Modelli e Metodi Matematici della Fisica. S2/F

Filippo Cesi – 2019–20

Nome	
Cognome	

problema	voto
1	
2	
3	
4	
test	
totale	
voto in trentesimi	

Regolamento:

- (1) Tutti gli esercizi, in particolare quelli a carattere teorico, verranno valutati non solo per quanto riguarda la correttezza della risposta, ma anche in base alla chiarezza dell'esposizione e alla calligrafia.
- (2) A meno che non venga richiesto esplicitamente il contrario, bisogna scrivere chiaramente i passaggi intermedi, NON solo il risultato finale.
- (3) Il risulato deve essere fornito nella forma più semplificata possibile.
- (4) Caratteri tipografici appartenenti ad alfabeti di galassie diverse dalla Via Lattea non verranno considerati.

1 pt = 0.5 trentesimi.

(1) (8 pt). Calcolare la seguente distribuzione, semplificando il più possibile il risultato: $D^3(e^{x-x^2}\delta_0'')$. Soluzione. (a) Dall'identità

$$h(x) \, \delta_0'' = h(0) \, \delta_0'' - 2h'(0) \, \delta_0' + h''(0) \, \delta_0 \,,$$

con

$$h(x) = e^{x-x^2}$$

$$h'(x) = h(x)(1-2x)$$

$$h''(x) = h'(x)(1-2x) - 2h(x)$$

$$h''(0) = 1$$

$$h''(0) = -1$$

si ottiene

$$e^{x-x^2} \, \delta_0'' = \delta_0'' - 2\delta_0' - \delta_0 \,.$$

Dunque

$$D^{3}(e^{x-x^{2}}\delta_{0}^{"}) = \delta_{0}^{(5)} - 2\delta_{0}^{(4)} - \delta_{0}^{(3)}.$$

(2) (10 pt). Sviluppare in serie trigonometrica di Fourier in $[-\pi,\pi]$ la funzione

$$f(x) := \begin{cases} 1 - |x| & \text{se } |x| \le 1 \\ 0 & \text{se } 1 < |x| \le \pi \end{cases}$$

Sapendo che $\sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6},$ calcolare $\sum_{k=1}^{\infty}\frac{\cos k}{k^2}.$

Risp:
$$f(x) \sim \frac{1}{2\pi} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1-\cos k}{k^2} \cos(kx)$$
. $\sum_{k=1}^{\infty} \frac{\cos k}{k^2} = \frac{\pi^2}{6} - \frac{\pi}{2} + \frac{1}{4}$.

(3) (10 pt). Calcolare la trasformata di Fourier delle seguenti funzioni, riconducendosi, se possibile, a casi noti

(a)
$$f(x) = x^2 e^{-|x| + i4x}$$
 (b) $f(x) = xH(x-4)e^{-3x}$

(a)

Risp:
$$\frac{4-12(t-4)^2}{((t-4)^2+1)^3}$$
.

(b)

Risp:
$$\frac{e^{-4(3+it)}(13+4it)}{(3+it)^2}$$
.

(4) (8 pt). Calcolare il seguente integrale scritto nella notazione "dei fisici", in cui compare la "funzione composta della delta di Dirac", semplificando il più possibile il risultato.

$$\int_{-\infty}^{\infty} e^{i\pi x/4} \, \delta(x^9 - x) \, dx \, .$$

Soluzione. La funzione $b(x) := x^9 - x$ si annulla nei punti

$$x^9 - x = 0 \iff x = 0, \pm 1$$
.

Inoltre si ha

$$b'(x) = 9x^8 - 1$$
 $|b'(0)| = 1$ $|b'(\pm 1)| = 8$

da cui si ottiene

$$\delta(x^9 - x) = \delta_0 + (\delta_1 + \delta_{-1})/8$$
.

Quindi

$$\int_{-\infty}^{\infty} e^{ix\pi/4} \,\delta(x^9 - x) \,dx = \delta_0(e^{ix\pi/4}) + \frac{1}{8} \left[\delta_1(e^{ix\pi/4}) + \delta_{-1}(e^{ix\pi/4}) \right]$$
$$= 1 + \frac{1}{8} \left(e^{i\pi/4} + e^{-i\pi/4} \right) = 1 + \frac{1}{4} \cos(\pi/4) = 1 + \frac{\sqrt{2}}{8} .$$