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Preamble

No ‘prescriptions’, but general ideas

... possibly arising from

’first principles’ (as we physicists like).

⇒ Probabilistic approach

◦ Mostly on basic concepts

◦ Extension to applications

“easy if you try” (at least conceptually)
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Preamble

A invitation

to (re-)think

on foundamental aspects

of data analysis.
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Uncertainty: some examples

Roll a die:

1, 2, 3, 4, 5, 6: ?
Toss a coin:

Head/Tail: ?
Having to perform a measurement:

Which numbers shall come out from our device ?
Having performed a measurement:

What have we learned about the value of the quantity of

interest ?
Many other examples from real life:

Football, weather, tests/examinations, . . .

→ events and their consequences in Risk Management
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Rolling a die

Let us consider three outcomes:

E1 = ‘1’

E2 = ‘2 or 3‘

E3 = ‘≥ 4’
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Let us consider three outcomes:
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Rolling a die

Let us consider three outcomes:

E1 = ‘1’

E2 = ‘2 or 3‘

E3 = ‘≥ 4’

We are not uncertain in the same way about E1, E2 and E3:
• Which event do you consider more likely, possible, credible,

believable, plausible?
• You will get a prize if the event you chose will occur.

On which event would you bet?
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Rolling a die

Let us consider three outcomes:

E1 = ‘1’

E2 = ‘2 or 3‘

E3 = ‘≥ 4’

We are not uncertain in the same way about E1, E2 and E3:
• Which event do you consider more likely, possible, credible,

believable, plausible?
• You will get a prize if the event you chose will occur.

On which event would you bet?
• On which event are you more confident? Which event you

trust more, you believe more? etc
• Imagine to repeat the experiment: which event do you

expect to occur mostly (more frequently)?
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Rolling a die

Let us consider three outcomes:

E1 = ‘1’

E2 = ‘2 or 3‘

E3 = ‘≥ 4’

⇒ Many expressions to state our preference

Which reasoning have we applied to prefer E3?
Can we use it for all other events of our interest?
→ two envelop ‘paradox’
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A counting experiment

Imagine a small scintillation counter, with suitable threshold,
placed here and now.
We set the measuring time (e.g. 1 s each) and perform some
measurements.
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A counting experiment

Imagine a small scintillation counter, with suitable threshold,
placed here and now.
We set the measuring time (e.g. 1 s each) and perform some
measurements.

Remark:
This device can be seen as the quintessence of any ‘counter’:
• nr of alarms per day received by a control station;
• nr of failures per month in a plant;
• or even the nr of holes per km in a road; etc.
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A counting experiment

Imagine a small scintillation counter, with suitable threshold,
placed here and now.
We set the measuring time (e.g. 1 s each) and perform some
measurements.
The first 20 outcomes (‘reports’) are:
0,0,1,0,0,0,1,2,0,0,1,1,0, 4,2,0,0,0,0,1.
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A counting experiment

Imagine a small scintillation counter, with suitable threshold,
placed here and now.
We set the measuring time (e.g. 1 s each) and perform some
measurements.
The first 20 outcomes (‘reports’) are:
0,0,1,0,0,0,1,2,0,0,1,1,0, 4,2,0,0,0,0,1.
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A counting experiment

Imagine a small scintillation counter, with suitable threshold,
placed here and now.
We set the measuring time (e.g. 1 s each) and perform some
measurements.
The first 20 outcomes (‘reports’) are:
0,0,1,0,0,0,1,2,0,0,1,1,0, 4,2,0,0,0,0,1.
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Think at the 21st measurement/report:
• Which outcome do you consider more likely? (0, 1, 2, 3, . . . )
• Why?
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√
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P (0) > P (1) > P (2)
√

P (3) < P (4), or P (3) ≥ P (4)?
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⇒ Next ?

P (0) > P (1) > P (2)
√

P (3) < P (4), or P (3) ≥ P (4)?
P (3) = 0, or P (5) = 0?
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A counting experiment
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⇒ Next ?

P (0) > P (1) > P (2)
√

P (3) < P (4), or P (3) ≥ P (4)?
P (3) = 0, or P (5) = 0?
Not correct to say “we cannot do it”, or “let us do other
measurements and see”:

In real life we are asked to make assessments (and take
decisions) with the information we have in hand NOW.
If, later, the information changes, we can (must!) use the
update one (and perhaps update our opinion).
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A counting experiment

0 1 2 3 4 5 6 7 8 9

0
2

4
6

8
10

12

⇒ Next ?

P (0) > P (1) > P (2)
√

P (3) < P (4), or P (3) ≥ P (4)?
P (3) = 0, or P (5) = 0?
Not correct to say “we cannot do it”, or “let us do other
measurements and see”:

⇒ But, obviously, IF we have time and money, we can take
other data, gather other pieces of information about the
system, plan other ‘experiments’ to understand it better.
Or we wish to delay the decision, and so on,
BUT this is not always the case
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A counting experiment
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⇒ Next ?

We, as ‘experts’, tend to assess that
P (3) > P (4) and P (5) > 0

Why? Is this arbitrary? Should we only stick to ‘data’?
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⇒ Next ?

We, as ‘experts’, tend to assess that
P (3) > P (4) and P (5) > 0

Why? Is this arbitrary? Should we only stick to ‘data’?
Given our ‘experience’, ‘education’, ‘mentality’ (. . . )

‘know’
‘assume’

We ‘hope’ regularity of nature
‘guess’
‘postulate’
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A counting experiment
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⇒ Next ?

