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Su lucidi tradizionali

• Inferenza parametrica: modello normale, binomiale,
poissoniano

• Prior coniugate
• Modelli gerarchici (rappresentati graficamente come reti

bayesiane)
• Incertezze dovute ad errori sistematici: caso generale,

esempi su modelli semplici, approssimazioni.
• Raccomandazioni ISO (‘GUM’)

Per riferimenti, link, etc. vedi sul sito.
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Bayes theorem on continuous variables

f(x, µ | I) = f(x | y, I) · f(µ | I)

f(x | I) =

∫

f(x, µ | I) dy

f(µ |x, I) =
f(x |µ, I) · f(µ | I)

f(x | I)

=
f(x |µ, I) · f(µ | I)
∫

f(x, µ | I) dy

f(µ |x, I) ∝ f(x |µ, I) · f(µ | I)

∝ likelihood × prior
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Bayes theorem on continuous variables

f(x, µ | I) = f(x | y, I) · f(µ | I)

f(x | I) =

∫

f(x, µ | I) dy

f(µ |x, I) =
f(x |µ, I) · f(µ | I)

f(x | I)

=
f(x |µ, I) · f(µ | I)
∫

f(x, µ | I) dy

f(µ |x, I) ∝ f(x |µ, I) · f(µ | I)

∝ likelihood × prior

IF prior flat → inference dominated by Likelihood
Maximum of posterior ⇔ Maximum of Likelihhod.
BUT f(µ |x, I) does not exist in ML methods!
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Cause-effect representation

box content → observed color
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Cause-effect representation

box content → observed color

An effect might be the cause of another effect −→
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A network of causes and effects
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A network of causes and effects

and so on. . . ⇒ Physics applications
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A different way to view fit issues

θ

µxi

xi

µyi

yi

[ for each i ]

Determistic link µx’s to µy ’s
Probabilistic links µx → x, µy → y

(errors on both axes!)
⇒ aim of fit: {x,y} → θ
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A different way to view fit issues

θ

µxi

xi

µyi

yi

[ for each i ]

θ/σv

µxi

xi

zi σv

µyi

yi

[ for each i ]

Determistic link µx’s to µy ’s Extra spread of the data points
Probabilistic links µx → x, µy → y

(errors on both axes!)
⇒ aim of fit: {x,y} → θ
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A different way to view fit issues

A physics case (from Gamma ray burts):
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(Guidorzi et al., 2006)
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A different way to view fit issues

θ/σv

µxi

µs
xi

xi

zi σv

µyi

µs
yi

yi

[ for each i ]

βyβx

Adding systematics
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Conditional factorization of a Bayesian Network

f(x,y,µx,µy,θ | I) = f(x |y,µx,µy,θ, I)

·f(y |µx,µy,θ, I)

·f(µy |µx,θ, I)

·f(µx |θ, I)

·f(θ | I)

with

f(x |y,µx,µy,θ, I) → f(x |µx, I)

f(y |µx,µy,θ, I) → f(y |µy, I)

f(µy |µx,θ, I) →
∏

i

δ[µyi
− µy(µxi

,θ) ]

f(µx |θ, I) → f(µx | I) (prior on µx)

f(θ | I) → prior on θ
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Applying Bayes’ theorem

Once we have built f(x,y,µx,µy,θ | I), the rest is just math:

f(µx,µy,θ |x,y, I) =
f(x,y,µx,µy,θ | I)

f(x,y | I)

=
f(x,y,µx,µy,θ | I)

∫

f(x,y,µx,µy,θ | I) dµx dµy dθ

∝ x,y,µx,µy,θ | I)

f(θ |x,y, I) =

∫

f(µx,µy,θ |x,y, I) dµx dµy

∝
∫

f(x,y,µx,µy,θ | I) dµx dµy .

Easy to built up the “kernel” ⇒ the though task is normalization!
numerical methods → best: MCMC
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Getting a likelihood for approximative purposes

Using a flat prior for µxi
(quite assumption) and making use of

independence amond the couples of data points, we get:

f(x,y,µx,µy,θ | I) ∝
∏

i

f(xi |µxi
, I) · f(yi |µyi

, I) ·

δ[µyi
− µy(µxi

,θ) ] · f(θ | I)

and, hence,

f(θ |x,y, I) ∝
[

∫

∏

i

kxi
f(xi |µxi

, I) · f(yi |µyi
, I)·

δ[µyi
− µy(µxi

,θ) ] dµx dµy

]

· f(θ | I)

∝ f(x,y |θ, I) · f(θ | I)

∝ L(θ ; x,y) · f(θ | I)

(⇒ to those who like to think in terms of likelihoods)
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Linear fit with Gaussian errors on both axes (and more)

A special case is the lineare fit (i.e. θ = {m, c}),
the previous formulae yield the following likelihood×prior

f(m, c |x,y, I) ∝
∏

i

1
√

σ2
yi

+ m2 σ2
xi

exp

[

−(yi − m xi − c)2

2 (σ2
yi

+ m2 σ2
xi

)

