Il linguaggio R nella scuola

- Calcolo, logica, grafica, programmazione, fisica, statistica -

Seminate, seminate; qualcosa crescerà!

Giulio D'Agostini Dipartimento di Fisica, Università "La Sapienza", Roma

25 marzo 2013

Indice

1	R co	me (super-)calcolatrice
	1.1	Operazioni elementari
	1.2	Variabili
	1.3	Funzioni
	1.4	Scrivere ed eseguire degli script
	1.5	Salvare e recuperare la sessione di lavoro
	1.6	Regole del gioco e qualche consiglio
		1.6.1 Interi e reali
		1.6.2 Notazione scientifica
		1.6.3 Uso delle parentesi tonde
		1.6.4 Nomi degli oggetti
		1.6.5 Numeri complessi
		1.6.6 Sequenze di caratteri ('stringhe')
		1.6.7 Operazioni logiche
		1.6.8 Sintassi delle istruzioni
		1.6.9 Help!
	1.7	Tabella riepilogativa
2		no contatto con la grafica 27
	2.1	Punti, simboli e caratteri sul piano cartesiano
	2.2	'Liste' di coordinate
	2.3	Una parentesi formale: vettori e matrici (e liste)
		2.3.1 Vettori (nel senso informatico)
		Plot di 'vettori di coordinate
		2.3.2 Matrici
		Rappresentazione matriciale dei dati
		Suddivisione della finestra grafica
		2.3.3 Liste
		2.3.4 Nomi degli elementi di una lista
	2.4	La magia dei colori
		2.4.1 Codice RGB dei colori
		2.4.2 Tavolozze personalizzate (e numeri in rappresentazione esadecimale) 46
		2.4.3 Verifica del codice RGB sui pixel di un monitor
	2.5	Alcune funzioni per disegnare figure geometriche
		2.5.1 Rect
		2.5.2 Symbols
		2.5.3 Polygon

iv INDICE

	2.6	Figure trasparenti	52
	2.7	Annotazioni sui plot	54
	2.8	Come salvare i plot su file	56
			56
			57
			59
		•	60
	2.9	*	61
3	Rette	e, parabole e polinomi	63
	3.1	Tracciamento di linee	63
		3.1.1 Segmenti e spezzate	63
			64
	3.2		64
		*	64
		11	65
	3.3	1	66
	3.4		68
	3.5		70
	3.6		72
	5.0		74
			76
			77
			77 78
	3.7	*	79
	3.8	C	79 80
	3.8		81
			81
	2.0	, and the second se	81
	3.9		83
	3.10	1	85
		*	86
			91
	3.13	Tabella riepilogativa	95
4	Vetto	, , , , , , , , , , , , , , , , , , ,	97
	4.1	Vettori (nel senso geometrico)	97
		1	97
		Prodotto scalare	98
		Modulo e versore (e angolo fra vettori)	98
		Prodotto vettoriale	99
		4.1.2 Rappresentazione grafica di vettori su un piano	99
	4.2	Dipendenza dall'angolo delle proiezioni dei versori sugli assi	01
			01
		· · · · · · · · · · · · · · · · · · ·	06
	4.3	1 0	09
			10
	4.4		11
			12

INDICE v

		4.4.2	Velocità angolare e 'velocità'
		4.4.3	Grafici animati di punti ruotanti
		4.4.4	While
	4.5	Trigono	ometria – un nome che spaventa
		4.5.1	Alcune proprietà delle funzioni seno e coseno
		4.5.2	Funzione tangente
		4.5.3	Funzioni trigonometriche inverse
		4.5.4	Qualche esempio di applicazione sui triangoli
			Quanto è largo uno schermo da 40 pollici?
	4.6	Rappre	sentazione grafica dei numeri complessi
		4.6.1	La spirale dei numeri complessi
	4.7	Tabella	riepilogativa
5	Stud	lio di fu	nzioni 127
	5.1	Penden	ze di funzioni non lineari
		5.1.1	Pendenze medie e pendenze locali
	5.2	Espress	sioni analitiche delle pendenze medie di funzioni elementari 130
		5.2.1	Pendenze medie dei polinomi fino al quarto grado
			Pendenza di <i>x</i>
			Pendenza media di x^2
			Pendenza media di x^3
			Pendenza media di una generica cubica
			Pendenza media di x^4 e di potenze di ordine superiore
		5.2.2	Pendenze medie di altre funzioni
			Pendenza media di $1/x$
			Pendenza media di $1/x^2$
			Pendenza media di \sqrt{x}
			Pendenza media di $1/\sqrt{x}$
	5.3	Penden	ze locali delle leggi di potenza
		5.3.1	Funzione 'pendenza locale' di un polinomio
		5.3.2	Esempi
	5.4	Variazi	oni di pendenza
		5.4.1	Retta
		5.4.2	Parabola
		5.4.3	Cubica
	5.5	Penden	za e 'derivata'
		5.5.1	Derivata prima e derivate di ordini superiori
		5.5.2	Derivate con R
			Derivate analitiche
			Derivate a 'forza bruta'
	5.6	Un ese	mpio riassuntivo
		5.6.1	Massimi e minimi locali
		5.6.2	Asintoti di un funzione
	5.7	Extra .	
	5.8	Tabella	riepilogativa

