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Abstract

A quite old problem has been recently revitalized by Leonard Mlodinow’s book
The Drunkard’s Walk, where it is presented in a way that has definitely confused
several people, that wonder why the prevalence of the name of one daughter among
the population should change the probability that the other child is a girl too. I
try here to discuss the problem from scratch, showing that the rarity of the name
plays no role, unless the strange assumption of two identical names in the same
family is taken into account. But also the name itself does not matter. What is
really important is ‘identification’, meant in an acceptation broader than usual, in
the sense that a child is characterized by a set of attributes that make him/her
uniquely identifiable (‘that one’) inside a family. The important point of how
the information is acquired is also commented, suggesting an explanation of why
several people tend to consider the informations “at least one boy” and “a well
defined boy” (elder/youngest or of a given name) equivalent.

1 Introduction

A classical series of problems in elementary probability theory is about the gender
combinations (m-m, m-f , f -m and f -f) in a family of two children. Being this an
academic exercise (in the bad sense of the term), usually one does not attempt to
assess how much one believes that these combinations happen in a real family. This
means that the well known male over female birth asymmetry is neglected, as are
neglected gender correlations within a family, like those induced by genetic factors, or
by the possibility of monovular twins.

Once the conditions are properly defined, the usual questions, besides the trivial
one of male/female, are

1

http://arxiv.org/abs/1001.0708v1
http://www.roma1.infn.it/~dagos


Eldest Youngest
m f m ∪ f

m 1/4 1/4 1/2
f 1/4 1/4 1/2

m ∪ f 1/2 1/2 1

Table 1: Table of equiprobable cases of the four possible sequences of child’s gender.
The symbol ‘∪’ stands for ‘OR’.

Q1) What is the probability of two boys?

Q2) What is the probability of two boys, if the eldest child is a boy?

Q3) What is the probability of two boys, if at least one child is a boy?

These questions can be promptly answered looking at contingency table 1 that lists
the space of the four equiprobable elementary cases.

A1) The probability of two boys is 1/4, or 25%, since it is just the probability of each
elementary event, that all together have to sum up to unity, or 100%.

A2) If the eldest child is a boy, the space of possibilities is squeezed to the first row of
the table. We remain with two equiprobable cases, each of which gets probability
1/2. In formulae:

P (Em ∩ Ym |Em, I0) =
P (Em ∩ Ym | I0)

P (Em | I0)
(1)

=
1/4

1/2
=

1

2
. (2)

[The symbol ‘∩’ stands for a logical ‘AND’; ‘|’ stands for ‘given’, or ‘conditioned
by’; ‘Em’ and ‘Ym’ are short forms for “the eldest is male” and “the youngest
is male”; the condition I0 is the background status of information under which
the probabilities are evaluated, that includes the simplifying hypotheses stated
above; when there is a further condition, like Em and I0 in the l.h.s. of Eq. (1),
they are both indicated after the conditional symbol ‘|’, separated by a comma.]

A3) Finally, the information that there is at least one boy in the family reduces the
space of possibilities to three equiprobable cases, of which only one is that of our
interest, thus getting 1/3 (the symbol ‘∪’ in the following formulae indicated a
logical ‘OR’). Formally

P (Em ∩ Ym |Em ∪ Ym, I0) =
P [(Em ∩ Ym) ∩ (Em ∪ Ym) | I0]

P (Em ∪ Ym | I0)
(3)
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=
P (Em ∩ Ym | I0
P (Em ∪ Ym | I0)

(4)

=
1/4

3/4
=

1

3
(5)

Obviously, the problem can been turned into probability of girl-girl by symmetry.
The ‘complication’ (mainly induced confusion) comes when the information about

the name of one child is provided (‘Florida’ in The Drunkard’s Walk [1]):

Q4 What is the probability of two boys, if one of the children is called Mark?1

2 How the child name changes the probabilities

At this point the question is how table 1 is changed by the information that one child
is known by gender and name (the latter usually implying the former).

