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Uncertainty → probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

“If we were not ignorant there would be no probability, there
could only be certainty. But our ignorance cannot be
absolute, for then there would be no longer any probability
at all. Thus the problems of probability may be classed
according to the greater or less depth of our ignorance.”
(Poincaré)
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Uncertainty → probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

The state of information can be
different from subject to subject

⇒ intrinsic subjective nature.
• No negative meaning: only an acknowledgment that several

persons might have different information and, therefore,
necessarily different opinions.
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Uncertainty → probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

The state of information can be
different from subject to subject

⇒ intrinsic subjective nature.
• No negative meaning: only an acknowledgment that several

persons might have different information and, therefore,
necessarily different opinions.

• “Since the knowledge may be different with different
persons or with the same person at different times, they
may anticipate the same event with more or less
confidence, and thus different numerical probabilities may
be attached to the same event” (Schrödinger)
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Probability is related to uncertainty and
not (only) to the results of repeated
experiments

Probability is always conditional
probability
‘P (E)’ −→ P (E | I) −→ P (E | I(t))

• “Thus whenever we speak loosely of ‘the probability of an
event,’ it is always to be understood: probability with regard
to a certain given state of knowledge” (Schrödinger)
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Uncertainty → probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

Probability is always conditional
probability
‘P (E)’ −→ P (E | I) −→ P (E | I(t))

• “Thus whenever we speak loosely of ‘the probability of an
event,’ it is always to be understood: probability with regard
to a certain given state of knowledge” (Schrödinger)

• Some examples:
◦ tossing a die;
◦ ’three box problems’;
◦ two envelops’ paradox.
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Unifying role of subjective probability

• Wide range of applicability
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%
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◦ P (free neutron decays before 17 s) = 68%
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They all convey unambiguously the same confidence on
something.

• You might agree or disagree, but at least You know what this
person has in his mind. (NOT TRUE with “C.L.’s”!)
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

They all convey unambiguously the same confidence on
something.

• You might agree or disagree, but at least You know what this
person has in his mind. (NOT TRUE with “C.L.’s”!)

• If a person has these beliefs and he/she has the chance to
win a rich prize bound to one of these events, he/she has no
rational reason to chose an event instead than the others.
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

• Probability not bound to a single evaluation rule.
• In particular, combinatorial and frequency based ‘definitions’

are easily recovered as evaluation rules
under well defined hypotheses.

• Keep separate concept from evaluation rule.
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From the concept of probability to the probability theory

Ok, it looks nice, . . . but “how do we deal with ‘numbers’?”
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Coherent bet (de Finetti, Ramsey - ’Dutch book
argument’)

It is well understood that bet odds can express confidence†
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Coherent bet → A bet acceptable in both directions:
◦ You state your confidence fixing the bet odds
◦ . . . but somebody else chooses the direction of the bet
◦ best way to honestly assess beliefs.

→ see later for details, examples, objections, etc
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Consistency arguments (Cox, + Good, Lucas)
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• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Consistency arguments (Cox, + Good, Lucas)
• Similar approach by Schrödinger (much less known)
• Supported by Jaynes and Maximum Entropy school
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?
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→ analogy to measures (we need to measure ’befiefs’)

G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 42



From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’

→ analogy to measures (we need to measure ’befiefs’)

⇒ reference probabilities provided by simple cases in which
equiprobability applies (coins, dice, turning wheels,. . . ).

• Example: You are offered to options to receive a price: a) if
E happens, b) if a coin will show head. Etc. . . .
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’

→ Rational under everedays expressions like “there are 90
possibilities in 100” to state beliefs in situations in which the
real possibilities are indeed only 2 (e.g. dead or alive)

• Example: a question to a student that has to pass an exam:
a) normal test; b) pass it is a uniform random x will be ≤ 0.8.
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’
• Also based on coherence, but it avoids the ‘repulsion’ of

several person when they are asked to think directly in
terms of bet (it is proved that many persons have reluctance
to bet money).
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Basic rules of probability

They all lead to

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪ B) = P (A) + P (B) [ if P (A ∩ B) = ∅ ]

4. P (A ∩ B) = P (A |B) · P (B) = P (B |A) · P (A) ,

where
• Ω stands for ‘tautology’ (a proposition that is certainly true
→ referring to an event that is certainly true) and ∅ = Ω.

• A∩B is true only when both A and B are true (logical AND)

(shorthands ‘A,B’ or AB often used → logical product)
• A ∪ B is true when at least one of the two propositions is

true (logical OR)
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Basic rules of probability

Remember that probability is always conditional probability!

1. 0 ≤ P (A | I) ≤ 1

2. P (Ω | I) = 1

3. P (A ∪ B | I) = P (A | I) + P (B | I) [ if P (A ∩ B | I) = ∅ ]

4. P (A ∩ B | I) = P (A |B, I) · P (B | I) = P (B |A, I) · P (A | I)

I is the background condition (related to information I)

→ usually implicit (we only care on ‘re-conditioning’)
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Subjective 6= arbitrary

Crucial role of the coherent bet
• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.
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Crucial role of the coherent bet
• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.

• You claim that this coin has 30% to give head?
⇒ Just reverse the bet

(Like sharing goods, e.g. a cake with a child)
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Subjective 6= arbitrary

Crucial role of the coherent bet
• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.

• You claim that this coin has 30% to give head?
⇒ Just reverse the bet

(Like sharing goods, e.g. a cake with a child)

⇒ Take into account all available information in the most
‘objective way’
(Even that someone has a different opinion!)

