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Università di Roma La Sapienza

G. D’Agostini,Probabilistic Reasoning – p. 1

http://www.roma1.infn.it/~dagos/


Preambolo

Ched’è la statistica?
(Trilussa)

⇒ preambolo a lezioni al CERN
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best answer, quite frankly.
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Preamble

Title of the lectures (“Telling the truth with statistics”)

• proposed by organizers→ accepted. . .
• I interpret it as a direct question, to which I will try to give my

best answer, quite frankly.
• How to interpret the question?

1. “Tell the Truth”? ⇒ Question to God
◦ What is the true value of a quantity?
◦ What is the true theory that describes the world?

2. “Tell the truth”⇐⇒ “to lie”? ⇒ Not fair, though

“There are three kinds of lies:
lies, damn lies, and statistics”

(Benjamin Disraeli/Mark Twain)
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Damned lies and statistics

Well known subject
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Damned lies and statistics

Well known subject, especially in marketing and politics
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Defining the issue

What do we mean by “statistics”?
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Defining the issue

What do we mean by “statistics”?

Usually several things:
• descriptive statistics [e.g. Webster’s (Kdict)]
◦ “The science which has to do with the collection and

classification of certain facts respecting the condition of
the people in a state.”

◦ “(pl.) Classified facts respecting the condition of the
people in a state, their health, their longevity,
. . . especially, those facts which can be stated in
numbers, or in tables of numbers, or in any tabular and
classified arrangement.”
⇒ extended to scientific data.
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Defining the issue

What do we mean by “statistics”?

Usually several things:
• descriptive statistics [e.g. Webster’s (Kdict)]
◦ “The science which has to do with the collection and

classification of certain facts respecting the condition of
the people in a state.”

◦ “(pl.) Classified facts respecting the condition of the
people in a state, their health, their longevity,
. . . especially, those facts which can be stated in
numbers, or in tables of numbers, or in any tabular and
classified arrangement.”
⇒ extended to scientific data.

• Probability theory

• Inference⇒ primary interest to physicists
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Defining the issue

What do we mean by “statistics”?

. . . and all together:

“A branch of applied mathematics concerned with the
collection and interpretation of quantitative data and the use
of probability theory to estimate population parameters”
[WordNet (Kdict)]
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What do we mean by “statistics”?

. . . and all together:

“A branch of applied mathematics concerned with the
collection and interpretation of quantitative data and the use
of probability theory to ”estimate population parameters
[WordNet (Kdict)]

⇒ inferential aspect enhanced

Though we physicists are usually not interested in
population parameters, but rather on physics quantities,
theories, and so on.
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Defining the issue

What do we mean by “statistics”?

. . . and all together:

“A branch of applied mathematics concerned with the
collection and interpretation of quantitative data and the use
of probability theory to ”estimate population parameters
[WordNet (Kdict)]

⇒ inferential aspect enhanced

Though we physicists are usually not interested in
population parameters, but rather on physics quantities,
theories, and so on.

Inference: learning about theoretical objects from
experimental observations (see later)
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Where are the problems?

Descriptive statistics Little to comment, apart that the process of
summarizing ‘a State’ in a few numbers, in a diagram or in a
table causes an enormous loss of detailed information, and
this might lead to misunderstandings or even ‘lies’.

⇒ the famous ‘half chicken’ joke.†

G. D’Agostini,Probabilistic Reasoning – p. 6



Where are the problems?

Descriptive statistics Little to comment, apart that the process of
summarizing ‘a State’ in a few numbers, in a diagram or in a
table causes an enormous loss of detailed information, and
this might lead to misunderstandings or even ‘lies’.
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Where are the problems?

Descriptive statistics Little to comment, apart that the process of
summarizing ‘a State’ in a few numbers, in a diagram or in a
table causes an enormous loss of detailed information, and
this might lead to misunderstandings or even ‘lies’.

⇒ the famous ‘half chicken’ joke.†

Probability theory Essentially OK, if we only consider the
mathematical apparatus.

Inference Messy:

• Traditionally, a collection of ad hoc prescriptions
. . . accepted more by authority than by full awareness of
what they mean

⇒ The physicist is confused† between good sense and
statistics education
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Where are the problems?

Descriptive statistics Little to comment, apart that the process of
summarizing ‘a State’ in a few numbers, in a diagram or in a
table causes an enormous loss of detailed information, and
this might lead to misunderstandings or even ‘lies’.

⇒ the famous ‘half chicken’ joke.†

Probability theory Essentially OK, if we only consider the
mathematical apparatus.

Inference Do better?
• Much improvement is gained if inference is grounded on

probability theory

• Summaries of descriptive statistics can be used in those
cases in which statistical sufficiency holds
(e.g. when we use the sample arithmetic average and
standard deviation, instead of the n data points)
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Torniamo a noi

Punto della situazione
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Outline of first meeting

• Brainstorm on ‘standard’ teaching of data analysis methods.
Problems with confidence intervals and p-values

• Uncertainty, probability, decision.
• Causes←→Effects

“The essential problem of the experimental method” (Poincaré).
• A toy model and its physics analogy: the six box game

“Probability is either referred to real cases or it is nothing” (de Finetti).
• Probabilistic approach, but What is probability?
• Basic rules of probability and Bayes rule.
• Bayesian inference and its graphical representation:
⇒ Bayesian networks

• Let us play for a while with the toy
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Summary on probabilistic approach

• Probability means how much we believe something
• Probability depends on available information
→ subjective

• Probability values obey the following basic rules

1. 0 ≤ P (A | I) ≤ 1

2. P (Ω | I) = 1

3. P (A ∪B | I) = P (A | I) + P (B | I) [ if P (A ∩B | I) = ∅ ]
4. P (A ∩B | I) = P (A |B, I) · P (B | I) = P (B |A, I) · P (A | I)

• All the rest by logic

→ And, please, be coherent!
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Summary on probabilistic approach

• Probability means how much we believe something
• Probability depends on available information
→ subjective

• Probability values obey the following basic rules

1. 0 ≤ P (A | I) ≤ 1

2. P (Ω | I) = 1

3. P (A ∪B | I) = P (A | I) + P (B | I) [ if P (A ∩B | I) = ∅ ]
4. P (A ∩B | I) = P (A |B, I) · P (B | I) = P (B |A, I) · P (A | I)

• All the rest by logic

→ And, please, be coherent!