The way the problem is often solved is to assume that the same name can given
to two different children in the same family. Frankly, I never heard of this possibility
before. And, anyhow, if such a strange behavior occurs in some very rare cases, it seems
to me of an importance much lower than all other questions that have been neglected
(male/female asymmetry, genetic biases, etc.). What I found annoying is that this
peculiar solution is not reported as a mathematical curiosity (see e.g. the Drunkard’s
Walk or the Wikipedia page site dedicated to the so called ‘paradox’ [2] – a puzzle one
is unable to solve is not necessarily a paradox), but as it would be ‘the solution’.

Nevertheless, let us first see what happens when this possibility is allowed. (By the
way, one might think of families with children coming from previous marriages, in which
case identical names might occur, but this possibility is excluded in the often implicit
assumptions of this kind of puzzles, often formulated as “a lady has two children, . . . ”.)

2.1 Allowing identical names for two children of a family

Just to stay close to the formulation of the problem in the recent disputes that have
triggered this paper, let us focus on girl probabilities, assuming we know that one of
the child is a girl of a given name. Splitting the female category into ‘female of that
given name’ (fN) and ‘female with any other name’ (fN), there are now three possible
cases for each child, {m, fN, fN}, no longer equiprobable.

Calling r the fraction of girls owning that name in the population, we get the
following probabilities, under the new background condition I1: P (m | I1) = 1/2,
P (fN | I1) = r × 1/2 = r/2 and P (fN | I1) = (1 − r)/2. The nine possibilities and
their probabilities, calculated using the product rule (justified by elder/youngest name
independence), are reported in table 2. From the table we can calculate the probability

1This question can be turned into “what is the probability that Mark has a brother or a sister?”
and any normal and sane person might wonder about the sense of this madness, as said a friend of
mine with zero math skill, when he saw a first draft of this paper on my desk, because – he explained
– “it is absolutely equally likely that he has either a brother or a sister”.
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Eldest Youngest

m f m ∪ f
fN fN

m 1/4 r/4 (1− r)/4 1/2

f
fN r/4 r2/4 r(1− r)/4 r/2

1/2
fN (1− r)/4 r(1− r)/4 (1− r)2/4 (1− r)/2

m ∪ f 1/2 r/2 (1− r)/2 1
1/2

Table 2: Table of probabilities of the possible cases assuming that eldest and youngest
children can have the same name (see text).

of both females, if we know one girl by name:

P [(Ef ∩ Yf) | (EfN ∪ YfN) , I1] =
P [(Ef ∩ Yf) ∩ (EfN ∪ YfN) | I1]

P [(EfN ∪ YfN) | I1]
. (6)

The denominator is given by the five elements emphasized in boldface in table 2, whose
probability sum up to r − r2/4. The numerator is given by the three elements that
have m neither in the rows nor in the columns, whose probabilities are r2/4, r(1− r)/4
and r(1− r)/4, adding up to (2r − r2)/4. We get then

P [(Ef ∩ Yf) | (EfN ∪ YfN) , I1] =
(2r − r2)/4

r − r2/4
(7)

=
1

2

[
1− r/2

1− r/4

]

(8)

≈
1

2
−

r

8
(for r ≪ 1) (9)

As we can see, the probability does depend on r, but it tends rapidly to 1/2 for small
values of r, as also shown in table 3 for some numerical values of this parameter.2

2 The value r = 0.02 = 1/50 is that used in Ref. [2], for which the probabilities of table 2 acquire
the following values

0.2500 0.0050 0.2450 0.5000
0.0050 0.0001 0.0049 0.0100
0.2450 0.0049 0.2401 0.4900

0.5000 0.1000 0.4900 1.0000

from which we get the following table of expected values in 10000 families

2500 50 2450 5000
50 1 49 100

2450 49 2401 4900

5000 100 4900 10000
[By the way, I would like to point out that quoting expected values is a way to state . . . what we
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r P (two girls | fN, I1)

0.3 0.45946
0.2 0.47368
0.1 0.48718
0.02 0.49749
0.01 0.49875
0.001 0.49988
0.0001 0.49999

Table 3: Probability of two girls in family, if we know by name a daughter, calculated
as a function of the prevalence of that name within the girls of that population. [Note,
just for mathematical curiosity, that if r = 1 (all girls have the same name), Eq. (8)
gives a probability of 1/3, thus recovering Q3. In fact, in this case telling the name
adds no more information to “at least one is female”.]