vi INDICE

6	Equa	azioni e	ottimizzazioni 15	51
	6.1	Sul sign	nificato grafico di equazioni	51
		6.1.1	Intersezioni fra rette	51
		6.1.2	Parabole e rette	53
		6.1.3	Cubica	54
	6.2	Ricerca	a degli zeri di una funzione	56
		6.2.1	Function uniroot	56
		6.2.2	Ricerca di molti zeri	58
		6.2.3	Soluzione numerica di equazioni algebriche di ordine arbitrario 15	59
	6.3	L'algor	itmo di Newton	59
		6.3.1	Linearizzazione di una funzione nell'intorno di un punto 16	52
	6.4	Argom	enti di funzione che contengono funzioni	53
	6.5		one di sistemi di equazioni di primo grado 16	55
	6.6		dei coefficienti di un polinomio	57
		6.6.1	Polinomio di grado n passante per $n+1$ punti	57
		6.6.2	Caso in cui si fissano a priori m coefficienti	70
	6.7	Una fai	mosa proprietà del quadrato	72
	6.8		no più breve e cammino più veloce	13
		6.8.1	Caso di velocità uguali	73
		6.8.2	Caso di velocità diverse ('il bagnino di Fermat')	74
		6.8.3	Legge di rifrazione della luce	15
	6.9		i di funzioni complicate (eventualmente multidimensionali)	15
		6.9.1	Un problema di ottimizzazione	15
		6.9.2	Gradient descent unidimensionale	15
		6.9.3	Estensione al caso multidimensionale	78
		6.9.4	Funzioni di minimizzazioni di R	35
			nlm()	36
			nlminb()	
			optimize() 18	
			optim()	
	6.10	rimasus		
	6.11	Minimi	izzazioni vincolate	
			riepilogativa	
7	Prog	ramma	zione e linguaggio R – Parte prima)1
	7.1	_	mmazione quotidiana e programmazione formale	1
	7.2	Istruzio	oni condizionate) 2
		7.2.1	if, 'else if', else) 3
		7.2.2	Assegnazione condizionata: ifelse) 5
		7.2.3	switch) 5
		7.2.4	Altre condizioni) 6
	7.3	Soluzio	one di equazioni di secondo grado) 6
	7.4	Format	tazione dei messaggi: sprintf())(
	7.5		oni ripetute)2
		7.5.1	for)2
		7.5.2	Ciclo condizionato)4
		7.5.3	while)5
		7.5.4	repeat 20)6

INDICE vii

	7.6	Diagrammi di flusso
	7.7	Algoritmi: concetto e qualche esempio introduttivo
		7.7.1 Multipli di un numero
		7.7.2 Massimo valore prefissato
		7.7.3 Massimo, minimo, media, somma e prodotti
	7.8	Tabella riepilogativa
8	Prog	grammazione e linguaggio R – Parte seconda 211
	8.1	Tipo di variabili
	8.2	Chiamate a funzioni
	8.3	Operazione fra matrici
	8.4	Scrittura e lettura su/da file
	8.5	Peculiarità di R rispetto ad altri linguaggi
	8.6	Qualche trucco
	8.7	Tabella riepilogativa
9	Prol	olemi antichi e moderni 213
	9.1	Crivello di Eratostene
	7.1	9.1.1 Compilazione delle funzione
	9.2	Metodo di Euclide per il massimo comun divisore
	7.2	9.2.1 Minimo comune multiplo
		9.2.2 Operazioni con frazioni
		9.2.3 Funzioni ricorsive
	9.3	Fattorizzazione di numeri e test di 'primalità'
	9.4	MCM e mcm alla maniera scolastica
	7.4	9.4.1 MCM e mcm fra due numeri
		9.4.2 Confronto con il metodo di Euclide
		9.4.3 Estensione a molti numeri
	9.5	Estrazioni di radici
	,	9.5.1 Radice quadrata con il metodi dei Babilonesi
		9.5.2 Il metodo di Newton
		9.5.3 Estensione a potenze qualsiasi
	9.6	Stima di pi greco
	,.0	9.6.1 Stima trigonometrica del perimetro
		9.6.2 Metodo geometrico
		Poligoni regolari inscritti a una circonferenza
		Poligoni regolari circoscritti a una circonferenza
		9.6.3 Osservazioni (e <i>caveat</i> !) sul calcolo numerico
	9.7	Calcoli con precisione arbitraria mediante bc
	· · ·	9.7.1 Bc – Basic calculator
		9.7.2 Uso della funzione system() di R
		9.7.3 Programmi di interfaccia fra R e bc
	9.8	Calendario perpetuo
	7.0	9.8.1 Algoritmo tabulare (Wikipedia)
		9.8.2 Algoritmo contando i giorni dal 15 ottobre 1582
		9.8.3 Differenza di date
		9.8.4 Algoritmo partendo da un primo gennaio noto
	9.9	Algoritmi di crittografia: introduzione ed esempi storici