⇒ more comments on P (E | I)→
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Three boxes ‘paradox’

1. The guest and two contestants

2. The guest and one contestant
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Three boxes ‘paradox’

1. The guest and two contestants

2. The guest and one contestant

Nr. 2→ Monty Hall problem
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Conclusions on intro to probabilistic reasoning

• Subjective probability recovers intuitive idea of probability.
• Nothing negative in the adjective ’subjective’. Just

recognize, honestly, that probability depends on the status
of knowledge, different from person to person.

• Most general concept of probability that can be applied to a
large variety of cases.

• The adjective Bayesian comes from the intense use of
Bayes’ theorem to update probability once new data are
acquired.

• Subjective probability is foundamental in decision issues, if
you want to base decision on the probability of different
events, together with the gain of each of them.

• Bayesian networks are powerful conceptuals/mathematical/
software tools to handle complex problems with variables
related by probabilistic links.
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Are Bayesians ‘smart’ and ‘brilliant’?
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Further comments on first meeting
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The three models example

Choose among H1, H2 and H3 having observed x = 3:

In case of ‘likelihoods’ given by
pdf’s, the same formulae apply:
“P (data |Hj)”←→ “f(data |Hj)”.

-2 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

H1

H3

H2

fHxÈHiL

BFj,k = f(x=3 |Hj)
f(x=3 |Hk)

BF2,1 = 18, BF3,1 = 25 and BF3,2 = 1.4→ data favor model H3

(as we can see from figure!), but if we want to state how much
we believe to each model we need to ‘filter’ them with priors.

Assuming the three models initially equally likely, we get final
probabilities of 2.3%, 41% and 57% for the three models.
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A last remark

A last remark on model comparisons
• for a ‘serious’ probabilistic model comparisons,

at least two well defined models are
needed
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starting points to understand if further investigation is worth
[Yes, I also use χ2 to get an idea of the “distance” between a
model and the experimental data – but not more than that].
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A last remark

A last remark on model comparisons
• for a ‘serious’ probabilistic model comparisons,

at least two well defined models are
needed

• p-values (e.g. ‘χ2 tests) have to be considered very useful
starting points to understand if further investigation is worth
[Yes, I also use χ2 to get an idea of the “distance” between a
model and the experimental data – but not more than that].

• But until you don’t have an alternative and credible model to
explain the data, there is little to say about the “chance that
the data come from the model”, unless the data are really
impossible.

• Why do frequentistic test often work? → Think about. . .
(Just by chance – no logical necessity)
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Exercises and discussions

• Continue with six box problem [→ AJP 67 (1999) 1260]

→ Slides
• Home work 1: AIDS problem→ P (HIV |Pos) ?

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

• Home work 2: Particle identification:
A particle detector has a µ identification efficiency of 95%, and a
probability of identifying a π as a µ of 2%. If a particle is identified as a
µ, then a trigger is fired. Knowing that the particle beam is a mixture of
90% π and 10% µ, what is the probability that a trigger is really fired by
a µ? What is the signal-to-noise (S/N ) ratio?
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The hidden uniform

What was the mistake of people saying P (HIV |Pos) = 0.2?

We can easily check that this is due to have set P◦(HIV)

P◦(HIV)
= 1,

that, hopefully, does not apply for a randomly selected Italian.
• This is typical in arbitrary inversions, and often also in

frequentistic prescriptions that are used by the practitioners
to form their confidence on something:

→ “absence of priors” means in most times uniform priors over
the all possible hypotheses

• but they criticize the Bayesian approach because it takes
into account priors explicitly !

Better methods based on ‘sand’ than methods based on nothing!
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Cause-effect representation

box content→ observed color
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Cause-effect representation

box content→ observed color

An effect might be the cause of another effect −→
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A network of causes and effects
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A network of causes and effects

and so on. . . ⇒ Let’s play with Hugin
G. D’Agostini,Probabilistic Reasoning – p. 19



from 6 boxes to 1001 boxes

Overview
• example with 1001 boxes
• from uncertainty on Hj to uncertainty on pj (proportion):
P (Hj)↔ P (pj)

• Physical meaning of pj
• Probability Vs ‘Chance’ (‘propension’)
• The discretized Bayes billard.
• The extension to continuous values of p
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Uncertain numbers

We are often uncertain in numbers and, consistently, we
quantify of belief with probability.

Uncertain number is the more general term for random variable,
though the adjective random is more committing, since it rely on
the concept of randomness (see von Mises).

Nevertheless, I often use the name ‘random variable’, just to
mean ’uncertain number’,
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Uncertain numbers

We are often uncertain in numbers and, consistently, we
quantify of belief with probability.

Uncertain number is the more general term for random variable,
though the adjective random is more committing, since it rely on
the concept of randomness (see von Mises).

Nevertheless, I often use the name ‘random variable’, just to
mean ’uncertain number’, i.e.

A number respect to which we are in
condition of uncertainty

• The first number rolling a die
• The temperature at the Rome airport (FCO) tomorrow at

7:00 am
• The height of the next person who enters this room
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Uncertain numbers

We are often uncertain in numbers and, consistently, we
quantify of belief with probability.

Uncertain number is the more general term for random variable,
though the adjective random is more committing, since it rely on
the concept of randomness (see von Mises).

Nevertheless, I often use the name ‘random variable’, just to
mean ’uncertain number’, i.e.

A number respect to which we are in
condition of uncertainty

• No need that the numbers can be framed in a von Mises’
collective

• But it must be a well defined number (any uncertainty on its
definition will increase our uncertainty about it)
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From events to uncertain numbers

E

1

0

X(E)

P X(E)

Uncertain numbers are associated to events
• Rolling one die: X = 4↔ ‘face marked with 4’

(note: no intrinsic order in the numbers associated to a die)

→ P (X = 4) = P (‘face marked with 4’)
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From events to uncertain numbers

E

1

0

X(E)

P X(E)

Uncertain numbers are associated to events

Event→ number: univocal, but not bi-univocal
• Rolling two dice, with X ‘sum of results’

→ P (X = 4) =
∑

P (‘events giving 4’)
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Probability function (discrete numbers)

To each possible value of X we associate a
degree of belief:

f(x) = P (X = x) .
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Probability function (discrete numbers)

To each possible value of X we associate a
degree of belief:

f(x) = P (X = x) .

f(x), being a probability, must satisfy the
following properties:

0 ≤ f(xi) ≤ 1 ,

P (X = xi ∪ X = xj) = f(xi) + f(xj) ,
∑

i

f(xi) = 1 .
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Probability function (discrete numbers)

To each possible value of X we associate a
degree of belief:

f(x) = P (X = x) .

f(x), being a probability, must satisfy the
following properties:

0 ≤ f(xi) ≤ 1 ,

P (X = xi ∪ X = xj) = f(xi) + f(xj) ,
∑

i

f(xi) = 1 .