2.2 Unique names of children within a family

Let us now see what happens if we require that, as it normally happens, children names
are unique. The central element of table 2 goes to zero, but the sums along rows and
columns have to be preserved3 [for example the probability of EfN ∩ YfN becomes
r(1− r)/4 + r2/4, that is the same as r/2− r/4, i.e. r/4]. The result is shown in table
4 (we label the central value of the table by ‘-’ to remark that this case is impossible
by assumption). [Note that the impossibility of identical children names constrains
r to be smaller than 1/2, well above any reasonable value. Remember also that the
probabilities of table 4 reflect the several simplifying assumptions of the problem.]

Eldest Youngest

m f m ∪ f
fN fN

m 1/4 r/4 (1− r)/4 1/2

f
fN r/4 - r/4 r/2

1/2
fN (1− r)/4 r/4 (1− 2r)/4 (1− r)/2

m ∪ f 1/2 r/2 (1− r)/2 1
1/2

Table 4: Same as table 2, but not allowing the identical names of the children.

expect in a probabilistic sense – and probability theory teaches how to calculate standard expectation
uncertainties (the σ’s) - and has little to do with ‘frequentistic approach’, since the probabilities have
not been evaluated by past frequencies (statistical data).]

3If no further information is provided, the probability that any child is a female with the special
name N has to be r/2, no matter if the child in question is the eldest or the youngest. Similarly, the
probability of girl with a name different from N has to be (1− r)/2.
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Contrary to table 2, the four cases that involve fN are now equiprobable (each with
probability r/4). It follows that the probability that the other child is a boy or a girl
is 50%, independently of the rarity of the name. In formulae (note the new background
condition I2):

P [(Ef ∩ Yf) | (EfN ∪ YfN) , I2] =
P [(Ef ∩ Yf) ∩ (EfN ∪ YfN) | I2]

P (EfN ∪ YfN | I2)
(10)

=
2× r/4

4× r/4
(11)

=
1

2
. (12)

3 Does the name really matter?

At this point it is easy to understand that we could replace fN in the table by fID,
where ‘ID’ stands now for ‘uniquely identified within the family’, thus getting table 5.
Think, for example to the following statements

• “the secretary of the department X of hospital Y in Rome is daughter of my aunt
B who has also another child”;

• “the parents of the actress starring in the last movie I have seen have two chil-
dren”;

• “the mother of that lady has got two children”;

• and so on. . .

In all these cases the probability that the female in question has a sister is 50%, as
everybody that is not fooled by probability theory will promptly tell us (see footnote
1). It is not just a question of knowing her name, or knowing that she is the eldest or
the youngest (that’s the reason we recover the answer to Q2!). What matters is that
this person is somehow uniquely ‘identified’ in the family, where ‘identified’ is within

Eldest Youngest

m f m ∪ f
fID fID

m 1/4 r/4 (1− r)/4 1/2

f
fID r/4 - r/4 r/2

1/2
fID (1− r)/4 r/4 (1− 2r)/4 (1− r)/2

m ∪ f 1/2 r/2 (1− r)/2 1
1/2

Table 5: Same as table 4, but based on ‘identification’ of a girl.
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Eldest Youngest

m f m ∪ f
fID fID

m 1/4 r/4 (1− r)/4 1/2

f
fID r/4 r2/4 r(1− r)/4 r/2

1/2
fID (1− r)/4 r(1− r)/4 (1− r)2/4 (1− r)/2

m ∪ f 1/2 r/2 (1− r)/2 1
1/2

Table 6: Same as table 2, but with reference to non unique identification (note the
symbol ‘ID’ instead of ‘ID’ of table 5) rather then name.

quote marks because it is not requested we know her passport number, but just that
we are able to point to her as that one.

If this is not the case, and two children could correspond to the same description,
then table 2 holds, assuming no correlation between the descriptions (if one is blond,
there is high change that the other is blond too, and so on). Therefore we recover it
as table 6, but in terms of non unique identification (‘ID’) rather than of name. Now
it makes sense. In fact, since we are referring here to ‘identification’ in a loose sense,
it might really occur that two daughters correspond to the same description (‘goes to
college’, or ‘play tennis’, and so on). Finally, the name can be considered a generic
identification, in order to include the possibility of identical names in a family (for
example in the cases of second marriages).