viii INDICE

		9.9.1	Il cifrario di Cesare	250
		9.9.2		251
		9.9.3		252
		9.9.4		252
	9.10	Crittog	rafia a chiave pubblica	254
		9.10.1	Cenni di aritmetica modulare	255
		9.10.2	L'algoritmo RSA ed il trattamento dei numeri grandi	256
			.	258
		9.10.4	Il problema dei grandi numeri	259
			1	261
	9.12	Tabella	riepilogativa	262
10	Gioc	ando s'i	impara 2	263
			<u>=</u>	263
				264
			-	265
				266
				266
		10.4.2	Ricerca binaria	268
		10.4.3	Rapidità di convergenza della ricerca binaria	270
	10.5	Funzio	ni di ricerca di R	271
		10.5.1	binsearch()	271
		10.5.2	approx()	272
		10.5.3	Uso di which()	272
	10.6	Un gio	co strategico: le 21 palline	272
				275
				278
				279
				283
			c	285
			\mathcal{E}	288
	10.13	3Tabella	riepilogativa	289
11			· · · · · · · · · · · · · · · · · · ·	91
	11.1		. I	292
				292
			1	292
				293
		11.1.4	.	296
			x y	297
			ı P v	297
				298
				299
		11.1.5	4	299
				299
		11 1 6		301
	11.2		!	303
	11.2		6 6	304
		11.2.1	Lancio di oggetti con v_x fissata e v_{v_0} variabile	304

INDICE ix

		11.2.2	Lancio di oggetti con v_0 fissa e angolo di lancio variabile	 . 305
		11.2.3	Moto circolare uniforme	 . 306
	11.3	Problei	mini unidimensionali	 . 309
		11.3.1	Incontri di treni	 . 309
		11.3.2	Controllo dimensionale dei risultati	 . 311
		11.3.3	Problemi di 'inseguimento'	 . 312
			Caso di equazioni orarie paraboliche	
	11.4	Moto d	lei pianeti del sistema solare in approssimazione circolare	 . 314
	11.5	Movim	nento dei pianeti 'visto' dalla Terra	 . 315
		11.5.1	Cambiamento di coordinate	 . 315
		11.5.2	Moto relativo dei pianeti rispetto alla Terra	 . 316
		11.5.3	Sistema tolemaico ed epicicli	 . 320
	11.6	Caso g	enerale del problema inverso $[a(t) \rightarrow v(t) \rightarrow s(t)] \dots \dots$. 323
	11.7	Soluzio	one numerica del problema " $a(t) \rightarrow v(t) \rightarrow s(t)$ "	 . 324
			Soluzione numerica del problema della gittata	
		11.7.2	Confronto con la soluzione analitica	 . 327
		11.7.3	Motivo delle differenze (con cenno alle interpolazioni)	 . 329
	11.8	Estensi	one a casi più complicati	 . 331
	11.9	Forze o	lipendenti dalla posizione e/o dalla velocità	 . 334
		11.9.1	Soluzione numerica	 . 336
	11.10)Tabella	riepilogativa	 . 337
10	a.	4.	1144	220
12			predittiva e aree 'sotto' le funzioni	339
	12.1		one geometrica di $a(t) \rightarrow v(t) \rightarrow s(t)$	
			Interpretazione geometrica di $a(t) \cdot \Delta t$	
	10.0		Valutazione numerica ('a forza bruta') delle aree	
	12.2		iniformemente accelerato rivisitato	
	10.0		Moto di un oggetto lanciato verso l'alto	
			primitive delle funzioni: integrali finiti e indefiniti	
			eressante esercizio analitico	
	12.5		a sul problema di $a(t)$ 'semicircolare'	
			Un esercizio di geometria e trigonometria	
			Velocità in funzione del tempo	
			Controllo del risultato mediante derivate	
		12.5.4	Soluzione mediante integrazione numerica	
			Funzione integrate()	
		10 5 5	Applicazione alla funzione di accelerazione 'semicircolare': $v(t)$.	
	12.6		Ordini di grandezza	
	12.0	_	li 'sparando a caso' e generatori di numeri 'casuali'	
			Simulazioni di Monte Carlo mediante il metodo 'colpito/mancato'	
	10.7		Stima di un parametro a cui è legata l'area: stima MC di π	
	12.7		ezza di un tratto di curva	
			Lunghezze di tratti di polinomio	
	10.0		Lunghezze di tratti di generiche funzioni	
	12.8		e di un solido di rotazione	
			Volume di un parallelepipedo rettangolo	
			Volume di un prisma retto a base triangolare	
		12.8.3	Volume di un cilindro	 . 370