We, as ‘experts’, tend to assess that
P (3) > P (4) and P (5) > 0

Why? Is this arbitrary? Should we only stick to ‘data’?
Given our ‘experience’, ‘education’, ‘mentality’ (. . . )

‘know’
‘assume’

We ‘hope’ regularity of nature
‘guess’
‘postulate’
‘believe’
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A philosopher, physicist and mathematician joke

A philosopher, a physicist and a mathematician travel by
train through Scotland.

The train is going slowly and they see a cow walking along a
country road parallel to the railway.
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A philosopher, a physicist and a mathematician travel by
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The train is going slowly and they see a cow walking along a
country road parallel to the railway.
• Philosopher: “In Scotland cows are black”
• Physicist: “In Scotland there is at least a black cow”
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A philosopher, physicist and mathematician joke

A philosopher, a physicist and a mathematician travel by
train through Scotland.

The train is going slowly and they see a cow walking along a
country road parallel to the railway.
• Philosopher: “In Scotland cows are black”
• Physicist: “In Scotland there is at least a black cow”
• Mathematician: “In Scotland at least a cow has a black side”

Statements about reality have plenty of tacit – mostly very
reasonable! — assumptions that derive from experience and
rationality.
⇒We constantly use theory/models to link past and future!.
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Transferring past to future
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⇒ Next ?

Basic reasoning: assuming regularity of nature and a regular
flow from the past to the future, we tend to believe that the
effects that happened more frequently in the past will also occur
more likely in the future.
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⇒ Next ?

Basic reasoning: assuming regularity of nature and a regular
flow from the past to the future, we tend to believe that the
effects that happened more frequently in the past will also occur
more likely in the future.
We ‘physicists’ (all experts about matters of fact) tend to filter the
process of transferring the past to the future by ’laws’.

⇒ an experimental histogram shows a relative-frequency
distribution, and not a probability distribution!

Relative frequencies might become probabilities, but only
after they have been processed by our mind:
⇒ models, prior knowledge, analogy, etc.
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Physics

Observations

Value of
a quantity

Theory
(model)

(*)

Hypotheses discretecontinuous

* A quantity might be meaningful only within a theory/model
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From past to future

Task of the physicist:
• Describe/understand the physical world

⇒ inference of laws and their parameters
• Predict observations

⇒ forecasting
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From past to future

Process
• neither automatic
• nor purely contemplative
→ ‘scientific method’
→ planned experiments (‘actions’)⇒ decision.
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From past to future

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

⇒ Uncertainty:

1. Given the past observations, in general we are not sure
about the theory parameter (and/or the theory itself)

2. Even if we were sure about theory and parameters, there
could be internal (e.g. Q.M.) or external effects
(initial/boundary conditions, ‘errors’, etc) that make the
forecasting uncertain.
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From past to future

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

⇒ Decision
• What is be best action (’experiment’) to take in order ‘to be

confident’ that what we would like will occur?
(Decision issues always assume uncertainty about future
outcomes.)

• Before tackling problems of decision we need to learn to
reason about uncertainty, possibly in a quantitative way.
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From past to future

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Deep reason of uncertainty

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations
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About predictions

Remember:

“Prediction is very difficult,
especially if it’s about the future” (Bohr)
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About predictions

Remember:

“Prediction is very difficult,
especially if it’s about the future” (Bohr)

But, anyway:

“It is far better to foresee even without
certainty than not to foresee at all”
(Poincaré)
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Deep source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→
Past observations — ? −→

Theory — ? −→ Future observations
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Deep source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations
=⇒ Uncertainty about causal connections

CAUSE⇐⇒ EFFECT
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Causes→ effects

The same apparent cause might produce several,different
effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.
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Causes→ effects

The same apparent cause might produce several,different
effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.

E2 ⇒ {C1, C2, C3}?

G. D’Agostini,Probabilistic Reasoning – p. 14



The essential problem of the experimental method

“Now, these problems are classified as probability of
causes, and are most interesting of all their scientific
applications. I play at écarté with a gentleman whom I know
to be perfectly honest. What is the chance that he turns up
the king? It is 1/8. This is a problem of the probability of
effects.
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The essential problem of the experimental method

“Now, these problems are classified as probability of
causes, and are most interesting of all their scientific
applications. I play at écarté with a gentleman whom I know
to be perfectly honest. What is the chance that he turns up
the king? It is 1/8. This is a problem of the probability of
effects.

I play with a gentleman whom I do not know. He has dealt
ten times, and he has turned the king up six times. What is
the chance that he is a sharper? This is a problem in the
probability of causes. It may be said that it is the essential
problem of the experimental method.”

(H. Poincaré – Science and Hypothesis)
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A numerical example

• Effect: number x = 3 extracted ‘at random’
• Hypotheses: one of the following random generators:
◦ H1 Gaussian, with µ = 0 and σ = 1
◦ H2 Gaussian, with µ = 3 and σ = 5
◦ H3 Exponential, with τ = 2
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A numerical example

• Effect: number x = 3 extracted ‘at random’
• Hypotheses: one of the following random generators:
◦ H1 Gaussian, with µ = 0 and σ = 1
◦ H2 Gaussian, with µ = 3 and σ = 5
◦ H3 Exponential, with τ = 2
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A numerical example

• Effect: number x = 3 extracted ‘at random’
• Hypotheses: one of the following random generators:
◦ H1 Gaussian, with µ = 0 and σ = 1
◦ H2 Gaussian, with µ = 3 and σ = 5
◦ H3 Exponential, with τ = 2

⇒ Which one to prefer?