4 Some Bayesian flavor

Someone asks me about the Bayesian solution of the problem (because I am supposed
to be a Bayesian). But, besides the clarification that “I am not a Bayesian” [3], such
a kind of ‘alternative’ solution of the problem does not exist. The solution is already
that provided by Eq. (10), because ‘Bayesians’ just make use of probability theory to
state the relative beliefs of several hypotheses given some well stated assumptions. In
particular, the so called Bayes’ rule for this problem is essentially Eq. (10), that can be
possibly written in other convenient forms using the rules of probability.

4.1 Reconditioning the probability of an hypothesis on the light of a
new status of information

To make the point clearer, and calling A = Ef ∩ Yf (“both children are female”) and
B = EfN ∪ YfN (“one child is a female of a given particular name”) to simplify the
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notation, we can rewrite Eq. (10) as

P (A |B, I2) =
P (A ∩B | I2)

P (B | I2)
(13)

=
P (B |A, I2)P (A | I2)

P (B | I2)
. (14)

The latter expression shows explicitly how the probability of A is updated, by the extra
condition B, via the factor P (B |A, I2)/P (B | I2), i.e.

P (A |B, I2) =
P (B |A, I2)

P (B | I2)
× P (A | I2) . (15)

The three ingredients we need to evaluate P (A |B, I2) can be easily read from table 4,

P (A | I2) =
1

4
(16)

P (B | I2) = r (17)

P (B |A, I2) = 2r , (18)

from which we get

P (A |B, I2) =
2r

r
×

1

4
= 2×

1

4
=

1

2
, (19)

recovering the result of section 2.2 (note that it must be so because we are strictly using
the probabilities of table 4).

4.2 Updating the odds

We can do it in a different way, comparing the probability of “two girls” (A) with that
of “only one girl” [let us indicate the latter hypothesis as C = (Ef ∩Ym)∪ (Em∩Yf)].
The probability of C conditioned by B, i.e. P (C |B, I2), could be obtained in analogy
to Eq. (13), reading P (C ∩B | I2) from table 4. But it can be more instructive to get it
the Bayesian way, using the formula that shows how relative probabilities are updated
by the Bayes factor to take into account the new piece of information (this second
approach has also the advantage of getting rid of r since the very beginning):

P (A |B, I2)

P (C |B, I2)
︸ ︷︷ ︸

‘updated odds’

=
P (B |A, I2)

P (B |C, I2)
︸ ︷︷ ︸

‘updating factor’
(Bayes factor)

×
P (A | I2)

P (C | I2)
︸ ︷︷ ︸

‘initial odds’

. (20)

The initial probability of two girls is one half that of a single girl, i.e.

P (A | I2)

P (C | I2)
=

1

2
, (21)
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while the probability that there is a girl with a precise name is proportional to the
number of girls in the family (remember that the condition ‘I2’ does not allow the same
name), namely

P (B |A, I2)

P (B |C, I2)
= 2 . (22)

It follows

P (A |B, I2)

P (C |B, I2)
= 2×

1

2
= 1 : (23)

the girl of which we know the name has equal probability to have a sister (A) or a
brother (C), that is

P (A |B, I2) = P (C |B, I2) =
1

2
. (24)

5 Conclusions

The probability that, knowing the name of one child in a family of two, the other one
child is of the same gender has nothing to do with the rarity of the name, unless the
crazy possibility of identical names in a family is assumed (and if somebody insists
that this can happen, he/she is invited to calculate more realistic probabilities that
take into account male/female asymmetry and genetic correlations; also the possibility
of identical names of children coming from previous marriages are implicitly excluded
in this kind of puzzles, that usually talk of “a lady having two children. . . ”).

Moreover, what matters is not the knowledge of the name, but rather something
that allows us to point to him/her as ‘that one’. For this reason Q2 and Q4 have the
same solution.