Cumulative function (defined for all x)
F (xk) ≡ P (X ≤ xk) =

∑

xi≤xk

f(xi) .

[F (−∞) = 0; F (+∞) = 1;
F (xi)− F (xi−1) = f(xi);
limǫ→0 F (x+ ǫ) = F (x) ]

0 1 2 3

2/8

f(x)

x

4 8/

1/8

1/2

1

0

...........

1 2 3 x

F(x) F(z)

........

f(1)
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First intro to Monte Carlo

How to generate numbers in a way that their chance of occurring
are proportional to f(x)?
• simple consideration based on the graphical representation

of
◦ f(x)

◦ F (x)
◦ extention to continuous functions

• a curious game, trowing stones. . .

G. D’Agostini,Probabilistic Reasoning – p. 24



Some simple examples

• Discrete uniform, well known→ f(x) = 1/n (1 ≤ X ≤ n)
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Some simple examples

• Discrete uniform, well known→ f(x) = 1/n (1 ≤ X ≤ n)
• Bernoulli process
◦ X : 0, 1 (failure/success)
f(0) = 1− p

f(1) = p
◦ it seems of practical irrelevance,
→ but of primary importance
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Some simple examples

• Discrete uniform, well known→ f(x) = 1/n (1 ≤ X ≤ n)
• Bernoulli process
◦ X : 0, 1 (failure/success)
f(0) = 1− p

f(1) = p
◦ it seems of practical irrelevance,
→ but of primary importance

• The drunk man problem
◦ Six keys (like rolling a die)
◦ After each trial he ‘loses memory’
◦ We watch him and – cynically – bet on the attempt on

which he will succeed:
◦ X = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, . . .?
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Some simple examples

• Discrete uniform, well known→ f(x) = 1/n (1 ≤ X ≤ n)
• Bernoulli process
◦ X : 0, 1 (failure/success)
f(0) = 1− p

f(1) = p
◦ it seems of practical irrelevance,
→ but of primary importance

• The drunk man problem
◦ Six keys (like rolling a die)
◦ After each trial he ‘loses memory’
◦ We watch him and – cynically – bet on the attempt on

which he will succeed:
◦ X = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, . . .?
→ On which number would you bet?
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Propagating probability values

We cannot say “we consider all values of X equally likelly
because all attempts are equally likely”. . .
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Propagating probability values

We cannot say “we consider all values of X equally likelly
because all attempts are equally likely”. . .

→ what is constant is P (Ei | I) = p,
where Ei is the success in the i-th attempt.

→ instead, “X = i” stands for first success in the attempt i, i.e.
E1 ∩E2 ∩ · · · ∩ Ei−1 ∩ Ei .
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Propagating probability values

We cannot say “we consider all values of X equally likelly
because all attempts are equally likely”. . .

→ what is constant is P (Ei | I) = p,
where Ei is the success in the i-th attempt.

→ instead, “X = i” stands for first success in the attempt i, i.e.
E1 ∩E2 ∩ · · · ∩ Ei−1 ∩ Ei .

How to evaluate f(i), i.e. P (X = i)?

⇒ Beliefs are framed in a network!
• Once we assess something, we are implicitly making an

infinite number of assessments concerning logically
connected events!

• We only need to make them explicit, using logic:
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Propagating probability values

We cannot say “we consider all values of X equally likelly
because all attempts are equally likely”. . .

→ what is constant is P (Ei | I) = p,
where Ei is the success in the i-th attempt.

→ instead, “X = i” stands for first success in the attempt i, i.e.
E1 ∩E2 ∩ · · · ∩ Ei−1 ∩ Ei .

How to evaluate f(i), i.e. P (X = i)?

• In this case, simply chain rule:

P (X = 2) = P (E1 ∩ E2) = P (E1) · P (E2 |E1);

P (X = 3) = P (E1) · P (E2 |E1) · P (E3 |E1, E2);
etc.
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Propagating probability values

We cannot say “we consider all values of X equally likelly
because all attempts are equally likely”. . .

→ what is constant is P (Ei | I) = p,
where Ei is the success in the i-th attempt.

→ instead, “X = i” stands for first success in the attempt i, i.e.
E1 ∩E2 ∩ · · · ∩ Ei−1 ∩ Ei .

How to evaluate f(i), i.e. P (X = i)?

[BUT sometimes the math might be hard:

→ fortunatly, nowadays most tough ‘direct probability’ problems
can be easily solved by simulation (“Monte Carlo” methods)]
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Building up f(x) of the drunk man problem
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Building up f(x) of the drunk man problem

f(1) = P (E1) = p
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Building up f(x) of the drunk man problem

f(1) = P (E1) = p

f(2) = P (E1) · P (E2 |E1) = (1− p) p
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Building up f(x) of the drunk man problem
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f(2) = P (E1) · P (E2 |E1) = (1− p) p

f(3) = P (E1) · P (E2 |E1) · P (E3 |E1, E2) = (1− p)2 p

. . . . . . . . .

f(x) = p (1− p)x−1
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Building up f(x) of the drunk man problem

f(1) = P (E1) = p

f(2) = P (E1) · P (E2 |E1) = (1− p) p

f(3) = P (E1) · P (E2 |E1) · P (E3 |E1, E2) = (1− p)2 p

. . . . . . . . .

f(x) = p (1− p)x−1

Beliefs decrease
geometrically

⇒ Geometric distribution
[p = 1/6]
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Building up f(x) of the drunk man problem

f(1) = P (E1) = p

f(2) = P (E1) · P (E2 |E1) = (1− p) p

f(3) = P (E1) · P (E2 |E1) · P (E3 |E1, E2) = (1− p)2 p

. . . . . . . . .

f(x) = p (1− p)x−1

p = 1/2→ tossing a coin

[Note: f(x) =
(

1
2

)x]
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Building up f(x) of the drunk man problem

f(1) = P (E1) = p

f(2) = P (E1) · P (E2 |E1) = (1− p) p

f(3) = P (E1) · P (E2 |E1) · P (E3 |E1, E2) = (1− p)2 p

. . . . . . . . .