Note: ⇒ none of the hypotheses of this example can be
excluded and, therefore, there is no way to reach a boolean
conclusion. We can only state, somehow, our rational
preference, based on the experimental result and our best
knowledge of the behavior of each model.
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A numerical example

• Effect: number x = 3 extracted ‘at random’
• Hypotheses: one of the following random generators:
◦ H1 Gaussian, with µ = 0 and σ = 1
◦ H2 Gaussian, with µ = 3 and σ = 5
◦ H3 Exponential, with τ = 2

• we can only state how much we are sure — or confident —
on each of them;

• or “we consider each of them more or less probable (or
likely)”;

• or “we believe each of them more or less than onother one”
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A numerical example

• Effect: number x = 3 extracted ‘at random’
• Hypotheses: one of the following random generators:
◦ H1 Gaussian, with µ = 0 and σ = 1
◦ H2 Gaussian, with µ = 3 and σ = 5
◦ H3 Exponential, with τ = 2

• we can only state how much we are sure — or confident —
on each of them;

• or “we consider each of them more or less probable (or
likely)”;

• or “we believe each of them more or less than onother one”

or similar expressions, all referring to the intuitive concept of

probability.
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From ‘true value’ to observations

x

Μ0

Experimental
response

?

Given µ (exactly known) we are uncertain about x
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From ‘true value’ to observations

x

Μ

Uncertain Μ

Experimental
response

?

Uncertainty about µ makes us more uncertain about x
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Inferring a true value

x

Μ

Uncertain Μ

Experimental
observation

x0

The observed data is certain: → ‘true value’ uncertain.
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Inferring a true value

x

Μ

Which Μ?

Experimental
observation

x0

?

Where does the observed value of x comes from?
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Inferring a true value

x

Μ

x0

?

Inference

We are now uncertain about µ, given x.
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Inferring a true value

x

Μ

x0

Μ given x

x given Μ

Note the symmetry in reasoning.
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Uncertainty and probability

We, as physicists, consider absolutely natural and
meaningful statements of the following kind
◦ P (−10 < ǫ′/ǫ× 104 < 50) >> P (ǫ′/ǫ× 104 > 100)
◦ P (170 ≤ mtop/GeV ≤ 180) ≈ 70%

◦ P (MH < 200GeV) > P (MH > 200GeV)

G. D’Agostini,Probabilistic Reasoning – p. 19



Uncertainty and probability

We, as physicists, consider absolutely natural and
meaningful statements of the following kind
◦ P (−10 < ǫ′/ǫ× 104 < 50) >> P (ǫ′/ǫ× 104 > 100)
◦ P (170 ≤ mtop/GeV ≤ 180) ≈ 70%

◦ P (MH < 200GeV) > P (MH > 200GeV)

. . . although, such statements are considered
blaspheme to statistics gurus
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Doing Science in conditions of uncertainty

The constant status of uncertainty does not prevent us from
doing Science (in the sense of Natural Science and not just
Mathematics)
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Doing Science in conditions of uncertainty

The constant status of uncertainty does not prevent us from
doing Science (in the sense of Natural Science and not just
Mathematics)

Indeed

“It is scientific only to say what is more
likely and what is less likely” (Feynman)
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The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.

G. D’Agostini,Probabilistic Reasoning – p. 21



The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
We are in a state of uncertainty concerning several events, the
most important of which correspond to the following questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will we
observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

Our certainty: ∪5j=0 Hj = Ω

∪2i=1Ei = Ω .
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The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
We are in a state of uncertainty concerning several events, the
most important of which correspond to the following questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will we
observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

• What happens after we have extracted one ball and looked
its color?
◦ Intuitively we now how to roughly change our opinion.
◦ Can we do it quantitatively, in an objective way?
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The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
We are in a state of uncertainty concerning several events, the
most important of which correspond to the following questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will we
observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

• What happens after we have extracted one ball and looked
its color?
◦ Intuitively we now how to roughly change our opinion.
◦ Can we do it quantitatively, in an objective way?

• And after a sequence of extractions?
G. D’Agostini,Probabilistic Reasoning – p. 21



The toy inferential experiment

The aim of the experiment will be to guess the content of the box
without looking inside it, only extracting a ball, record its color
and reintroducing in the box
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The toy inferential experiment

The aim of the experiment will be to guess the content of the box
without looking inside it, only extracting a ball, record its color
and reintroducing in the box

This toy experiment is conceptually very close to what we do in
Physics
• try to guess what we cannot see (the electron mass, a

branching ratio, etc)

. . . from what we can see (somehow) with our senses.

The rule of the game is that we are not allowed to watch inside
the box! (As we cannot open and electron and read its
properties, like we read the MAC address of a PC interface)
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An interesting exercise

Probabilities of the 4 sequences from the first 3 extractions from
the box of unknow composition:
• WW
• WB
• BW
• BB

G. D’Agostini,Probabilistic Reasoning – p. 23



Cause-effect representation

box content→ observed color
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Cause-effect representation

box content→ observed color

An effect might be the cause of another effect −→

G. D’Agostini,Probabilistic Reasoning – p. 24



A network of causes and effects
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A network of causes and effects

and so on. . . ⇒ Physics applications

G. D’Agostini,Probabilistic Reasoning – p. 25



A different way to view fit issues

θ

µxi

xi

µyi

yi

[ for each i ]

Determistic link µx’s to µy ’s
Probabilistic links µx → x, µy → y

(errors on both axes!)
⇒ aim of fit: {x,y} → θ
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A different way to view fit issues

θ

µxi

xi

µyi

yi

[ for each i ]

θ/σv

µxi

xi

zi σv

µyi

yi

[ for each i ]

Determistic link µx’s to µy ’s Extra spread of the data points
Probabilistic links µx → x, µy → y

(errors on both axes!)
⇒ aim of fit: {x,y} → θ
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A different way to view fit issues