I would like to end with some comments on the last of the three text book questions
reminded in the introduction. It seems to me that the reason there is quite a broad
tendency to confuse Q3 with Q4 (or similar questions involving the child identifica-
tion, including Q2), is that in normal life the information about boy/girl is acquired
simultaneously with other attributes that make the identification unique (“my daughter
Claudia”). People do not express themselves as in math textbooks, stating that “I have
two children, and at least one of them is a boy”, or “my children are not both boys”.
We usually gain this information in an indirect way. For this reason several people have
some initial difficulty to grasp that “that lady has Claudia and another child” is not
the same as “that lady has two children, at least one being a girl”.

Moreover, even if a mother says “if I had two boys”, we may understand from
the context (already knowing she has two children) that she has two girls, because we
perceived that she emphasized ‘boys’ instead of ‘two’ (in the latter case we could think
she has already a boy). Instead, if she said “if my children were both boys”, we usually
understand that she is expressing this way because she has a boy and a girl. Therefore,

9



besides stereotyped recreational puzzles, the evaluation of probabilities, in the sense
of how much we have to rationally believe the several hypotheses, can be not trivial.
We need to take properly into account all contextual information “when the bare facts
wont’do” [4]. Indeed, in probability evaluations not only the ‘facts’ play a role, but
also the words, their sound and the expression of the person who says them, and (too
often ignored) the question to which they reply [4].

It is a pleasure to thank Dino Esposito, Enrico Franco, Paolo Agnoli, Serena Ce-
natiempo and Stefano Testa for the several interactions on the issues discussed here
and related ones. The paper has benefitted from comments by Dino and Paolo.
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Appendix — On the direct calculation of the elements of
table 4

The elements of table 4 have been evaluated from the condition that the ‘central’ one vanishes
and that the marginal probabilities have to be preserved (this means that, for example, the
probability that the younger is female with the special name N is r/2 if no other information is
provided, because r/2 is the assumed probability that an individual of that population carries
that name). Nevertheless, one might be interested to calculate the eight non vanishing terms
in a direct way. But this calculation might reserve surprises, as we shall see.
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First row and first column of the table (at least one boy)

Although the elements that contain at least one boy are the easiest ones to be evaluated, let
us get them with some pedantic detail, for didascalic purposes and in preparation of the less
obvious cases. In particular, we shall rewrite Em ∩ YfN as Em ∩ Yf ∩ YN to remember that
we require the eldest child to be a boy, the youngest to be a girl and the name of the girl to be
the particular one in which we are interested (YN). Applying the ‘chain rule’ we get

P (Em ∩ Ym | I2) = P (Em | I2)× P (Ym |Em, I2) =
1

2
×

1

2
=

1

4
P (Em ∩ YfN | I2) = P (Em ∩ Yf ∩ YN | I2)

= P (Em | I2)× P (Yf |Em, I2)× P (YN |Yf,Em, I2)

=
1

2
×

1

2
× r =

r

4

P (Em ∩ YfN | I2) = P (Em ∩ Yf ∩ YN | I2)

= P (Em | I2)× P (Yf |Em, I2)× P (YN |Yf,Em, I2)

=
1

2
×

1

2
× (1− r) =

1− r

4
,

recovering the first row of table 4. (Note that N stands for ‘a feminine name different from N ’
and not ‘any name but N ’ !)

Similarly, the second and third elements of the first column are

P (EfN ∩ Ym | I2) = P (Ef ∩ EN ∩ Ym | I2)

= P (Ef | I2)× P (EN |Ef, I2)× P (Ym |Ef,EN, I2)

=
1

2
× r ×

1

2
=

r

4

P (EfN ∩ Ym | I2) = P (Ef ∩ EN ∩ Ym | I2)

= P (Ef | I2)× P (EN |Ef, I2)× P (Ym |Ef,EN, I2)

=
1

2
× (1− r) ×

1

2
=

1− r

4
.

The first column of table 4 is also recovered.

Probabilities of both females

The probability that two girls have the same name is zero, that is because

P (EfN ∩ YfN | I2) = P (Ef ∩ EN ∩ Yf ∩ YN | I2)

= P (Ef | I2)× P (EN |Ef, I2)× P (Yf |Ef,EN, I2)

×P (YN |Yf,Ef,EN, I2)

=
1

2
× r ×

1

2
× 0 = 0 .