f(x) = p (1− p)x−1

p = 1/18→ a particular
number at the Italian lotto
(p = 5/90)
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Building up f(x) of the drunk man problem

f(1) = P (E1) = p

f(2) = P (E1) · P (E2 |E1) = (1− p) p

f(3) = P (E1) · P (E2 |E1) · P (E3 |E1, E2) = (1− p)2 p

. . . . . . . . .

f(x) = p (1− p)x−1

Most probable value does
not depend on p.
Not a suitable indicator to
state our expectation
The same is true for the
range of possibilities:
X : 1, 2, . . . ,∞ 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

p = 1/6
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Prevision and prevision uncertainty

More suitable quantity to summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:
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More suitable quantity to summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:

E[X] =
∑

x

x f(x)
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Prevision and prevision uncertainty

More suitable quantity to summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:

E[X] =
∑

x

x f(x)

Var(X) =
∑

x

(x− E[X])2 f(x) −→ σ(X) =
√

Var(X)
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Prevision and prevision uncertainty

More suitable quantity to summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:

E[X] =
∑

x

x f(x)

Var(X) =
∑

x

(x− E[X])2 f(x) −→ σ(X) =
√

Var(X)

E[X] = 1/p

σ(X) =
√
1− p/p

p = 1/8:

E[X] = 6

σ(X) = 5.5
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Prevision and prevision uncertainty

More suitable quantity to summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:

E[X] =
∑

x

x f(x)

Var(X) =
∑

x

(x− E[X])2 f(x) −→ σ(X) =
√

Var(X)

E[X] = 1/p

σ(X) =
√
1− p/p

p = 1/2:

E[X] = 2

σ(X) = 1.4
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Prevision and prevision uncertainty

More suitable quantity to summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:

E[X] =
∑

x

x f(x)

Var(X) =
∑

x

(x− E[X])2 f(x) −→ σ(X) =
√

Var(X)

E[X] = 1/p

σ(X) =
√
1− p/p

p = 1/18:

E[X] = 18

σ(X) = 17.5
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Prevision and prevision uncertainty

More suitable quantity to summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:

E[X] =
∑

x

x f(x)

Var(X) =
∑

x

(x− E[X])2 f(x) −→ σ(X) =
√

Var(X)

E[X] = 1/p

σ(X) =
√
1− p/p −−−→

p→0
1/p

→ Rare events might happen
at any moment!
(Although they have very
small probability to hap-
pen in any given very small
time interval!)
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⇒ be carefull in Risk Management!
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Further remarks on first occurrance probability

• If p→ 0 in an observational interval ∆t→ 0, then it makes
no sense to speak about the probability in the i-th trial:
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Further remarks on first occurrance probability

• If p→ 0 in an observational interval ∆t→ 0, then it makes
no sense to speak about the probability in the i-th trial:
⇒ It makes only sense of the probability that the ‘success’

occures between t1 and t2;
⇒ p→ intensity of the Poisson process: r = dp/dt;
⇒ Geometric distribution→ exponential distribution;
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Further remarks on first occurrance probability

• If p→ 0 in an observational interval ∆t→ 0, then it makes
no sense to speak about the probability in the i-th trial:
⇒ Geometric distribution→ exponential distribution;

• No memory property of geometric and exponential:
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Further remarks on first occurrance probability

• If p→ 0 in an observational interval ∆t→ 0, then it makes
no sense to speak about the probability in the i-th trial:
⇒ Geometric distribution→ exponential distribution;

• No memory property of geometric and exponential;
• Be careful: p (or r) might depend on time (think to aging

effects!):
⇒ geometrical/exponential model might not be any longer

suitable models!
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Expected value and ‘standard uncertainty’

The detail on the uncertainty is provided by f(x).

• E[X] and σ(X) are just convenient summaries.
• In the general case they do not convey a precise confidence

that X will occur in the range E[X]± σ(X), though this
probability is rather ‘high’ for typical f(x) of interest.
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Expected value and ‘standard uncertainty’

The detail on the uncertainty is provided by f(x).

• E[X] and σ(X) are just convenient summaries.
• In the general case they do not convey a precise confidence

that X will occur in the range E[X]± σ(X), though this
probability is rather ‘high’ for typical f(x) of interest.

• Another location summary (that statisticians like much) is
given by the median, while the ’quantiles’ provide (left open)
intervals in which the variable is expected to fall with some
probability (typically 10%, 20%, etc.).
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Expected value and ‘standard uncertainty’

The detail on the uncertainty is provided by f(x).

• E[X] and σ(X) are just convenient summaries.
• In the general case they do not convey a precise confidence

that X will occur in the range E[X]± σ(X), though this
probability is rather ‘high’ for typical f(x) of interest.

• Another location summary (that statisticians like much) is
given by the median, while the ’quantiles’ provide (left open)
intervals in which the variable is expected to fall with some
probability (typically 10%, 20%, etc.).

• Anyway, it is important to prepared to f(x) of any kind,
because – fortunately! – nature is not boring. . .
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Expected value and ‘standard uncertainty’

The detail on the uncertainty is provided by f(x).

• E[X] and σ(X) are just convenient summaries.
• In the general case they do not convey a precise confidence

that X will occur in the range E[X]± σ(X), though this
probability is rather ‘high’ for typical f(x) of interest.

• Another location summary (that statisticians like much) is
given by the median, while the ’quantiles’ provide (left open)
intervals in which the variable is expected to fall with some
probability (typically 10%, 20%, etc.).

• Anyway, it is important to prepared to f(x) of any kind,
because – fortunately! – nature is not boring. . .

• In particular, f(x) might be asymmetric or, ‘multinomial’, i.e.
with more than one local maximum.
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When to bet on the barycenter of the distribution?

When asked about the drunk man problem, most people ask
they would bet on the 8-th trial, or something around it.
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When to bet on the barycenter of the distribution?

When asked about the drunk man problem, most people ask
they would bet on the 8-th trial, or something around it.
. . . and even when they are told the should bet on the first one,

they reply that the first attempt has a little probability...

G. D’Agostini,Probabilistic Reasoning – p. 31



When to bet on the barycenter of the distribution?

When asked about the drunk man problem, most people ask
they would bet on the 8-th trial, or something around it.
. . . and even when they are told the should bet on the first one,

they reply that the first attempt has a little probability...
• Yes, P (1) can be small, but it is the largest one

(although all others, are all together more probable!)
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When to bet on the barycenter of the distribution?

When asked about the drunk man problem, most people ask
they would bet on the 8-th trial, or something around it.
. . . and even when they are told the should bet on the first one,

they reply that the first attempt has a little probability...
• Yes, P (1) can be small, but it is the largest one

(although all others, are all together more probable!)