A physics case (from Gamma ray burts):

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

y

x

Reichart
D’Agostini
True

(Guidorzi et al., 2006)
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A different way to view fit issues

θ/σv

µxi

µs
xi

xi

zi σv

µyi

µs
yi

yi

[ for each i ]

βyβx

Adding systematics
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Unfolding a discretized spectrum

Probabilistic links: Cause-bins↔ effect-bins

C1 C2 Ci CnC

E1 E2 Ej EnE T
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Unfolding a discretized spectrum

Probabilistic links: Cause-bins↔ effect-bins

C1 C2 Ci CnC

E1 E2 Ej EnE T

Sharing the observed events among the cause-bins

x(C1) x(C2) x(Ci) x(CnC
)

x(E1) x(E2) x(Ej) x(EnE
)

θ1,1 θnC ,nE

G. D’Agostini,Probabilistic Reasoning – p. 27



Unfolding a discretized spectrum

Academic smearing matrices:

G. D’Agostini,Probabilistic Reasoning – p. 27



Learning about causes from effects

Two main streams of reasoning
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Learning about causes from effects

Two main streams of reasoning

• Falsificationist approach
[and statistical variations over the theme].
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Learning about causes from effects

Two main streams of reasoning

• Falsificationist approach
[and statistical variations over the theme].

• Probabilistic approach
[In the sense that probability theory is used throughly]

G. D’Agostini,Probabilistic Reasoning – p. 28



Summary about ‘falsificationism/statistics’

A) if Ci −→/ E, and we observe E

⇒ Ci is impossible (‘false’)
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Summary about ‘falsificationism/statistics’

A) if Ci −→/ E, and we observe E

⇒ Ci is impossible (‘false’)

B) if Ci −−−−−−−−−→
small probability

E, and we observe E

⇒ Ci has small probability to be true
“most likely false”
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Summary about ‘falsificationism/statistics’

A) if Ci −→/ E, and we observe E OK
⇒ Ci is impossible (‘false’)

B) if Ci −−−−−−−−−→
small probability

E, and we observe E

⇒ Ci has small probability to be true
“most likely false”
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Summary about ‘falsificationism/statistics’

A) if Ci −→/ E, and we observe E OK
⇒ Ci is impossible (‘false’)

B) if Ci −−−−−−−−−→
small probability

E, and we observe E NO

⇒ Ci has small probability to be true
“most likely false”

(The base of tests, p-values, etc.)

G. D’Agostini,Probabilistic Reasoning – p. 29



Example

An Italian citizen is selected at random to undergo an AIDS test.
Performance of clinical trial is not perfect, as customary.
Simplified model:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

H1=’HIV’ (Infected) E1 = Positive

H2=’HIV’ (Healthy) E2 = Negative
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Example

An Italian citizen is selected at random to undergo an AIDS test.
Performance of clinical trial is not perfect, as customary.
Simplified model:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

H1=’HIV’ (Infected) E1 = Positive

H2=’HIV’ (Healthy) E2 = Negative

Result: ⇒ Positive
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Example

An Italian citizen is selected at random to undergo an AIDS test.
Performance of clinical trial is not perfect, as customary.
Simplified model:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

? H1=’HIV’ (Infected) E1 = Positive

? H2=’HIV’ (Healthy) E2 = Negative

Result: ⇒ Positive

Infected or healthy?
G. D’Agostini,Probabilistic Reasoning – p. 30



What to conclude?

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say
• ”It is practically impossible that the person is healthy,

since it was practically impossible that an healthy person
would result positive”?
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What to conclude?

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
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?
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What to conclude?

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say
• ”It is practically impossible that the person is healthy,

since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”?
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What to conclude?

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say
• ”It is practically impossible that the person is healthy,

since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”
• “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

?
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What to conclude?

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

• ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”

• “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

? NO
Instead, P (HIV |Pos, random Italian) ≈ 45%
(We will see in the sequel how to evaluate it correctly)
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What to conclude?

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

• ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”

• “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

? NO
Instead, P (HIV |Pos, random Italian) ≈ 45%
⇒ Serious mistake! (not just 99.8% instead of 98.3% or so)

G. D’Agostini,Probabilistic Reasoning – p. 31



‘Standard’ statistical tests, p-values, etc

• This kind of logical mistake is quite common.
“Si sbaglia da professionisti” (P. Conte)
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‘Standard’ statistical tests, p-values, etc

• This kind of logical mistake is quite common.
“Si sbaglia da professionisti” (P. Conte)

• Yes, statisticians have invented p-values (something like
‘probability of the tail(s)’ – I cannot enter into details) to
overcome the problem that often the probability of any
observation is always very small and the null hypotheses
would always be rejected.

G. D’Agostini,Probabilistic Reasoning – p. 32



‘Standard’ statistical tests, p-values, etc

• This kind of logical mistake is quite common.
“Si sbaglia da professionisti” (P. Conte)

• Yes, statisticians have invented p-values (something like
‘probability of the tail(s)’ – I cannot enter into details) to
overcome the problem that often the probability of any
observation is always very small and the null hypotheses
would always be rejected.
But
◦ as far as logic is concerned, the situation is worsened

(. . . although p-values ‘often, by chance work’).
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‘Standard’ statistical tests, p-values, etc

• This kind of logical mistake is quite common.
“Si sbaglia da professionisti” (P. Conte)

• Yes, statisticians have invented p-values (something like
‘probability of the tail(s)’ – I cannot enter into details) to
overcome the problem that often the probability of any
observation is always very small and the null hypotheses
would always be rejected.
But
◦ as far as logic is concerned, the situation is worsened

(. . . although p-values ‘often, by chance work’).
• Mistrust statistical tests, unless you know the details of what

it has been done.
→ You might take bad decisions!