X INDICE

		12.8.4	Volume di un cono	370
		12.8.5	Volume di una sfera	371
			Caso generale	
		12.8.7	Volume di un palloncino	372
	12.9		ce laterale di un solido di rotazione	
		-	Superficie laterale di un cilindro	375
		12.9.1	<u>-</u>	375
		12.9.2	Superficie di una sfera	375
		12.9.3	Caso generale	376
	12.10		riepilogativa	378
13	Legg	i espon	enziali	379
		_	ssioni geometriche e leggi esponenziali	379
	10.1		Capitalizzazione composta 'continua'	379
	13.2		a e decrescita di popolazioni (e di altre grandezze)	383
	13.2		Costanti di tempo e 'vite medie'	385
			Tempo di raddoppio e di dimezzamento	387
	13 3		one mediante il metodo del carbonio-14	388
			mpio pratico di crescita 'circa esponenziale'	388
	10.1		Valutazione empirica di α (e quindi della costante di tempo τ)	390
			Il tacchino esponenziale	390
	13 5		ta della funzione esponenziale	390
	10.0		Limite dell'esponenziale per $\alpha t \ll 1$ ovvero $t \ll \tau$	391
	13.6		enziali e logaritmi naturali	392
	10.0		Potenze, radici e logaritmi	392
			L'importanza dei logaritmi naturali	394
		13.6.3	Proprietà dei logaritmi	394
			Derivata del logaritmo	398
			Integrale di $1/x$	399
	13.7		zzazioni e plot in scala logaritmica	399
			Linearizzazioni	399
			Linearizzazione di una legge di potenza e plot 'log-log'	402
			Plot <i>semilog</i> con scala delle ordinate logaritmica	404
			Riepilogo sull'uso delle scale logaritmiche	404
	13.8		riante degli esponenziali negativi	405
			i di processi fisici con grandezze che seguono la (13.99)	406
			Moto in fluido viscoso	408
			Processo di termalizzazione	409
	13.10		riepilogativa	410
14	Prob	abilità		411
17			so di Bernoulli	411
	17,1		barplot	411
			Distribuzione binomiale	411
			Quanto bisogna aspettare? Distribuzione geometrica	411
	14.2		uzione di Poisson	411
			uzione di Gauss	411
			zione di numeri aleatori	411
	A 11 F	~1111414		

INDICE xi

15	Statistica descrittiva	413
16	Analisi dei dati	415
17	Appendice A — Da R a C e ritorno 17.1 Dichiarazione delle variabili	417 417 417 417
	17.4 Usare funzioni scritte in C da R	417 417
18	Appendice B — Reference card	419
	18.1 Packages18.2 Getting help18.3 Input and output18.4 Data creation18.5 Slicing and extracting data18.6 Variable conversion18.7 Variable information18.8 Data selection and manipulation18.9 Math18.10Matrices	419 419 420 420 421 421 421 422 423
	18.11 Advanced data processing	423
	18.12Strings	423 424 424 425 426 427 427 428 428
	18.21 Programming	428

xii INDICE

Elenco delle figure

1.1	Interfaccia grafica di Windows	6
2.1 2.2 2.3	Figura ottenuta con tutti comandi del paragrafo 2.1	31 36 37
2.4	Valori delle varie righe di una colonna in funzione dell'indice di riga	40
2.5	Matrice di plot prodotto da pairs()	41
2.6	Suddivisione della finestra grafica in una matrice 3×3	42
2.7	Scale di grigi e tavolozza di colori	47
2.8	Esempi di tavolozze personalizzate ottenute interpolando fra due colori	48
2.9	Pixel di un minitor ingranditi	50
2.10	<u> </u>	52
2.11	Figure disegnate mediante la funzione polygon()	53
2.12	Oggetti grafici trasparenti	54
2.13	Alcune delle possibilità di annotazioni 'speciali' in R	55
3.1	Grafico ottenuto con le istruzioni dei paragrafi 3.1 e 3.2	66
3.2	Funzione n^2 , definita sull'insieme dei naturali, e x^2 , definita sui reali	71
3.3	Equazione $y = mx + q$, vista come funzione di m e q , per $x = 2$	73
3.4	Rette parallele che sembrano curve o convergenti (illusioni ottiche)	75
3.5	Simboli prodotti dal parametro pch	76
3.6	Fasci di rette	77
3.7	Coppie di rette parallele e relazioni fra le loro pendenze	80
3.8	Parabole ottenute mediante l'equazione $y = ax^2$	82
3.9	Parabole ottenute mediante l'equazione $y = ax^2 + c$	83
	Parabole ottenute con $a = \pm 1$ e b compreso fra -2 e 2 a passi di 0.05	84
	Parabole ruotate ottenute mediante rotazione degli assi	86 87
	Funzione $y = c_4 x^3$, con c_4 che varia fra $1/8$ e 8	87 89
	Come figura 3.13, ma con coefficienti del termine cubico negativo	90
	Parabole animate	93
4.1	Rappresentazione grafica di vettori	100
4.2	Versore ruotante e cerchio trigonometrico	103
4.3	Versori lungo ipotenusa e cateti di un trianolo rettangolo	104
4.4	Funzioni trigonometriche seno e coseno	105
4.5	Cerchi ed ellissi tracciate in modo parametrico	106
46	Figura ottenuta mediante arco() cerchio() e poligono()	108

