Soluzioni del test di autovalutazione

- 1. (a) $\pi \approx 3.14$ (o 3.1416)
 - (b) $e \approx 2.72$
- 2. $a = 0.0016 \ [= (2 \times 10^{-1})^4]$
- 3. -0.33; e^{-34} ; $2^{-4} = 1/8$ (= 0.125); $2^{-2} = 1/4$ (= 0.25); 0.41; $\pi/2 \approx 1.57$; $2^2 = 4$.
- 4. 5 (in quanto $2^5 = 32$) e 10 (in quanto $2^{10} = 1024$).
- 5. 1 (in quanto $23^1 = 23$) e 0 (in quanto $23^0 = 1$)
- 6. -5.
- 7. $\log a \log b + \log b = \log a$.
- 8. b) e c).
- 9. $c = \frac{2}{5} e^{2x}$.
- 10. $d = \frac{1}{2}e^{x^2-6x+9} = \frac{1}{2}e^{(x-3)^2}$.
- 11. 10^{-5} .
- 12. $\approx 10^4$ (esattamente $0.9950 \cdot 10^4$)
- 13. Le due condizioni sono equivalenti a x < 1/2 e 1/2 < y < 2, ovvero y > x.
- 14. $\frac{1}{b^3\sqrt{a}}$.
- 15. Resta $\sqrt{a^2 + b^2 + c^2}$.
- 16. 1/c.
- 17. $x^2 6xy + 9y^2$.
- 18. Pesa 1.5 chili (soluzione di x = 1 + x/3, la cui soluzione è x = 3/2).
- 19. x = 3/2.
- 20. y si dimezza.
- 21. c.a $0.50\,\mathrm{g}$ (superficie e peso raddoppiano circa, in quanto $1.41^2\approx2$)
- 22. V(B) = 4V(A) = 80 L; V(C) = 1/2 V(A) = 10 L; V(D) = 2V(A) = 40 L; V(D) = 8V(A) = 160 L.
- 23. 60 cm, in quanto il volume va come la terza potenza delle dimensioni lineari.
- 24. 8 m³ (essendo $S \propto R^2$ e $V \propto R^3$, ove R, S e V stanno per raggio, superficie e volume, se la superficie si è quadruplicata, vuol dire che il raggio si è duplicato e quindi il volume è aumentato di un fattore 2^3).
- 25. (a) $G = \frac{FR^2}{m_1 m_2}$;
 - (b) $R = \sqrt{\frac{G m_1 m_2}{F}}$
- 26. $a_c = 4 \pi^2 f^2 R$.
- 27. $C = \frac{-t}{R \ln V/V_0}$.
- 28. $x_s = 1/5$ e $y_s = 7/5$. Le equazioni rappresentano delle rette nel piano $\{x, y\}$ che si incontrano nel punto $\{x_s, y_s\}$
- 29. y = x + 1.
- 30. $y = \frac{x}{2} 5$.

- 31. $|b| \ge 12$, ovvero $b \le -12$ o $b \ge 12$.
- 32. $\cos \theta \approx 0.9 \ (\sqrt{1 0.4^2} = 0.917).$
- 33. La funzione coseno è maggiore, uguale e minore della funzione seno rispettivamente per gli angoli $\theta_1 = 30^{\circ}$, $\theta_2 = 45^{\circ}$, $\theta_3 = 60^{\circ}$.
- 34. $\pi/6$, $\pi/4$, $\pi/3$, $\pi/2$, π , 2π .
- 35. $\cos^2 \theta$.
- 36. 4 (= $|\vec{b}|\cos\theta = 8\frac{1}{2}$).
- 37. 40 $(=|\vec{a}| \cdot |\vec{b}| \cdot \cos \theta)$.
- 38. $v_1 = \{2, 7, 2\}, v_2 = \{2, -1, -4\}, v_3 = \{4, 18, 7\}.$
- 39. $|\vec{a}| = \sqrt{14} \approx 3.74, |\vec{b}| = 5, \vec{a} \cdot \vec{b} = 9, \cos \theta = 0.48 \ (\theta = 61, 2^{\circ}).$
- 40. $\vec{a} \times \vec{b} = \{-3, -3, -2\}.$
- 41. (a) 0, in quanto $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$;
 - (b) $2\sqrt{20}$, in quanto $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$;
 - (c) non ha senso in quanto $\vec{a} \cdot \vec{b}$ è uno scalare e $\vec{b} \times \vec{a}$ un vettore;
 - (d) in principio ha senso, ma nel quesito non sono date informazioni sufficienti per risolvere il problema. (In realtà i vettori \vec{a} e \vec{b} di questo quesito sono quelli del quesito precedente. Si ottiene quindi il vettore $\{-2, -2, -5\}$, di modulo $\sqrt{34}$.)
- 42. $v(t) = gt + v_0$; a(t) = g (indipendente da t).
- 43. $g(t) = -\omega A \sin(\omega t + \phi) + 2\omega B \cos(2\omega t + \psi)$.
- 44. $-\alpha x^2 e^{-\alpha^2 x^2}$.
- 45. a) 13/3; b) $\ln \frac{b}{a}$.