next up previous contents
Next: Normalization uncertainty Up: Matrice di covarianza di Previous: Matrice di covarianza di   Indice

Offset uncertainty

Let $ x_i\pm\sigma_i$ be the $ i=1\ldots n$ results of independent measurements and $ {\bf VF}_X$ the (diagonal) covariance matrix. Let us assume that they are all affected by the same calibration constant $ c$, having a standard uncertainty $ \sigma_c$. The corrected results are then $ y_i = x_i + c$. We can assume, for simplicity, that the most probable value of $ c$ is 0, i.e. the detector is well calibrated. One has to consider the calibration constant as the physical quantity $ X_{n+1}$, whose best estimate is $ x_{n+1} = 0$. A term $ V_{X_{n+1,n+1}} = \sigma^2_c$ must be added to the covariance matrix.

The covariance matrix of the corrected results is given by the transformation

$\displaystyle {\bf V}_Y = {\bf M}{\bf V}_X{\bf M}^T\,,$ (14.14)

where $ M_{ij}= \left.\frac{\partial Y_i}{\partial X_j}
\right\vert _{x_j}$. The elements of $ {\bf V}_Y$ are given by

$\displaystyle V_{Y_{kl}} = \sum_{ij} \left. \frac{\partial Y_k}{\partial X_i} \...
...x_i} \left. \frac{\partial Y_l}{\partial X_j} \right\vert _{x_j} V_{X_{ij}}\, .$ (14.15)

In this case we get
$\displaystyle \sigma^2(Y_i)$ $\displaystyle =$ $\displaystyle \sigma_i^2+\sigma_c^2,$ (14.16)
Cov$\displaystyle (Y_i,Y_j)$ $\displaystyle =$ $\displaystyle \sigma_c^2 \hspace{1.3 cm} (i\ne j),$ (14.17)
$\displaystyle \rho_{ij}$ $\displaystyle =$ $\displaystyle \frac{\sigma_c^2}
{\sqrt{\sigma_i^2+\sigma_c^2}
\,\sqrt{\sigma_j^2+\sigma_c^2}}$ (14.18)
  $\displaystyle =$ $\displaystyle \frac{1}
{\sqrt{1+\left(\frac{\sigma_i}{\sigma_c}\right)^2}
\,\sqrt{1+\left(\frac{\sigma_j}{\sigma_c}\right)^2}}\, ,$ (14.19)

reobtaining the results of Section [*]. The total uncertainty on the single measurement is given by the combination in quadrature of the individual and the common standard uncertainties, and all the covariances are equal to $ \sigma^2_c$. To verify, in a simple case, that the result is reasonable, let us consider only two independent quantities $ X_1$ and $ X_2$, and a calibration constant $ X_3 = c$, having an expected value equal to zero. From these we can calculate the correlated quantities $ Y_1$ and $ Y_2$ and finally their sum ( $ S\equiv Z_1$) and difference ( $ D\equiv Z_2$). The results are
$\displaystyle {\bf V}_Y$ $\displaystyle =$ $\displaystyle \left( \begin{array}{cc}
\sigma_1^2+\sigma_c^2 & \sigma_c^2\, \\
\sigma_c^2 & \sigma_2^2+\sigma_c^2
\end{array}\right) \, ,$ (14.20)
       
       
$\displaystyle {\bf V}_Z$ $\displaystyle =$ $\displaystyle \left( \begin{array}{cc}
\sigma_1^2 + \sigma_2^2+
4\,\sigma_c^2 &...
...2 \\
\sigma_1^2-\sigma_2^2 & \ \sigma_1^2 + \sigma_2^2
\end{array}\right) \, .$ (14.21)

It follows that
$\displaystyle \sigma^2(S)$ $\displaystyle =$ $\displaystyle \sigma_1^2 +\sigma_2^2 +(2\,\sigma_c)^2,$ (14.22)
$\displaystyle \sigma^2(D)$ $\displaystyle =$ $\displaystyle \sigma_1^2 + \sigma_2^2\, ,$ (14.23)

as intuitively expected.
next up previous contents
Next: Normalization uncertainty Up: Matrice di covarianza di Previous: Matrice di covarianza di   Indice
Giulio D'Agostini 2001-04-02