4.7	Figure geometriche ottenute con poligono.c()	109
4.8	Un orologio stilizzato	111
4.9	Tre punti ruotanti su diversi cerchi e con diversi periodi	114
4.10	Proiezioni lungo gli assi in un moto circolare uniforme	115
	Funzione tangente	118
	Un esercizio di trigonometria	119
	Risoluzione di un triangolo da due lati e l'angolo fra essi compreso	120
	Numeri complessi sul piano cartesiano	123
	Rappresentazione grafica di potenze di numeri complessi	125
5.1	Rappresentazione grafica di pendenze medie	129
5.2	Come figura 5.2, ma con altra ascissa del punto centrale	130
5.3	Rappresentazione di pendenze medie a partire dallo stesso punto	132
5.4	Alcune funzione elementari delle quali ci ricaviemo le pendenze medie	133
5.5	Parabola con esempi di rette tangenti	137
5.6	Rette tangenti ad un polinomi di terzo grado	138
5.7	Concavità e convessità di una curva	141
5.8	Funzione e sua derivata	143
5.9	Studio della funzione $f(x) = \frac{1}{x} + \frac{x}{2} + 1$	147
6.1	Punti di intersezione di rette con l'asse delle ascisse	152
6.2	Rappresentazioni grafiche di equazioni di secondo grado	153
6.3	Interpretazione grafica di sistemi di equazioni	155
6.4	Intersezione di funzioni	157
6.5	Metodo di Newton per la ricerca di uno zero di una funzione	160
6.6	Polinomi passanti per punti prefissati	169
6.7	Algoritmo gradient descent unidimensionale	176
6.8	Algoritmo gradient descent bidimensionale all'opera	182
6.9	Altre traiettorie di discesa ottenute mediante il <i>gradient descent</i>	184
6.10		185
9.1	Caso particolare dell'algoritmo della radice quadrata di Newton	227
9.2	Possibile eccezione del metodo di Newton per la ricerca degli zeri	229
9.3	Polinomi inscritti al cerchio	230
9.4	Polinomi circoscritti al cerchio	233
9.5	Calendario del 1582	244
	Rappresentazione grafica di una distribuzione di reddito	269
	Relazione inversa di quella in basso di figura 10.1	273
	Gioco della tombola dopo 20 estrazioni	277
	Versione cliccabile della tombola	278
	Interfaccia grafica al gioco delle 21 palline	280
	Ricorda la sequenza! Un gioco di memoria	284
10.7	Morra cinese	286
	Coordinate cartesiane e polari	293
	Esempi di equazioni orarie, con rispettive velocità e accelerazioni	294
	Moto con accelerazione linearmente decrescent	296
11.4	Traiettorie ottenute da semplici equazioni orarie delle coordinate polari	298