• Bet on the 1-st if you win/lose if you hit/miss the number
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When to bet on the barycenter of the distribution?

When asked about the drunk man problem, most people ask
they would bet on the 8-th trial, or something around it.
. . . and even when they are told the should bet on the first one,

they reply that the first attempt has a little probability...
• Yes, P (1) can be small, but it is the largest one

(although all others, are all together more probable!)

• Bet on the 1-st if you win/lose if you hit/miss the number

• BUT sometimes wins who gets closest.
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When to bet on the barycenter of the distribution?

When asked about the drunk man problem, most people ask
they would bet on the 8-th trial, or something around it.
. . . and even when they are told the should bet on the first one,

they reply that the first attempt has a little probability...
• Yes, P (1) can be small, but it is the largest one

(although all others, are all together more probable!)

• Bet on the 1-st if you win/lose if you hit/miss the number

• BUT sometimes wins who gets closest.
◦ Bet on median if loss is linear with the error.
◦ Bet on average if loss is quadratic with the error

G. D’Agostini,Probabilistic Reasoning – p. 31



Probability distributions Vs ‘statistical’ distributions

It is important to stress the difference between
• Probability distribution
◦ To each possible outcome we associate how much we

are confident on it:

x←→ f(x)
• Statistical distribution
◦ To each observed outcome we associated its (relative)

frequency
x←→ fx

(e.g. an histogram of experimental observations)
Summaries (‘mean’, variance, ’σ’, ’skewness’, etc) have
similar names and analogous definitions, but conceptual
different meaning.
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A histogram is not, usually, a probability distribution

In particular a histogram of
experimental data is not a
probability distribution (un-
less one reshuffles those
events, and extracts one of
them at random).
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A histogram is not, usually, a probability distribution

In particular a histogram of
experimental data is not a
probability distribution (un-
less one reshuffles those
events, and extracts one of
them at random).
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Average and variance

x =
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x fx
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∑
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(x− x)2 fx
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A histogram is not, usually, a probability distribution

In particular a histogram of
experimental data is not a
probability distribution (un-
less one reshuffles those
events, and extracts one of
them at random).
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Average and variance

x =
∑

x

x fx

σ2 =
∑

x

(x− x)2 fx

→ Just a rough empirical de-
scription of the shape
⇒ center of mass and mo-
mentum of inertia!
(Famous ‘n/(n − 1)’ correc-
tion: interference descriptive
↔ inferential statistics.)
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Distributions derived from the Bernoulli process

Bernoulli

Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)

Pascal
(trial of

k-th success)

(Binomial well known. We shall not use the Pascal)
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Poisson distribution

One of the best known distributions by physicist.

For a while, just take the mathematical approach to the Poisson
distribution:

f(x | Pλ) =
λx

x!
e−λ

{

0 < λ <∞
x = 0, 1, . . . ,∞ .

Reminding also the well known property

Bn,p −−−−−−−−−→
n→∞
p→ 0

(np = λ)

Pλ .
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Poisson process

0 t

Let us consider some phenomena that might happen at a give
instant, such that
• Probability of 1 count in ∆T is proportional to ∆T , with ∆T

‘small’.
p = P (“1 count in ∆T ′′) = r∆T

where r is the intensity of the process’
• P (≥ 2 counts)≪ P (1count) (OK if ∆T is small enough)
• What happens in one interval does not depend on other

intervals (if disjoints)

Let us divide a finite interval T in n small intervals,
i.e. T = n∆T , and ∆T = T/n.
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Poisson process→ Poisson distribution

0 t

Considering the possible occurrence of a count in each small
interval ∆T an independent Bernoulli trial, of probability

p = r∆T = r T/n
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Poisson process→ Poisson distribution

0 t

Considering the possible occurrence of a count in each small
interval ∆T an independent Bernoulli trial, of probability

p = r∆T = r T/n

If we are interested in the number of counts in T, independently
from the order: → Binomial : Bn,p
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Poisson process→ Poisson distribution

0 t

Considering the possible occurrence of a count in each small
interval ∆T an independent Bernoulli trial, of probability

p = r∆T = r T/n

If we are interested in the number of counts in T, independently
from the order: → Binomial : Bn,p
But n→∞ and p→ 0 ⇒ Bn,p → Pλ where λ = np = r T

⇒ λ depends only on the intensity of the process and on the
finite time of observation.
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Poisson process→ waiting time

0 t

Another interesting problem: how long do we have to wait for the
first count? (Starting from any arbitrary time)

Problem analogous to the Geometric, but now it makes no
sense to ask at which small interval the counts will occur!
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Poisson process→ waiting time

0 t

Another interesting problem: how long do we have to wait for the
first count? (Starting from any arbitrary time)

Problem analogous to the Geometric, but now it makes no
sense to ask at which small interval the counts will occur!

Let us restart from the Geometric and calculate P (X > x):

P (X > x) =
∑

i>x

f(i | Gp) = (1− p)x

(The count will not occur in the first x trials).

In the domain of time, using p = r t/n and then making the limit:

P (T > t) = (1− p)n = (1− r t/n)n −−−→
n→∞

e−r t
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Poisson process→ Exponential distribution

Knowing P (T > t) we get easily the cumulative F (t):

F (t) = P (T ≤ t) = 1− P (T > t) = 1− e−r t .

F (t) is now a continuous function!
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Poisson process→ Exponential distribution

Knowing P (T > t) we get easily the cumulative F (t):

F (t) = P (T ≤ t) = 1− P (T > t) = 1− e−r t .

F (t) is now a continuous function!

In some region of t there is a concentration of probability more
than in other regions.
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Poisson process→ Exponential distribution

Knowing P (T > t) we get easily the cumulative F (t):

F (t) = P (T ≤ t) = 1− P (T > t) = 1− e−r t .

F (t) is now a continuous function!

In some region of t there is a concentration of probability more
than in other regions.

→ This leads us to define a probability density function (pdf)
for continuous variables:

f(t) = dF (x)
d t .

• In this case f(t) = r e−r t = 1
τ e

−t/τ

→ Exponential distribution (τ = 1/r): E[T ] = σ(T ) = τ .