⇒ It might seem paradoxically, but the ‘subjectivist’ is much
more ‘objective’ than those who blindly use so-called
objective methods.
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Summary on probabilistic approach

• Probability means how much we believe something
• Probability values obey the following basic rules

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪ B) = P (A) + P (B) [ if P (A ∩ B) = ∅ ]

4. P (A ∩ B) = P (A |B) · P (B) = P (B |A) · P (A) ,

• All the rest by logic

→ And, please, be coherent!
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Inference

Inference

⇒ How do we learn from data
in a probabilistic framework?
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects
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Our conditional view of probabilistic causation

P (Ei |Cj)
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Effects

Our conditional view of probabilistic causation

P (Ei |Cj)

Our conditional view of probabilistic inference

P (Cj |Ei)
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Our conditional view of probabilistic causation

P (Ei |Cj)

Our conditional view of probabilistic inference

P (Cj |Ei)

The fourth basic rule of probability:

P (Cj , Ei) = P (Ei |Cj)P (Cj) = P (Cj |Ei)P (Ei)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

Got ‘after’ Calculated ‘before’

(where ‘before’ and ‘after’ refer to the knowledge that Ei is true.)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

”post illa observationes” “ante illa observationes”

(Gauss)
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Application to the six box problem

H0 H1 H2 H3 H4 H5

Remind:
• E1 = White
• E2 = Black
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

Our prior belief about Hj
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

Probability of Ei under a well defined hypothesis Hj

It corresponds to the ‘response of the apparatus in
measurements.
→ likelihood (traditional, rather confusing name!)
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
Easy in this case, because of the symmetry of the problem.
But already after the first extraction of a ball our opinion
about the box content will change, and symmetry will break.
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

But it easy to prove that P (Ei | I) is related to the other
ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

But it easy to prove that P (Ei | I) is related to the other
ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely

‘decomposition law’: P (Ei | I) =
∑

j P (Ei |Hj , I) · P (Hj | I)

(→ Easy to check that it gives P (Ei | I) = 1/2 in our case).
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)·P (Hj | I)
P

j
P (Ei |Hj , I)·P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) =
∑

j P (Ei |Hj , I) · P (Hj | I)

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

We are ready!
−→ R program
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First extraction

After first extraction (and reintroduction) of the ball:
• P (Hj) changes

• P (Ej) for next extraction changes

Note: The box is exactly in the same status as before
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First extraction

After first extraction (and reintroduction) of the ball:
• P (Hj) changes

• P (Ej) for next extraction changes

Note: The box is exactly in the same status as before

Where is probability?
→ Certainly not in the box!
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)∑
j P (Ei |Hj) · P (Hj)
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)∑
j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj)
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)∑
j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj)

Different ways to write the

Bayes’ Theorem
G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 53



Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E
(1), E(2)) ∝ P (E(2) |Hj , E

(1)) · P (Hj |E
(1))
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E
(1), E(2)) ∝ P (E(2) |Hj , E

(1)) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (Hj |E
(1))
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E
(1), E(2)) ∝ P (E(2) |Hj , E

(1)) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E
(1), E(2)) ∝ P (E(2) |Hj , E

(1)) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E
(1), E(2)) ∝ P (E(2) |Hj , E

(1)) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E
(1), E(2)) ∝ P (E(2) |Hj , E

(1)) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)

Bayesian inference
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E
(1), E(2)) ∝ P (E(2) |Hj , E

(1)) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (Hj |E
(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)

Learning from data using probability theory
G. D’Agostini, Probabilità e incertezze di misura - Parte 1 – p. 54


	Uncertainty $ightarrow $ probability
	Uncertainty $ightarrow $ probability
	Uncertainty $ightarrow $ probability
	Uncertainty $ightarrow $ probability
	Uncertainty $ightarrow $ probability
	Uncertainty $ightarrow $ probability
	Uncertainty $ightarrow $ probability

	Unifying role of subjective probability
	Unifying role of subjective probability
	Unifying role of subjective probability
	Unifying role of subjective probability
	Unifying role of subjective probability
	Unifying role of subjective probability
	Unifying role of subjective probability

	From the concept of probability to the probability theory
	From the concept of probability to the probability theory
	From the concept of probability to the probability theory
	From the concept of probability to the probability theory
	From the concept of probability to the probability theory
	From the concept of probability to the probability theory
	From the concept of probability to the probability theory
	From the concept of probability to the probability theory
	From the concept of probability to the probability theory
	From the concept of probability to the probability theory
	From the concept of probability to the probability theory
	From the concept of probability to the probability theory

	Basic rules of probability
	Basic rules of probability
	Subjective $
e $ arbitrary
	Subjective $
e $ arbitrary
	Subjective $
e $ arbitrary

	Summary on probabilistic approach
	Inference
	From causes to effects and back
	From causes to effects and back
	From causes to effects and back
	From causes to effects and back

	Symmetric conditioning
	Symmetric conditioning
	Symmetric conditioning
	Symmetric conditioning

	Application to the six box problem
	Collecting the pieces of information we need
	Collecting the pieces of information we need
	Collecting the pieces of information we need
	Collecting the pieces of information we need
	Collecting the pieces of information we need
	Collecting the pieces of information we need
	Collecting the pieces of information we need
	Collecting the pieces of information we need
	Collecting the pieces of information we need
	Collecting the pieces of information we need
	Collecting the pieces of information we need

	First extraction
	First extraction

	Bayes theorem
	Bayes theorem
	Bayes theorem
	Bayes theorem
	Bayes theorem
	Bayes theorem

	Updating the knowledge by new observations
	Updating the knowledge by new observations
	Updating the knowledge by new observations
	Updating the knowledge by new observations
	Updating the knowledge by new observations
	Updating the knowledge by new observations
	Updating the knowledge by new observations
	Updating the knowledge by new observations