11.5 Equazioni orarie lineari e paraboliche	300
11.6 Alcune traiettorie con rappresentazione 'stroboscopica'	301
11.7 Traiettoria di un punto avente equazioni orarie delle coordinate polari paraboliche	303
11.8 Moto circolare uniforme: equazioni orarie delle possibili coordinate	307
11.9 Equazioni orarie, velocità e accelerazioni delle componenti	308
11.10Incontri e sorpassi di treni	310
11.11Problemi con equazioni orarie lineari e paraboliche	313
11.12Esempio di soluzione 'reale' spuria	
11.13 Moto apparente di Venere visto dalla Terra	318
11.14Moto apparente di Marte visto dalla Terra	319
11.15Moto apparente di Marte visto dalla Terra	321
11.16Esempio di epiciclo e relativa orbita	322
11.17Esempio di un moto 'variamente accelerato'	323
11.18Spazio percorso nel problema della gittata	
11.19Un esempio di interpolazione lineare	330
11.20 Soluzione numerica del problema di accelerazione variabile	335
10.1 [1	340
12.1 Incrementi di velocità	340 341
	343
 12.3 Valutazione di Δ<i>v</i> in funzione dell'ampiezza degli intervallini	343 344
12.4 velocità e spostamento il un moto uniformemente accelerato \dots 12.5 $a(t)$, $v(t)$ e $y(t)$ nel problema dell'oggetto lanciato verticalmente \dots	345
12.5 $u(t)$, $v(t)$ e $y(t)$ her problema den oggetto fanciato verticalmente	
12.0 Aree definitate fra un polifionno del terzo grado e i asse delle ascisse	
12.8 Area della porzione di cerchio <i>A</i> in funzione di <i>x</i>	353
12.9 Area della porzione di cerchio <i>A</i> in funzione di <i>x</i>	354
12.10 Controllo della soluzione di $v(t)$ ottenuta dall'area fra $o \in t$ sotto $a(t)$	356
12.11 Soluzione numerica del problema di moto con accelerazione variabile	359
12.12 Punti estratti a caso fra in un quadrato di raggio unitario	361
12.13 Istogramma di punti generati 'a caso' con pesi reletivi dati da una certa funzione	362
12.14 Stima con metodo di Monte Carlo di pi greco	364
12.15 Valutazione delle lunghezze di tratti di curve	365
12.16Prisma retto a base irregolare	369
12.17 Calcolo di volume di prismi	369
12.18Calcolo del volume di un tronco di cono	370
12.19Calcolo del volume di una sfera	371
12.20Generico solido di rotazione	372
12.21 Determinazione del volume di un palloncino	373
13.1 Capitalizzazione composta annuale e continua	381
13.2 Convergenza alla costante $e = 2.71828 \cdots$ di $(1 + \frac{1}{n})^n$ per n crescente	382
13.3 Interesse maturato in un anno in funzione dell'intervallo di capitalizzazione	383
13.4 Funzione esponenziale crescente e decrescente	386
13.5 Produzione di CO ₂ delle Cina come esempio di crescita esponenziale	389
13.6 Funzione logaritmo nelle tre basi più usate	395
13.7 Linearizzazione mediante cambiamento di variabile	400
13.8 Linearizzazioni di leggi di potenze mediante grafico 'log-log'	401
13.9 Come figura 13.8, con l'aggiunta di tre andamenti lineari	401
13.10 Come figura 13.9, ma riportando sugli assi i valori dei logaritmi	403

13.11 Variabile il	cui tasso	di crescita	dipende	dalla	differenza	rispetto	ad un	valore	asinto	tico407
13.12Decrement	i esponen:	ziali al vari	are di τ							407

Prefazione

L'idea ispiratrice di questo testo è che la diffusione dei personal computer fra la popolazione giovanile, avvenuta soprattutto nell'ultimo decennio, potrebbe permettere una 'rivoluzione' – mi si passi il termine – analoga a quella avvenuta negli anni settanta del secolo scorso con l'arrivo sul mercato delle prime calcolatrici scientifiche. Chi scrive ha avuto infatti la 'fortuna' di vivere le diverse fasi di questo 'incredibile' progresso. Il virgolettato sui due termini ha infatti un significato ben preciso. Mi considero infatti un privilegiato ad aver assistito a queste continue evoluzione, ma mi sarei considerato più fortunato se nell'ultimo anno di liceo classico avessi usato meglio le ore di matematica anziché perderle in conti lunghissimi e inutili facendo uso di tavole di logaritmi e di funzioni trigonometriche (il programma di greco mi ha lasciato indubbiamente un ricordo migliore – vuoi mettere i grandi tragici greci contro la 'tragedia' di pedanterie di trigonometria? Dove sta scritto che un ragazzo debba conoscerle *tutte*, e per giunta a memoria?).

In effetti l'evoluzione della potenza e capacità di memoria dei computer non cessa di stupire me i miei coetanei, quando ricordiamo che durante la tesi il computer centrale del CERN di Ginevra aveva una memoria da un mega byte, mentre il 'Nord 100' con il quale l'esperimento acquisiva i dati sperimentali si limitava a 64k (sì, come un Commodore o uno Spectrum, che arrivarono sul mercato di massa qualche anno dopo). Per non pensare che agli inizi degli anni novanta, quando per acquistare un hard disk da 2GB, ingombrante e pesante, occorreva una autorizzazione speciale di una apposita commissione di calcolo dell'Istituto Nazionale di Fisica Nucleare, mentre oggigiorno pennette USB di pari capacità vengono considerate quasi obsolete.