(⇒ Properties of pdf assumed to be well known.)
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Geometric↔ Exponential

Geometric Exponential
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Exponential is just the limit to the continuum of the Geometric.
‘No memory‘ property for both: Assuming a success (or a count)
has not happened until a certain trial (or time), the distributions
restart from there. No need to know the instant of particle
creation to measure ‘life time’ (→ the “1033 year old” proton!).
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Distributions derived from the Bernoulli process

Bernoulli

Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)

Pascal
(trial of

k-th success)

Exponential Gamma Poisson

(time 1st count) (time k-th count) (# counts in T )
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Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)

Pascal
(trial of

k-th success)

Exponential Gamma Poisson

(time 1st count) (time k-th count) (# counts in T )
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Distributions derived from the Bernoulli process

Bernoulli

Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)

Pascal
(trial of

k-th success)

Exponential Gamma Poisson

(time 1st count) (time k-th count) (# counts in T )

χ2

Gaussian
G. D’Agostini,Probabilistic Reasoning – p. 41



Note

Though we could not go through all technical details, it is
important to remark that all these distributions are obtained
assuming that each ‘act of observation’, that can be
asymptotically associated to a single point, is an independent
Bernoulli trial of constant probability p (that might tend to zero).
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Important properties of probability distributions

E(·) is a linear operator:

E(aX + b) = aE(X) + b .

Transformation properties of variance and standard deviation:

Var(aX + b) = a2 Var(X) ,

σ(aX + b) = |a|σ(X) .

Obviously, I have to assume that most of the basic formalism is

well known, e.g. that P (a ≤ X ≤ b) =
∫ b
a f(x) dx, etc.
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From probability to future frequencies

Let us think to n independent Bernoulli trials that
have to be made.

Number of successes X ∼ Bn,p, with p.

We might be interested to the relative frequency of successes,
i.e. fn = X/n: fn = 0, 1/n, 2/n, . . . , 1

What do we expect for fn?
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From probability to future frequencies

Let us think to n independent Bernoulli trials that
have to be made.

Number of successes X ∼ Bn,p, with p.

We might be interested to the relative frequency of successes,
i.e. fn = X/n: fn = 0, 1/n, 2/n, . . . , 1

What do we expect for fn? f(fn) can be obtained from f(x).

E(fn) ≡
1

n
E(X | Bn,p) =

np

n
= p

σ(fn) ≡
1

n
σ(X | Bn,p) =

√

p (1− p)√
n

−−−→
n→∞

0

We expect p, with uncertainty that decreases with
√
n:

→ Bernoulli’s theorem, the most known, misunderstood and
misused probability theory theorem.
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From probability to future frequencies

Let us think to n independent Bernoulli trials that
have to be made.

Number of successes X ∼ Bn,p, with p.

We might be interested to the relative frequency of successes,
i.e. fn = X/n: fn = 0, 1/n, 2/n, . . . , 1

What do we expect for fn? f(fn) can be obtained from f(x).

E(fn) ≡
1

n
E(X | Bn,p) =

np

n
= p

σ(fn) ≡
1

n
σ(X | Bn,p) =

√

p (1− p)√
n

−−−→
n→∞

0

In particular, it justifies the increased probability of neither ’late
numbers’ at lotto, nor frequency based definition of probability
(Circular: cannot define probability from probability theorem!)
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Note sul teorema di Bernoulli

• La formulazione va intesa in termini di probabilità e non di
certezza.
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Note sul teorema di Bernoulli

• La formulazione va intesa in termini di probabilità e non di
certezza.

• Il teorema non implica assolutamente che, se per un certo
N lo scarto |fn − p| è grande, allora per n > N la frequenza
relativa fn “debba recuperare” per “mettersi in regola con la
legge”.
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• Il teorema non implica assolutamente che, se per un certo
N lo scarto |fn − p| è grande, allora per n > N la frequenza
relativa fn “debba recuperare” per “mettersi in regola con la
legge”.

• Esso non giustifica la “definizione” frequentista di
probabilità. Affermando infatti che “è molto probabile che la
frequenza non differisca molto dalla probabilità” si sta
assumendo il concetto di probabilità:
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Note sul teorema di Bernoulli

• La formulazione va intesa in termini di probabilità e non di
certezza.

• Il teorema non implica assolutamente che, se per un certo
N lo scarto |fn − p| è grande, allora per n > N la frequenza
relativa fn “debba recuperare” per “mettersi in regola con la
legge”.

• Esso non giustifica la “definizione” frequentista di
probabilità. Affermando infatti che “è molto probabile che la
frequenza non differisca molto dalla probabilità” si sta
assumendo il concetto di probabilità:
◦ “Probabilità come propensione” ≈OK
→ P (E |prop = p) = p
→ fn dati eventi analoghi in cui crediamo che la
propensione sia la stessa, vale il Th. di Bernoulli.

◦ Probabilità come limite della frequenza: NO
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Note sul teorema di Bernoulli - 2
• Non si dimentichi che il teorema di Bernoulli . . . è un

teorema, basato sulle regole di base dalla probabilità e su
tutte le proprietà che ne derivano. Quindi non può definire il
concetto di probabilità.
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Note sul teorema di Bernoulli - 2
• Non si dimentichi che il teorema di Bernoulli . . . è un

teorema, basato sulle regole di base dalla probabilità e su
tutte le proprietà che ne derivano. Quindi non può definire il
concetto di probabilità.

• Su tale argomento è molto convincente de Finetti
“Per quanti tendono a ricollegare il concetto stesso di probabilità
alla nozione di frequenza, tali risultati [che fn “tenda a p”]
vengono ad assumere un ruolo di cerniera per convalidare tale
avvicinamento o identificazione di nozioni. Logicamente non si
sfugge però al dilemma che la stessa cosa non si può assumere
prima per definizione e poi dimostrare come teorema, né alla
contraddizione di una definizione che assumerebbe una cosa
certa mentre il teorema afferma che è soltanto molto probabile.
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Note sul teorema di Bernoulli - 2
• Non si dimentichi che il teorema di Bernoulli . . . è un

teorema, basato sulle regole di base dalla probabilità e su
tutte le proprietà che ne derivano. Quindi non può definire il
concetto di probabilità.

• Su tale argomento è molto convincente de Finetti
“Per quanti tendono a ricollegare il concetto stesso di probabilità
alla nozione di frequenza, tali risultati [che fn “tenda a p”]
vengono ad assumere un ruolo di cerniera per convalidare tale
avvicinamento o identificazione di nozioni. Logicamente non si
sfugge però al dilemma che la stessa cosa non si può assumere
prima per definizione e poi dimostrare come teorema, né alla
contraddizione di una definizione che assumerebbe una cosa
certa mentre il teorema afferma che è soltanto molto probabile.