G. D’Agostini,Probabilistic Reasoning – p. 32



Example from particle/event classification

A discrimination analysis can find a ‘discriminator’ d
related to a particle pi, or to a certain event of interest
(e.g. as a result from neural networks or whatever).
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Example from particle/event classification

A discrimination analysis can find a ‘discriminator’ d
related to a particle pi, or to a certain event of interest
(e.g. as a result from neural networks or whatever).

OK, but, in general

P (d ≥ dcut | pi) 6= P (pi | d ≥ dcut) !
(I am pretty sure that often what is called a probability of a
particle, or an event, of being something is not really that
probability. . . )

G. D’Agostini,Probabilistic Reasoning – p. 33



Conflict: natural thinking⇔ cultural superstructure

Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).
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Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).

• In this, still dominant approach (frequentism) it is forbidden
to speak about probability of hypotheses, probability of
causes, probability of values of physical quantities, etc.
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Conflict: natural thinking⇔ cultural superstructure

Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).

• In this, still dominant approach (frequentism) it is forbidden
to speak about probability of hypotheses, probability of
causes, probability of values of physical quantities, etc.

• The concept of probability of causes [“The essential
problem of the experimental method” (Poincaré)] has
been surrogated by the mechanism of hypothesis test
and ‘p-values’. (And of ‘confidence intervals’ in parametric
inference)
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Conflict: natural thinking⇔ cultural superstructure

Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).

• In this, still dominant approach (frequentism) it is forbidden
to speak about probability of hypotheses, probability of
causes, probability of values of physical quantities, etc.

• The concept of probability of causes [“The essential
problem of the experimental method” (Poincaré)] has
been surrogated by the mechanism of hypothesis test
and ‘p-values’. (And of ‘confidence intervals’ in parametric
inference)

⇒ BUT people think naturally in terms of probability of causes,
and use p-values as if they were probabilities of null
hypotheses.
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Conflict: natural thinking⇔ cultural superstructure

Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).

• In this, still dominant approach (frequentism) it is forbidden
to speak about probability of hypotheses, probability of
causes, probability of values of physical quantities, etc.

• The concept of probability of causes [“The essential
problem of the experimental method” (Poincaré)] has
been surrogated by the mechanism of hypothesis test
and ‘p-values’. (And of ‘confidence intervals’ in parametric
inference)

⇒ BUT people think naturally in terms of probability of causes,
and use p-values as if they were probabilities of null
hypotheses. ⇒ Terrible mistakes!

G. D’Agostini,Probabilistic Reasoning – p. 34



Probabilistic reasoning

What to do?
⇒ ‘Forward to past’
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Probabilistic reasoning

What to do?
⇒ ‘Forward to past’
But benefitting of
• Theoretical progresses in probability theory
• Advance in computation (both symbolic and numeric)
→ many frequentistic ideas had their raison d’être in the

computational barrier (and many simplified – often
simplistic – methods were ingeniously worked out)
→ no longer an excuse!
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• Theoretical progresses in probability theory
• Advance in computation (both symbolic and numeric)
→ many frequentistic ideas had their raison d’être in the

computational barrier (and many simplified – often
simplistic – methods were ingeniously worked out)
→ no longer an excuse!

⇒ Use consistently probability theory
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Probabilistic reasoning

What to do?
⇒ ‘Forward to past’
But benefitting of
• Theoretical progresses in probability theory
• Advance in computation (both symbolic and numeric)
→ many frequentistic ideas had their raison d’être in the

computational barrier (and many simplified – often
simplistic – methods were ingeniously worked out)
→ no longer an excuse!

⇒ Use consistently probability theory
◦ “It’s easy if you try”
◦ But first you have to recover the intuitive concept of

probability.

G. D’Agostini,Probabilistic Reasoning – p. 35



Probability

What is probability?

G. D’Agostini,Probabilistic Reasoning – p. 36



Standard textbook definitions

p =
# favorable cases

#possible equiprobable cases

p =
# times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity

p =
# favorable cases

#possible equiprobable cases

p =
# times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity

p =
# favorable cases

#possible equally possible cases

p =
# times the event has occurred

# independent trials under same conditions

Laplace: “lorsque rien ne porte à croire que l’un de ces cas doit
arriver plutot que les autres”

Pretending that replacing ‘equi-probable’ by ‘equi-possible’
is just cheating students (as I did in my first lecture on the
subject. . . ).
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity,
plus other problems

p =
# favorable cases

#possible equiprobable cases

p = limn→∞
# times the event has occurred

# independent trials under same condition

Future⇔ Past (believed so)

n→∞: → “usque tandem?”
→ “in the long run we are all dead”
→ It limits the range of applications

G. D’Agostini,Probabilistic Reasoning – p. 37



Definitions→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.
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Definitions→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.

BUT they cannot define the concept of probability!
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Definitions→ evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

#possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.

In the probabilistic approach we are going to see
• Rule A will be recovered immediately (under the

assumption of equiprobability, when it applies).
• Rule B will result from a theorem (under well defined

assumptions).

G. D’Agostini,Probabilistic Reasoning – p. 38



Probability

What is probability?
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Probability

What is probability?

It is what everybody knows what it is
before going at school
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Probability

What is probability?

It is what everybody knows what it is
before going at school
→ how much we are confident that

something is true
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Probability

What is probability?

It is what everybody knows what it is
before going at school
→ how much we are confident that

something is true
→ how much we believe something
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Probability

What is probability?

