in the denominator. Since me ≪ mµ

(we also have m2
e ≪ E2 and m2

µ ≪ E2), in Eq. (6.83) we can neglect terms proportional to m2
e, finding

a simpler formula:

(2me)
2(2mµ)

2|M|2 ≈ e4

2E4

[

2E4 + 2p2p′2 cos2 θ +m2
µE

2+m2
µp

2
]

=
e4

2E4

[

2(E4 + E2p′2 cos2 θ +m2
µE

2)
]

,

=
e4

E2

[

E2 + p′2 cos2 θ +m2
µ

]

, (6.84)

since for me ∼ 0 we have m2
e = 0 = E2 − p2 and therefore p2 = E2.

6.4.3 Flux Factor

The calculation of the flux factor in our case gives the following result:

4
√

(p1 · p2)2 −m2
em

2
µ ≈ 4

√

(p1 · p2)2 = 8E2 . (6.85)

6.4.4 Cross Section

Finally, merging the various pieces together we find:

dσ = (2π)4δ4(p1 + p2 − p3 − p4)
1

8E2

e4

E2

[

E2 + p′2 cos2 θ +m2
µ

] d3p3
(2π)32E3

d3p4
(2π)32E4

, (6.86)

= δ4(p1 + p2 − p3 − p4)
e4

128π2E6

[

E2 + p′2 cos2 θ +m2
µ

]

d3p3 d
3p4 , (6.87)

= δ4(p1 + p2 − p3 − p4)
α2

8E6

[

E2 + p′2 cos2 θ +m2
µ

]

d3p3 d
3p4 , (6.88)

where we introduced the fine structure constant α = e2/(4π).
If we use the δ4(p1 + p2 − p3 − p4) in the d3p4 integration, we find

dσ = δ(E1 + E2 − E3 − E4)
α2

8E6

[

E2 + p′2 cos2 θ +m2
µ

]

d3p′ , (6.89)

= δ4(2(E − E′))
α2

8E6

[

E2 + p′2 cos2 θ +m2
µ

]

d3p′ , (6.90)
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=
1

2
δ(E − E′)

α2

8E6

[

E2 + p′2 cos2 θ +m2
µ

]

d3p′ . (6.91)

We can express d3p′ in terms of the solid angle

d3p′ = p′2dp′dΩ(= p′2dp′d cos θdφ) (6.92)

and calculate the differential cross section, with respect to the solid angle dΩ

dσ

dΩ
=

α2

16E6

∫

δ(E − E′)
[

E2 + p′2 cos2 θ +m2
µ

]

p′2 dp′ . (6.93)

Since p′2 = E′2 −m2
µ, we have

dp′

dE′ =
E′

√

E′2 −m2
µ

=
E′

p′
. (6.94)

Finally,

dσ

dΩ
=

α2

16E6

∫

δ(E −E′)
[

E2 + p′2 cos2 θ +m2
µ

]

p′E′ dE′ , (6.95)

=
α2

16E6

[

E2 + p′2 cos2 θ +m2
µ

]

p′E , (6.96)

=
α2

16E4

p′

E

[

E2 + p′2 cos2 θ +m2
µ

]

, (6.97)

where we used the fact that now p′ =
√

E2 −m2
µ.

To find the total cross section we must integrate in dΩ. For simplicity let us consider the ultra-
relativistic limit, E2 ≫ m2

µ. Therefore, in Eq. (6.97) we can neglect the term with m2
mu (m2

mu ∼ 0 =⇒
p′ = E) getting

dσ

dΩ
=

α2

16E2

[

1 + cos2 θ
]

. (6.98)

Then, we have

σ =
α2

16E2

∫

[

1 + cos2 θ
]

dΩ , (6.99)

=
α2

16E2
2π

∫ 1

−1

[

1 + cos2 θ
]

d cos θ , (6.100)

=
α2π

3E2
= 5.6 · 10−5 1

E2
. (6.101)

The cross section is now (in natural units) in Energy−2. If E ∼ 100 GeV, we would obtain

σ = 5.6 · 10−9 GeV−2 . (6.102)

If we want to express the cross section in barn, we have to remember that

1GeV−2 = 0.389mbarn . (6.103)

Therefore:
σ = 5.6 · 10−9 GeV−2 = 2.18 · 10−9 mbarn = 2.18pbarn . (6.104)
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