• Si noti inoltre che la condizione di p costante implica che
essa sia prefissata a priori e che anche le valutazioni sui
possibili esiti di fn siano fatte prima di iniziare le prove (o in
condizione di incertezza sul loro esito).
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Probabilità Vs frequenza relativa

Concetti da tenere ben distinti anche se esiste un collegamento
fra di loro:

p→ fn : Teorema di Bernoulli

fn → p : Teorema di Bayes sotto precise condizioni
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p↔ f
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p↔ f : Large n limits
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Propagation of uncertainties

All we have seen so far in this short review of ‘direct probability’
is how to ‘propagate probability’ to logically connected events or
variables.
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Propagation of uncertainties

All we have seen so far in this short review of ‘direct probability’
is how to ‘propagate probability’ to logically connected events or
variables.

⇒ Therefore, the famous problem of propagation of uncertainty
is straightforward in a probabilistic approach: just use probability
theory.

[Note that in the frequency based approach one does something
similar, but in a ‘strange’ way, because one is not allowed to use
probability for physical quantities, but only for estimators.]
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Propagation of uncertainties

All we have seen so far in this short review of ‘direct probability’
is how to ‘propagate probability’ to logically connected events or
variables.

⇒ Therefore, the famous problem of propagation of uncertainty
is straightforward in a probabilistic approach: just use probability
theory.

[Note that in the frequency based approach one does something
similar, but in a ‘strange’ way, because one is not allowed to use
probability for physical quantities, but only for estimators.]

The general problem:

f(x1, x2, . . . , xn) −−−−−−−−−−−−−→
Yj=Yj(X1,X2,...,Xn)

f(y1, y2, . . . , ym) .

This calculation can be quite challenging, but it can be easily
performed by Monte Carlo techniques.
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General solution for discrete variables

Y = Y (X), where Y () stands for the mathematical function
relating X and Y .

The probability of a given Y = y is equal to the sum of the
probability of each X such that Y (X = x) = y.
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General solution for discrete variables

Y = Y (X), where Y () stands for the mathematical function
relating X and Y .

The probability of a given Y = y is equal to the sum of the
probability of each X such that Y (X = x) = y.
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General solution for discrete variables

Y = Y (X), where Y () stands for the mathematical function
relating X and Y .

The probability of a given Y = y is equal to the sum of the
probability of each X such that Y (X = x) = y.

The extension to many variables is straightforward:
for ex., given two input quantities X1 and X2, with their
probability function f(x1, x2), and two output quantities Y1 and
Y2:

f(y1, y2) =
∑

x1, x2
{

Y1(x1, x2) = y1

Y2(x1, x2) = y2 .

f(x1, x2)

(For each point {y1, y2} sum up the probability of all points in
the {X1,X2} space that satisfy the constrain.)
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General solution for continuous variable

Just extend to the continuum the previous formula:
• replace sums by integrals
• replace constrains by suitable Dirac δ():

f(y1, y2) =

∫

δ(y1−Y1(x1, x2)) δ(y2−Y2(x1, y2)) f(x1, x2)dx1dx2 .
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Zoom
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General solution for continuous variable

Just extend to the continuum the previous formula:
• replace sums by integrals
• replace constrains by suitable Dirac δ():

f(y1, y2) =

∫
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General solution for continuous variable

Just extend to the continuum the previous formula:
• replace sums by integrals
• replace constrains by suitable Dirac δ():

f(y1, y2) =

∫

δ(y1−Y1(x1, x2)) δ(y2−Y2(x1, y2)) f(x1, x2)dx1dx2 .

E(Y ) = E(X1) + E(X2)

σ2(Y ) = σ2(X1) + σ2(X2)

mode(Y )↔ mode(Xi)
median(Y )↔ median(Xi)

?
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No equivalent rule for the most probable values!

But there is nothing similar for the most probable values

0.5 + 0.5 = 1 only for nice symmetric distributions

0.5 + 0.5 = 0.45 in our ‘asymmetric’ example!
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But there is nothing similar for the most probable values

0.5 + 0.5 = 1 only for nice symmetric distributions

0.5 + 0.5 = 0.45 in our ‘asymmetric’ example!

Not just an odd academic example:
• asymmetric uncertainties occur often in HEP

every time you read ‘best value’ +∆+

−∆−

!
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• asymmetric uncertainties occur often in HEP
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−∆−

!

→ asymmetric χ2 or log-likelihoods

→ asymmetry in – well treated! – uncertainty propagations

→ systematics (often related to non linear propagation)
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No equivalent rule for the most probable values!

But there is nothing similar for the most probable values

0.5 + 0.5 = 1 only for nice symmetric distributions

0.5 + 0.5 = 0.45 in our ‘asymmetric’ example!

Not just an odd academic example:
• asymmetric uncertainties occur often in HEP

every time you read ‘best value’ +∆+

−∆−

!

→ asymmetric χ2 or log-likelihoods

→ asymmetry in – well treated! – uncertainty propagations

→ systematics (often related to non linear propagation)

And remember that standard methods (χ2 or ML fits) provide
something equivalent to ‘most probable values’, not to E( )!

(As we shall see.)

G. D’Agostini,Probabilistic Reasoning – p. 55



End

FINE
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Notes

The following slides should be reached
by hyper-links, clicking on words with the
symbol †
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If I eat a chicken and you eat no chicken. . .

. . . for the statistics each of us eats 1/2 chicken.

For the pleasure of Italian readers, this is how Trilussa put is:

La statistica

Sai ched’è la statistica? È ’na cosa
che serve pe’ fa’ un conto in generale
de la gente che nasce, che sta male,
che more, che va in carcere e che sposa.

Ma pe’ me la statistica curiosa
è dove c’entra la percentuale,
pe’ via che, lı̀, la media è sempre eguale
puro co’ la persona bisognosa.

(continues on next slide→)

Go Back
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La Statistica di Trilussa (continua)

Me spiego, da li conti che se fanno
seconno le statistiche d’adesso
risurta che te tocca un pollo all’anno:

e, se nun entra ne le spese tue,
t’entra ne la statistica lo stesso
perché c’è un antro che se ne magna due.

Go Back
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For example:
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For example:

• Why should one be allowed to state that
“the interval 170–180 GeV contains the value of the top
quark mass with a given probability”,
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For example:

• Why should one be allowed to state that
“the interval 170–180 GeV contains the value of the top
quark mass with a given probability”,

. . . but not that say that
“the value of the top quark mass lies in that interval with the
same probability”?
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For example:

• Why should one be allowed to state that
“the interval 170–180 GeV contains the value of the top
quark mass with a given probability”,

. . . but not that say that
“the value of the top quark mass lies in that interval with the
same probability”?
⇒ quite an odd ideology about what probability is!