It is what everybody knows what it is
before going at school
→ how much we are confident that

something is true
→ how much we believe something
→ “A measure of the degree of belief

that an event will occur”

[Remark: ‘will’ does not imply future, but only uncertainty.]

G. D’Agostini,Probabilistic Reasoning – p. 39



Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . ,
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . , the numerical
probability p of this event is to be a real number by the indication
of which we try in some cases to setup a quantitative measure
of the strength of our conjecture or anticipation, founded on the
said knowledge, that the event comes true”
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . , the numerical
probability p of this event is to be a real number by the indication
of which we try in some cases to setup a quantitative measure
of the strength of our conjecture or anticipation, founded on the
said knowledge, that the event comes true”
(E. Schrödinger, The foundation of the theory of probability - I,
Proc. R. Irish Acad. 51A (1947) 51)

1While in ordinary speech “to come true” usually refers to an event that
is envisaged before it has happened, we use it here in the general
sense, that the verbal description turns out to agree with actual facts.

G. D’Agostini,Probabilistic Reasoning – p. 40



False, True and probable

Probability

0,10 0,20 0,30 0,400 0,50 0,60 0,70 0,80 0,90 1

0 1

0

0

E

1

1

?

Event E

logical point of view FALSE

cognitive point of view FALSE

psychological
(subjective)

point of view

if certain FALSE

if uncertain,
with
probability

UNCERTAIN

TRUE

TRUE

TRUE
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An helpful diagram

The previous diagram seems to help the understanding of the
concept of probability
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An helpful diagram

(. . . but NASA guys are afraid of ‘subjective’, or ‘psychological’)
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

“If we were not ignorant there would be no probability, there
could only be certainty. But our ignorance cannot be
absolute, for then there would be no longer any probability
at all. Thus the problems of probability may be classed
according to the greater or less depth of our ignorance.”
(Poincaré)
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

The state of information can be
different from subject to subject

⇒ intrinsic subjective nature.
• No negative meaning: only an acknowledgment that several

persons might have different information and, therefore,
necessarily different opinions.
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

The state of information can be
different from subject to subject

⇒ intrinsic subjective nature.
• No negative meaning: only an acknowledgment that several

persons might have different information and, therefore,
necessarily different opinions.

• “Since the knowledge may be different with different
persons or with the same person at different times, they
may anticipate the same event with more or less
confidence, and thus different numerical probabilities may
be attached to the same event” (Schrödinger)
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

Probability is always conditional
probability
‘P (E)’ −→ P (E | I) −→ P (E | I(t))
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Uncertainty→ probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

Probability is always conditional
probability
‘P (E)’ −→ P (E | I) −→ P (E | I(t))

• “Thus whenever we speak loosely of ‘the probability of an
event,’ it is always to be understood: probability with regard
to a certain given state of knowledge” (Schrödinger)

G. D’Agostini,Probabilistic Reasoning – p. 44



Unifying role of subjective probability

• Wide range of applicability
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Milan will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%
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◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

They all convey unambiguously the same confidence on
something.

• You might agree or disagree, but at least You know what this
person has in his mind. (NOT TRUE with “C.L.’s”!)
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Milan will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

They all convey unambiguously the same confidence on
something.

• You might agree or disagree, but at least You know what this
person has in his mind. (NOT TRUE with “C.L.’s”!)

• If a person has these beliefs and he/she has the chance to
win a rich prize bound to one of these events, he/she has no
rational reason to chose an event instead than the others.
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Milan will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

• Probability not bound to a single evaluation rule.

G. D’Agostini,Probabilistic Reasoning – p. 45



Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Milan will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

• Probability not bound to a single evaluation rule.
• In particular, combinatorial and frequency based ‘definitions’

are easily recovered as evaluation rules
under well defined hypotheses.

• Keep separate concept from evaluation rule.

G. D’Agostini,Probabilistic Reasoning – p. 45



Confidence on the Higgs mass fron direct searches

PDG: mH > 114.4GeV at 95% C.L.

What does it mean?
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What does it mean?

given only this piece of information from our LEP colleagues:

• What is P (mH ≥ 114.4GeV)?
• What is P (mH ≤ 114.4GeV)?

Definitely not 95% and 5%! (. . . ??)
But, nevertheless, the 95% upper limit from radiative corrections
gives a 95% probability. . .
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Confidence on the Higgs mass fron direct searches

PDG: mH > 114.4GeV at 95% C.L.

What does it mean?

given only this piece of information from our LEP colleagues:

• What is P (mH ≥ 114.4GeV)?
• What is P (mH ≤ 114.4GeV)?

Definitely not 95% and 5%! (. . . ??)
But, nevertheless, the 95% upper limit from radiative corrections
gives a 95% probability. . .

Siamo uomini o caporali?
G. D’Agostini,Probabilistic Reasoning – p. 46



From the concept of probability to the probability theory

Ok, it looks nice, . . . but “how do we deal with ‘numbers’?”
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)
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• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Coherent bet (de Finetti, Ramsey - ’Dutch book
argument’)

It is well understood that bet odds can express confidence†
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Coherent bet → A bet acceptable in both directions:
◦ You state your confidence fixing the bet odds
◦ . . . but somebody else chooses the direction of the bet
◦ best way to honestly assess beliefs.
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to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Consistency arguments (Cox, + Good, Lucas)
• Similar approach by Schrödinger (much less known)
• Supported by Jaynes and Maximum Entropy school
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’

→ analogy to measures (we need to measure ’befiefs’)
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’

→ analogy to measures (we need to measure ’befiefs’)

⇒ reference probabilities provided by simple cases in which
equiprobability applies (coins, dice, turning wheels,. . . ).