Nella mia storia personale – e mi scuso di questi aspetti autobiografici, ma credo aiutino a far capire lo spirito con il quale è stato intrapreso questo lavoro – una volta facevo conti a mano, aiutandomi con le tabelle dei logaritmi e della funzioni trigonometriche. Poi, con l'ingresso all'università ho scoperto il regolo calcolatore, oggetto geniale che, pur facendo perdere in accuratezza aumentava rapidamente la velocità di calcolo. Quindi dal secondo anno entrai in possesso di una fantastica Texas 51A, costata ai miei un frazione non trascurabile del loro stipendio, sostituita nel seguito da più comode calcolatrici tascabili. Ma confesso che per almeno una quindicina di anni ho seguitare a girare l'Europa con il mio fedele regolo calcolatore che non si rompeva né rimaneva senza batterie. Nel frattempo dal terzo anno di università mi ero avvicinato alla programmazione FORTRAN, ma in modo assolutamente poco amichevole: programmi incisi su schede perforate che non tolleravano errori di battitura; quindi, quando si era convinti di aver prodotto qualcosa di decente, si depositava il pacchetto di schede in un apposito contenitore da dove l'operatore lo dava in pasto all'UNIVAC del centro di calcolo; quindi dopo un certo tempo nel quale bisognava conteggiare lo spirito collaborativo sia dell'operatore che delle stampanti, che spesso accartocciavano tutto, si aveva un lungo listato. Inutile dire che bastava aver fatto un minimo errore di sintassi, come dimenticare di chiudere una parentesi, che il compilatore non capiva più niente e, sdegnato, stampava una lunga serie di 'insulti'. E ricomincia da capo! Nel seguito le cose sono migliorate, grazie alla diffusione dei monitor e degli editori di testo, che hanno eliminato completamente il supporto cartaceo, almeno per i programmi. Successivamente sono arrivati i personal computer

2 Prefazione

e i portatili, che hanno reso le cose ancora più facili, mentre anche sul fronte di linguaggi c'era una certa varietà e quindi si usa un approccio 'multilanguage', ovvero usare quello più adatto ai diversi compiti o che si integrava meglio con il lavoro di squadra: FORTRAN, Basic, Assembler, C, OS-9, Maple, Mathematica, Perl, Javascript, Php, Python, C++, Java, oltre a Paw e Gnuplot per la grafica (la quale era anche incorporata in Maple e Mathematica).

La scoperta di R è stata più o meno casuale e la cosa che mi piacque subito fu il fatto che fosse un linguaggio di scripting: non hai bisogno di scrivere le due righe che a volte ti servono per risolvere un piccolo problema su un file e procedere quindi a compilazione, 'link' ed esecuzione. E nemmeno devi definire accuratamente tutte le variabili, cosa indubbiamente importante se devi scrivere un programma 'critico', nel quale non vuoi correre il rischio di errori e/o che deve girare alla massima velocità, perché magari sarà eseguito miliardi di volte al giorno. Poi in R puoi trattare in modo compatto dei 'vettori' di numeri, anche complessi, e hai già a disposizione le funzioni grafiche, bene integrate con il linguaggio, oltre a tante funzioni matematiche e statistiche. Infine, R permette di scrivere e usare in modo estremamente semplice funzioni scritte dall'utente. Il risultato è che mentre una volta la sola idea di imbarcarsi in una lunga serie di passaggi per risolvere un problemino di qualche riga mi scoraggiava, ora, se ho un computer a portata di mano, apro una sessione di R anche, come si dice, per il conto della spesa. Dopo un po' di tempo mi sono accorto che ricorrevo a Mathematica soltanto le poche volte in cui dovevo trovare soluzioni esatte mediante calcoli simbolici.

Veniamo ora all'uso nelle scuole. Come si diceva, mentre l'introduzione di calcolatrici scientifiche economiche ha 'rivoluzionato' l'insegnamento, permettendo allo studente di concentrarsi sui concetti, senza la grande perdita di tempo di calcolarsi radici e potenze, logaritmi e funzioni trigonometriche, francamente non mi sembra che all'introduzione dei computer sia corrisposta una rivoluzione altrettanto significativa. Sì, ovviamente ci sono insegnanti di buona volontà che, ad esempio usano, Cabrì per facilitare l'apprendimento della geometria, o che fanno un minimo di programmazione. Ma in sostanza mi sembra che l'uso del computer nelle scuole si limiti, oltre alle pessime 'ricerche' fatte scaricando e stampando pagine trovate a caso su internet, alla video scrittura, alla organizzazione di informazioni mediante fogli di calcolo e poco più. Certo, tutte cose interessanti ed è già una bella cosa che i ragazzi abbiano delle idee di cosa siano file, cartelle, come farne delle copie e cambiare nomi, e così via. Ma è ben poca cosa se confrontata alle potenzialità che i computer di oggi offrono, soprattutto per facilitare la comprensione di matematica e fisica.

Per esempio, prendiamo l'insegnamento delle fisica, oggi ritenuto importante non soltanto perché alla base delle altre scienze del mondo, ma perché paradigmatico di un certo modo di approcciare i problemi in modo 'scientifico'. Ho sempre trovato un peccato che alle superiori, compreso il liceo scientifico, si insegni la meccanica quando gli studenti non hanno ancora appreso l'abc del calcolo differenziale, una tecnica inventata più di tre secoli fa **proprio** per risolvere problemi di fisica. Da alcuni anni mi sono posto la domanda, che ho rivolto anche ad altri colleghi, se sia possibile insegnare i rudimenti del calcolo differenziale nel biennio, in modo tale da essere completato e applicare alla fisica dal terzo anno. In questo modo veramente avrebbero la possibilità di fare la fisica in modo 'serio' al liceo e familiarizzarsi con il calcolo differenziale. Ammetto che non tutti sono d'accordo, anche se molti colleghi fisici e matematici dicono che la cosa è fattibile, ovviamente a delle condizioni. Di parere contrario sembrano invece i pochi insegnanti delle superiori con i quali ho interloquito e forse, essendo quelli che operano direttamente sul campo, potrebbero anche avere ragione, ma non ne sono convinto, come non ne sono convinti altri amici e colleghi.