The third element of the second row is given by

P (EfN ∩ YfN | I2) = P (Ef ∩ EN ∩ Yf ∩ YN | I2)

= P (Ef | I2)× P (EN |Ef, I2)× P (Yf |Ef,EN, I2)

×P (YN |Yf,Ef,EN, I2)

=
1

2
× r ×

1

2
× 1 =

r

4
.
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(The fourth factor of the r.h.s. of the last equation is 1 because, once we know the eldest
child has the name N , the youngest cannot have that name.) Also the second row of table 4 is
recovered.

The missing elements of the third row might present some pitfalls. Let us start from
EfN ∩ YfN , that is Ef ∩ EN ∩ Yf ∩ YN . It can be calculated as

P (EfN ∩ YfN | I2) = P (Ef ∩ EN ∩ Yf ∩ YN | I2)

= P (Yf ∩ YN ∩ Ef ∩ EN | I2)

= P (Yf | I2)× P (YN |Yf, I2)× P (Ef |Yf, YN, I2)

×P (EN |Ef, Yf, Y N, I2)

=
1

2
× r ×

1

2
× 1 =

r

4
.

thus obtaining the same value of the third element of the second row, that is P (EfN∩YfN | I2),
as we expect by symmetry and as it was in table 4.

A pitfall

But one would like to calculate P (EfN ∩ YfN | I2) ‘the other way around‘, i.e. applying the
chain rule starting from P (EfN | I2). If one tries to proceed this way, there is high chance to
arrive to the following result

P (EfN ∩ YfN | I2) = P (Ef ∩EN ∩ Yf ∩ YN | I2)

= P (Ef | I2)× P (EN |Ef, I2)× P (Yf |Ef,EN, I2)

×P (YN |Ef,EN, Yf, I2)

=
1

2
× (1 − r)×

1

2
× r

=
r (1− r)

4
=

r

4
−

r2

4
,

that differs from the value r/4 got previously.
In a similar way, one could be tempted to evaluate the probability that there are two girls,

none of them carrying the name N , as

P (EfN ∩ YfN | I2) = P (Ef ∩EN ∩ Yf ∩ YN | I2)

= P (Ef | I2)× P (EN |Ef, I2)× P (Yf |Ef,EN, I2)

×P (YN |Ef,EN, Yf, I2)

=
1

2
× (1 − r)×

1

2
× (1− r)

=
(1− r)2

4
=

(1− 2r)

4
+

r2

4
,

thus obtaining table 7, that differs from table 4. Namely, in the case of two females, it is now
less probable that the youngest girl has the particular name N . The probabilities differ by r2/4,
thus being negligible for small r.

One might think it is right so, because it reflects the order of naming the children (“since
the name N cannot be given twice, the the eldest girl has a kind of first choice”). But on
the other hand, we are dealing here with knowledge (or ignorance), and therefore P (EfN | I2)

12



Eldest Youngest

m f m ∪ f
fN fN

m 1/4 r/4 (1− r)/4 1/2

f
fN r/4 - r/4 r/2

1/2
fN (1− r)/4 r(1− r)/4 (1− r)2/4 (1− r)/2

m ∪ f 1/2 r/2− r2/4 (1− r)/2 + r2/4 1
1/2

Table 7: Same as table 4, but obtained by a wrong reasoning that implicitly assumes
that the condition EfN does not change the probabilities of YfN and of YfN .

and P (YfN | I2) must be absolutely equal. It is just a question of symmetry in reasoning
in conditions of uncertainty. It doesn’t matter if we start thinking from the eldest or from
the youngest child. Stated in different words, from a probabilistic point of view ‘eldest’ and
‘youngest’ are mere labels. The probability ‘matrix’ must be symmetric.

Moreover, it is curious to realize that table 7 produces a probability of two females that
depends on r, as we saw in section 2.1. We get in fact

P [(Ef ∩ Yf) | (EfN ∪ YfN) , I2] =
r/4 + r(1 − r)/4

3× r/4 + r(1 − r)/4

=
1

2

[
1− r/2

1− r/4

]

,

exactly the same result of section 2.1 [see Eq. (8)]. Therefore those who maintain that the
probability of two girls, provided we know that one child is girl known by name, does depend
on the rarity of the name either assume that identical names are possible inside the same family
(a bizarre assumption), or have been caught by this pitfall (a mistake in reasoning).