• Example: You are offered to options to receive a price: a) if
E happens, b) if a coin will show head. Etc. . . .
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’

→ Rational under everedays expressions like “there are 90
possibilities in 100” to state beliefs in situations in which the
real possibilities are indeed only 2 (e.g. dead or alive)

• Example: a question to a student that has to pass an exam:
a) normal test; b) pass it is a uniform random x will be ≤ 0.8.
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’
• Also based on coherence, but it avoids the ‘repulsion’ of

several person when they are asked to think directly in
terms of bet (it is proved that many persons have reluctance
to bet money).

G. D’Agostini,Probabilistic Reasoning – p. 47



Basic rules of probability

Coherence leads to

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A) ,

where
• Ω stands for ‘tautology’ (a proposition that is certainly true
→ referring to an event that is certainly true) and ∅ = Ω.

• A∩B is true only when both A and B are true (logical AND)

(shorthands ‘A,B’ or AB often used→ logical product)
• A ∪B is true when at least one of the two propositions is

true (logical OR)
G. D’Agostini,Probabilistic Reasoning – p. 48



Basic rules of probability

Remember that probability is always conditional probability!

1. 0 ≤ P (A | I) ≤ 1

2. P (Ω | I) = 1

3. P (A ∪B | I) = P (A | I) + P (B | I) [ if P (A ∩B | I) = ∅ ]

4. P (A ∩B | I) = P (A |B, I) · P (B | I) = P (B |A, I) · P (A | I)

I is the background condition (related to information I)

→ usually implicit (we only care on ‘re-conditioning’)

G. D’Agostini,Probabilistic Reasoning – p. 49



Meaning of the basic rules

Have we recovered the famous axioms?

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A)
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Meaning of the basic rules

More or less yes, at least formally

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A)
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Meaning of the basic rules

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A)

• In the axiomatic approach
◦ ‘probability’ is just a real number that satisfies 1-3
◦ rule 4 comes straight from the definition of conditional

probability as

P (A |B) =
P (A ∩B)

P (B)
[ if P (B) > 0 ]
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Meaning of the basic rules

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A)

• In the subjective approach
◦ the intuitive meaning of ‘probability’ is recovered
◦ rules 1-4 derive from more basic assumptions (e.g. the

coherent bet)
◦ P (A |B) = P (A ∩B)/P (B) does not define P (A |B)

→ conditional probability is an intuitive concept!
(Remember Schrödinger quote)
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Meaning of the basic rules

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A)

• In the subjective approach
◦ the intuitive meaning of ‘probability’ is recovered
◦ rules 1-4 derive from more basic assumptions (e.g. the

coherent bet)
◦ P (A |B) = P (A ∩B)/P (B) does not define P (A |B)

→ conditional probability is an intuitive concept!
⇒ As we actually use it! →

G. D’Agostini,Probabilistic Reasoning – p. 51



About the ‘conditional probability formula’

4. P (E ∩H) = P (E |H) · P (H) = P (H |E) · P (E)

4a. P (E |H) =
P (E ∩H)

P (H)
[P (H) > 0]
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About the ‘conditional probability formula’

4. P (E ∩H) = P (E |H) · P (H) = P (H |E) · P (E)

4a. P (E |H) =
P (E ∩H)

P (H)
[P (H) > 0]

In the subjective approach the meaning is clear:
• Depending on the information we have, we can assess any

of the three probabilities that enter the formula: P (H),
P (E |H) or P (E ∩H).

• But, once two of the three have been assessed, the third
one is constraint!

(otherwise, one can prove it is possible to imagine a set of
bets, such that one certainly gains or loses – incoherent)

• 4 is more general than 4.a, valid also if P (H) = 0
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About the ‘conditional probability formula’

4. P (E ∩H) = P (E |H) · P (H) = P (H |E) · P (E)

4a. P (E |H) =
P (E ∩H)

P (H)
[P (H) > 0]

What is the chance that a 95 GeV Higgs is detected by ATLAS?
• H = “Higgs mass 95 GeV”
• E = “Decay products observed in ATLAS”

⇒ P (E |H) is a routine task: → set MH = 95GeV in the
physics generator→ run the events through the full
simulation chain→ run analysis program→ estimate
P (E |H) from percentage of reconstructed events.

• None would use definition 4a [ what is P (E ∩H)? ]

• Note: P (E |H) is meaningful even if P (H) = 0 (why not?).

G. D’Agostini,Probabilistic Reasoning – p. 52



Subjective 6= arbitrary

Crucial role of the coherent bet
• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.
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• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.

• You claim that this coin has 30% to give head?
⇒ Just reverse the bet

(Like sharing goods, e.g. a cake with a child)
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Subjective 6= arbitrary

Crucial role of the coherent bet
• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.

• You claim that this coin has 30% to give head?
⇒ Just reverse the bet

(Like sharing goods, e.g. a cake with a child)

⇒ Take into account all available information in the most
‘objective way’
(Even that someone has a different opinion!)

⇒ It might seem paradoxically, but the ‘subjectivist’ is much
more ‘objective’ than those who blindly use so-called
objective methods.

G. D’Agostini,Probabilistic Reasoning – p. 53



Summary on probabilistic approach

• Probability means how much we believe something
• Probability values obey the following basic rules

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]
4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A) ,

• All the rest by logic

→ And, please, be coherent!
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Inference

Inference

⇒ How do we learn from data
in a probabilistic framework?