Certo, non si può nemmeno sperare di provare ad insegnare il calcolo differenziale se si vogliono contemporaneamente conservare i programmi attuali. Si tratta quindi di riorganizzare i contenuti, spostando qualcosa di non 'urgente' al triennio, dando la priorità alla familiarizzazione Prefazione 3

del concetto di funzione, magari illustrando in modo non rigoroso dei concetti che saranno affrontati con maggiore dettaglio e rigore successivamente. Insomma è quanto si faceva una volta nei vecchi programmi nei quali ad esempio la letteratura italiana veniva proposta in un primo 'giro' al ginnasio e riproposta in un secondo 'giro' al liceo, dopo che c'era stato un primissimo giro alle medie. Questa idea va esattamente nella direzione opposta del trend attuale, nel quale la fisica viene insegnata già dal primo anno delle superiori. Nel biennio si ripete più o meno il chiacchiericcio delle medie, con il risultato di annoiare i ragazzi, senza che nel capo dei cinque anni la si possa affrontare seriamente. E all'università ricominciano ancora una volta da capo. Immaginate se ogni volta dovessimo ricominciare da "rosa, rosae"!

Cosa c'entra questo con R? Ad esempio mi si dice che un ostacolo all'insegnamento del calcolo differenziale sia dovuto al fatto che lo studente debba avere il tempo per familiarizzarsi precedentemente con il concetto di funzione. D'accordissimo, ma cosa c'è di meglio per favorire tale apprendimento che visualizzare graficamente funzioni di vario tipo in modo molto semplice? Oppure, si dice che un prerequisito "sine qua non" è lo studio dei limiti. In realtà anche questo è un falso problema, se si accetta il fatto che si può cominciare con funzioni continue e 'tranquille' e che, come mostrato in questo testo, si può arrivare al calcolo delle "pendenze locali" senza affrontare di petto il problema filosofico dal rapporto di due grandezza infinitamente piccole. ¹ Se quindi si comincia con i polinomi, le cose diventano veramente semplici e poi, a mano a mano che, nel corso degli anni si incontrano altre funzioni, siano esse esponenziali, logaritmi e funzioni trigonometriche, ci si porrà il problema di calcolarne la derivata. Insomma, esattamente l'opposto di quello che si fa attualmente: invece di accumulare un bagaglio di funzioni e, una volta appreso il calcolo differenziale, applicarlo a tutte le funzioni che si conoscono, si impara il calcolo differenziale su alcune funzioni facili e successivamente si impara a differenziare funzioni più complicate. E, comunque, una volta che uno ha capito il concetto di derivata e che è virtualmente in grado di calcolarla nei casi facili il grosso è fatto. Poi può anche delegare ad un software il suo calcolo – e R sa fare anche le derivate! – un po' come negli ultimi decenni abbiamo delegato alle calcolatrici scientifiche le operazioni aritmetiche a più cifre e l'estrazione di radici quadrate.

Va vista in quest'ottica la scelta di approcciare le questioni di grafica fin dal secondo capitolo, allo scopo di attirare l'attenzione degli studenti con qualcosa assimilabile a gioco ma che nel contempo li aiuti a familiarizzarsi con il piano cartesiano. Per lo stesso motivo la scrittura delle funzioni viene già illustrata nel terzo paragrafo del primo capitolo.

Un'altra peculiarità dello scritto è di pretendere di essere un testo *multilevel*, indirizzato contemporaneamente a studenti sia delle scuole superiori che a universitari e giovani ricercatori e addirittura, almeno parti del primo e del secondo capitolo, ai ragazzi delle scuole medie. Ciò significa che non è necessario che esso sia letto in modo sequenziale. Ad esempio, chi è interessato allo studio di funzioni, dopo i primi paragrafi del secondo capitolo può passare al terzo capitolo, saltare quindi il quarto, sul quale si può eventualmente ritornare nel seguito, e affrontare direttamente il quinto. Ritengo inutile tracciare tutti i percorsi possibili, rimettendo la scelta alla sensibilità e al buon senso dell'insegnante.

¹I concetti di limite e di pendenza, in situazioni "normali", sono assolutamente naturali. E storicamente l'evoluzione dei concetti ha seguito proprio questa via (basti pensare alla disinvoltura con cui Eulero maneggiava le serie infinite) e solo nell'Ottocento è stato rivisto tutto nell'ottica rigorosa degli 'epsilon' piccoli a piacere.