Conditional probabilities of female names

The weak points of the previous evaluations, that lead to table 7, with all its consequences, are
the conditional probabilities P (YN |Ef,EN, Yf, I2) and P (YN |Ef,EN, Yf, I2), for which we
assumed intuitively the values r and (1− r), as if the information that the eldest child is a girl
with a name different from N did not change the probability of the name of the other girl. This
intuition, roughly but not exactly correct, is due to the fact that we tend to consider r small (any
modern population has a large amount of possible feminine names) such that the assumption
that a girl has any name but the particular one (N) does not change sizably the probability of
the name of the other girl. This is the reason why the correct results are recovered for r → 0,
that was the hidden initial assumption!

But, strictly speaking, the EfN and YfN are not independent (in probability, or ‘stochas-
ticly’), as are not independent EfN and YfN : the information that the eldest girl has a name
different from N has to increase the probability that the youngest girl is called N (and has to
decrease the probability that also the youngest girl has a name different from N). Comparing
tables 4 and 7 we see that the effect goes this direction and has a size that decreases rapidly
with r, going as r2.
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From this reasoning we get the following qualitative results:

P (YN |Ef,EN, Yf, I2) > P (YN |Yf, I2)

P (YN |Ef,EN, Yf, I2) < P (YN |Yf, I2) .

The only problem is that it is not easy to evaluate these probabilities. But, fortunately, they can
be calculated from the general rules of probability, remembering that, as discussed above, the
probabilities of EfN ∩ YfN and of EfN ∩ YfN can be obtained in different ways. More
precisely, the probability of EfN ∩ YfN can be calculated either directly, from the easy
P (YN |Yf,Ef,EN, I2), as we have done just above in the appendix, or indirectly, requir-
ing P (YfN | I2) = r/2, as it was done building up table 4 in section 2.2. Instead, the last
element of the table, P (EfN ∩ YfN | I2), can by only calculated indirectly, either requiring
P (YfN | I2) = (1 − r)/2, or from the normalization rule, i.e. from the constraint that all
elements of the table have to sum up to one.

Therefore, the conditional probabilities of interest can be finally evaluated from the joint
probabilities as

P (YN |Ef,EN, Yf, I2) =
P (YN ∩ Ef ∩ EN ∩ Yf | I2)

P (Ef ∩ EN ∩ Yf | I2)

=
P (YN ∩Ef ∩ EN ∩ Yf | I2)

P (Ef ∩ EN | I2) · P (Yf |Ef ∩EN, I2)

=
r/4

(1− r)/2 × 1/2
=

r

1− r

≈ r (for r ≪ 1)

P (YN |Ef,EN, Yf, I2) =
P (YN ∩ Ef ∩ EN ∩ Yf | I2)

P (Ef ∩ EN ∩ Yf | I2)

=
P (YN ∩Ef ∩ EN ∩ Yf | I2)

P (Ef ∩ EN | I2) · P (Yf |Ef ∩EN, I2)

=
(1− 2r)/4

(1− r)/2 × 1/2
=

1− 2r

1− r

≈ 1− r (for r ≪ 1) .

[Obviously, the latter probability could have been calculated easier as P (YN |Ef,EN, Yf, I2) =
1− P (YN |Ef,EN, Yf, I2) = 1− r/(1− r), getting the same result.]

Note that for very small values of r we recover P (YN |Yf, I2) = r and P (YN |Yf, I2) = 1−r,
respectively. That is, in this limit EfN and YfN , as well as EfN and YfN , are approximately
independent, in agreement with our initial intuition.

Finally, we remind that the probabilities of the eldest girl name, conditioned by YfN , can

be obtained by symmetry, i.e. P (EN |Y f, Y N,Ef, I2) = P (YN |Ef,EN, Yf, I2) = r/(1 − r)

and P (EN |Y f, Y N,Ef, I2) = P (YN |Ef,EN, Yf, I2) = (1 − 2r)/(1 − r), and that all these

expressions depend on the simplifying assumptions embedded in this kind of recreational puzzle.
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