G. D’Agostini,Probabilistic Reasoning – p. 55



From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Our conditional view of probabilistic causation

P (Ei |Cj)

Our conditional view of probabilistic inference

P (Cj |Ei)

The fourth basic rule of probability:

P (Cj , Ei) = P (Ei |Cj)P (Cj) = P (Cj |Ei)P (Ei)

G. D’Agostini,Probabilistic Reasoning – p. 56



Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj .”
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj .”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj .”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

Got ‘after’ Calculated ‘before’

(where ‘before’ and ‘after’ refer to the knowledge that Ei is true.)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj .”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

”post illa observationes” “ante illa observationes”

(Gauss)
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Application to the six box problem

H0 H1 H2 H3 H4 H5

Remind:
• E1 = White
• E2 = Black

G. D’Agostini,Probabilistic Reasoning – p. 58



Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

G. D’Agostini,Probabilistic Reasoning – p. 59



Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Our prior belief about Hj
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei under a well defined hypothesis Hj

It corresponds to the ‘response of the apparatus in
measurements.
→ likelihood (traditional, rather confusing name!)
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
Easy in this case, because of the symmetry of the problem.
But already after the first extraction of a ball our opinion
about the box content will change, and symmetry will break.
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

But it easy to prove that P (Ei | I) is related to the other
ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)
P (Ei | I)

P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

But it easy to prove that P (Ei | I) is related to the other
ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely

‘decomposition law’: P (Ei | I) =
∑

j P (Ei |Hj , I) · P (Hj | I)
(→ Easy to check that it gives P (Ei | I) = 1/2 in our case).
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) =
P (Ei |Hj , I)·P (Hj | I)∑
j
P (Ei |Hj , I)·P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) =
∑

j P (Ei |Hj , I) · P (Hj | I)
• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5− j)/5

We are ready!
−→ Let’s play with our toy
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Naming the method

Some ‘remarks’ on formalism and notation.

(But nothing deep!)
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Naming the method

Some ‘remarks’ on formalism and notation.

(But nothing deep!)

From now on it is only a question of

• experience and good sense to model the problem;
• patience;
• math skill;
• computer skill.
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Naming the method

Some ‘remarks’ on formalism and notation.

(But nothing deep!)

From now on it is only a question of

• experience and good sense to model the problem;
• patience;
• math skill;
• computer skill.

Moving to continuous quantities:
• transitions discrete→continuous rather simple;
• prob. functions→ pdf
• learn to summarize the result in ‘a couple of meaningful numbers’

(but remembering that the full answer is in the final pdf).
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Bayes theorem

The formulae used to infer Hi and
to predict E(2)

j are related to the name of Bayes
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Bayes theorem

The formulae used to infer Hi and
to predict E(2)

j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)∑
j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj)

Different ways to write the

Bayes’ Theorem
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on
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Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

G. D’Agostini,Probabilistic Reasoning – p. 62
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Let us repeat the experiment:
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)

Bayesian inference
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)

Learning from data using probability theory
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Exercises and discussions

• Continue with six box problem [→ AJP 67 (1999) 1260]

→ Slides
• Home work 1: AIDS problem→ P (HIV |Pos) ?

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

• Home work 2: Particle identification:
A particle detector has a µ identification efficiency of 95%, and a
probability of identifying a π as a µ of 2%. If a particle is identified as a
µ, then a trigger is fired. Knowing that the particle beam is a mixture of
90% π and 10% µ, what is the probability that a trigger is really fired by
a µ? What is the signal-to-noise (S/N ) ratio?
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Odd ratios and Bayes factor

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P (HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500× 1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .
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· P◦(HIV)

P (HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500× 1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .

There are some advantages in expressing Bayes theorem in
terms of odd ratios:
• There is no need to consider all possible hypotheses (how

can we be sure?)
We just make a comparison of any couple of hypotheses!
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Odd ratios and Bayes factor

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P (HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500× 1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .

There are some advantages in expressing Bayes theorem in
terms of odd ratios:
• There is no need to consider all possible hypotheses (how

can we be sure?)
We just make a comparison of any couple of hypotheses!

• Bayes factor is usually much more inter-subjective, and it is
often considered an ‘objective’ way to report how much the
data favor each hypothesis.
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The three models example

Choose among H1, H2 and H3 having observed x = 3:

In case of ‘likelihoods’ given by
pdf’s, the same formulae apply:
“P (data |Hj)”←→ “f(data |Hj)”.

-2 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

H1

H3

H2

fHxÈHiL

BFj,k = f(x=3 |Hj)
f(x=3 |Hk)

BF2,1 = 18, BF3,1 = 25 and BF3,2 = 1.4→ data favor model H3

(as we can see from figure!), but if we want to state how much
we believe to each model we need to ‘filter’ them with priors.

Assuming the three models initially equally likely, we get final
probabilities of 2.3%, 41% and 57% for the three models.
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A last remark

A last remark on model comparisons
• for a ‘serious’ probabilistic model comparisons,

at least two well defined models are
needed
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at least two well defined models are
needed

• p-values (e.g. ‘χ2 tests) have to be considered very useful
starting points to understand if further investigation is worth
[Yes, I also use χ2 to get an idea of the “distance” between a
model and the experimental data – but not more than that].
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impossible.
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A last remark

A last remark on model comparisons
• for a ‘serious’ probabilistic model comparisons,

at least two well defined models are
needed

• p-values (e.g. ‘χ2 tests) have to be considered very useful
starting points to understand if further investigation is worth
[Yes, I also use χ2 to get an idea of the “distance” between a
model and the experimental data – but not more than that].

• But until you don’t have an alternative and credible model to
explain the data, there is little to say about the “chance that
the data come from the model”, unless the data are really
impossible.

• Why do frequentistic test often work? → Think about. . .
(Just by chance – no logical necessity)
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End

FINE

G. D’Agostini,Probabilistic Reasoning – p. 67
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