Aristotle would get mad. . .
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For example:

• Why should one be allowed to state that
“the interval 170–180 GeV contains the value of the top
quark mass with a given probability”,

. . . but not that say that
“the value of the top quark mass lies in that interval with the
same probability”?
⇒ quite an odd ideology about what probability is!

Aristotle would get mad. . .
◦ So unnatural that essentially all teachers teach ’standard

confidence intervals’ as probability intervals
(or this is, at least, what remains in the students minds –
who will later become teachers, and the circle goes on).
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For example:

• Why should one be allowed to state that
“the interval 170–180 GeV contains the value of the top
quark mass with a given probability”,

. . . but not that say that
“the value of the top quark mass lies in that interval with the
same probability”?
⇒ quite an odd ideology about what probability is!

Aristotle would get mad. . .
◦ So unnatural that essentially all teachers teach ’standard

confidence intervals’ as probability intervals
(or this is, at least, what remains in the students minds –
who will later become teachers, and the circle goes on).

◦ And even statistics experts, when they have to transmit
to the rest of the community the meaning of what they
do, they have hard time in doing it −→ Slide
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. . . or

• Why a 95% C.L lower bound does not mean that we are
95% confident that the quantity is above this limit?
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. . . or

• Why a 95% C.L lower bound does not mean that we are
95% confident that the quantity is above this limit?

More precisely:
◦ If we know that a box contains 95% of white balls, then
• we can evaluate P (white) = 95%
⇒ we feel 95% confident to extract a white ball.
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◦ 95% C.L lower bounds do no have [in most cases – but

somethimes they do(!)] the same meaning:
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. . . or

• Why a 95% C.L lower bound does not mean that we are
95% confident that the quantity is above this limit?

More precisely:
◦ If we know that a box contains 95% of white balls, then
• we can evaluate P (white) = 95%
⇒ we feel 95% confident to extract a white ball.
◦ 95% C.L lower bounds do no have [in most cases – but

somethimes they do(!)] the same meaning:
⇒ we are not as confident that the quantity is above the

bound as we are confident to extract a white box from
the box!

◦ great confusion! → 1998 survey −→ Slides
◦ At least, clear after 2000 CERN CLW −→ Slide
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. . . or

• Why a 95% C.L lower bound does not mean that we are
95% confident that the quantity is above this limit?

More precisely:
◦ If we know that a box contains 95% of white balls, then
• we can evaluate P (white) = 95%
⇒ we feel 95% confident to extract a white ball.
◦ 95% C.L lower bounds do no have [in most cases – but

somethimes they do(!)] the same meaning:
⇒ we are not as confident that the quantity is above the

bound as we are confident to extract a white box from
the box!

◦ great confusion! → 1998 survey −→ Slides
◦ At least, clear after 2000 CERN CLW −→ Slide

(But I am afraid if I would redo the survey now, I would
get similar answers. . . )
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. . . or

• Why do we insist in using the ‘frequentistic coverage’ that,
apart the high sounding names and attributes (‘exact’,
‘classical’, “guarantees ..”, . . . ), manifestly does not cover?
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. . . or

• Why do we insist in using the ‘frequentistic coverage’ that,
apart the high sounding names and attributes (‘exact’,
‘classical’, “guarantees ..”, . . . ), manifestly does not cover?

More precisely (and besides the ‘philosophical quibbles’ of
the interval that covers the value with a given probability,
and not the value being in the interval with that probability):
◦ many thousands C.L. upper/lower bounds have been

published in the past years
⇒ but never a value has shown up in the 5% or 10% side,

that, by complementarity, the method should cover in 5%
or 10% of the cases.
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. . . or

• Why do we insist in using the ‘frequentistic coverage’ that,
apart the high sounding names and attributes (‘exact’,
‘classical’, “guarantees ..”, . . . ), manifestly does not cover?

More precisely (and besides the ‘philosophical quibbles’ of
the interval that covers the value with a given probability,
and not the value being in the interval with that probability):
◦ many thousands C.L. upper/lower bounds have been

published in the past years
⇒ but never a value has shown up in the 5% or 10% side,

that, by complementarity, the method should cover in 5%
or 10% of the cases.
Notwithstanding the fact that there is been a lot of
activity in the past years by several physicists, convinced
that the idea is basically good, but one only needs ‘a
better prescription’.
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. . . or

• Why do we insist in using the ‘frequentistic coverage’ that,
apart the high sounding names and attributes (‘exact’,
‘classical’, “guarantees ..”, . . . ), manifestly does not cover?

More precisely (and besides the ‘philosophical quibbles’ of
the interval that covers the value with a given probability,
and not the value being in the interval with that probability):
◦ many thousands C.L. upper/lower bounds have been

published in the past years
⇒ but never a value has shown up in the 5% or 10% side,

that, by complementarity, the method should cover in 5%
or 10% of the cases.
If the method guarantees the claimed coverage,
who refunds us if it does not work?
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. . . or

• Why do we insist in using the ‘frequentistic coverage’ that,
apart the high sounding names and attributes (‘exact’,
‘classical’, “guarantees ..”, . . . ), manifestly does not cover?

• In January 2000 I was answered that the reason “is because
people have been flip-flopping. Had they used a unified
approach, this would not have happened” (G. Feldman)
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apart the high sounding names and attributes (‘exact’,
‘classical’, “guarantees ..”, . . . ), manifestly does not cover?

• In January 2000 I was answered that the reason “is because
people have been flip-flopping. Had they used a unified
approach, this would not have happened” (G. Feldman)

• After six years the production of 90-95% C.L. bounds has
continued steadly, and in many cases the so called ‘unified
approach’ has been used, but still coverage does not do its
job.
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. . . or

• Why do we insist in using the ‘frequentistic coverage’ that,
apart the high sounding names and attributes (‘exact’,
‘classical’, “guarantees ..”, . . . ), manifestly does not cover?

• In January 2000 I was answered that the reason “is because
people have been flip-flopping. Had they used a unified
approach, this would not have happened” (G. Feldman)

• After six years the production of 90-95% C.L. bounds has
continued steadly, and in many cases the so called ‘unified
approach’ has been used, but still coverage does not do its
job.

• What will be the next excuse?

⇒ I do not know what the so-called ‘flip-plopping’ is,

but we can honestly acknowledge the flop of that reasoning.

Go Back
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