]

f(m, c
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Linear fit with Gaussian errors on both axes (and more)

A special case is the lineare fit (i.e. θ = {m, c}),
the previous formulae yield the following likelihood×prior

f(m, c |x,y, I) ∝
∏

i

1
√

σ2
yi

+ m2 σ2
xi

exp

[

−(yi − m xi − c)2

2 (σ2
yi

+ m2 σ2
xi

)

]

f(m, c

If also extra variability of the data is allowed, modelled with and
intermediate ‘hidden variables’ zi, around which the µyi

fluctuate
normally with sigma σv, we get a three quantities inference:

f(m, c, σv |x,y, I) ∝
∏

i

1

σeq

exp

[

−(yi − m xi − c)2

2σ2
eq

]

f(m, c, σv | I) .

(with σeq =
√

σ2
v + σ2

yi
+ m2 σ2

xi
)
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An easier example

Very basic problem:
• A sample of data comes from a true value µ according to a

normal model with σ unknown:

Xi ∼ N (µ, σ).

• A future measurement, Y , will be produced from the same µ
with the same σ

• We are interested in
◦ f(µ |data),
◦ f(σ |data),
◦ f(y |data)

Note: we are interested in pdf’s and not in ‘estimators’ and
‘their errors’
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Problem modelled in OpenBUGS

BUGS: Bayesian analysis software Using Gibbs Sampling
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Unfolding a discretized spectrum

Probabilistic links: Cause-bins ↔ effect-bins

C1 C2 Ci CnC

E1 E2 Ej EnE T
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Unfolding a discretized spectrum

Probabilistic links: Cause-bins ↔ effect-bins

C1 C2 Ci CnC

E1 E2 Ej EnE T

Sharing the observed events among the cause-bins

x(C1) x(C2) x(Ci) x(CnC
)

x(E1) x(E2) x(Ej) x(EnE
)

θ1,1 θnC ,nE
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Unfolding a discretized spectrum

Need a smearing matrix (evaluated somehow)
Academic examples:
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Why unfolding?

Te idea is to provide somethimg similar to an experimental
spectrum, with a minimal interpretation by the experimentalist, a
part from correcting from experimental distortions.

(The alternative would be to give a parametrized description of
the true spectrum – a fit)

G. D’Agostini,Probabilistic Reasoning – p. 14



Smearing matrix → unfolding matrix

Invert smearing matrix?
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Smearing matrix → unfolding matrix

Invert smearing matrix?

In general is a bad idea:
not a rotational problem
but an inferential problem!
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Smearing matrix → unfolding matrix

Imagine S =

(

0.8 0.2

0.2 0.8

)

: → U = S−1 =

(

1.33 −0.33

−0.33 1.33

)

Let the true be st =

(

10

0

)

: → sm = S · st =

(

8

2

)

;

If we measure sm =

(

8

2

)

→ S−1 · sm =

(

10

0

)

√
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Smearing matrix → unfolding matrix

Imagine S =

(

0.8 0.2

0.2 0.8

)

: → U = S−1 =

(

1.33 −0.33

−0.33 1.33

)

Let the true be st =

(

10

0

)

: → sm = S · st =

(

8

2

)

;

If we measure sm =

(

8

2

)

→ S−1 · sm =

(

10

0

)

√

BUT

if we had measured

(

9

1

)

→ S−1 · sm =

(

11.7

−1.7

)

if we had measured

(

10

0

)

→ S−1 · sm =

(

13.3

−3.3

)
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Smearing matrix → unfolding matrix

Imagine S =

(

0.8 0.2

0.2 0.8

)

: → U = S−1 =

(

1.33 −0.33

−0.33 1.33

)

Let the true be st =

(

10

0

)

: → sm = S · st =

(

8

2

)

;

If we measure sm =

(

8

2

)

→ S−1 · sm =

(

10

0

)

√

Indeed, matrix inversion is recognized to producing ‘crazy
spectra’ and even negative values (unless such large
numbers in bins such fluctuations around expectations are
negligeable)
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Probabilistic approach

(skipping the technical details)
Exact solution is difficult: solved by approximations:

• Apply Bayes’s formula to get P (Ci|Ej);

• Assign the events observed in bin Ej to all ‘causes’
according to P (Ci|Ej);

• Take into account inefficiency.
• Evaluation of uncertainties:

◦ in old program (1993) was done by linearization
assuming normality of results (usual formulae of ‘error
propagation’);

◦ in new program it is done by (Monte Carlo) integrations
over the various pdf’s of interest
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A difficult problem solved by iteration

Which initial spectrum? Flat?
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A difficult problem solved by iteration

Which initial spectrum? Flat?
BUT a flat spectrum does not model correctly our indifference on all possible
spectra!
(Just a starting point which will influence the solution!)
The solution depends on it!
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A difficult problem solved by iteration

Which initial spectrum? Flat?
BUT a flat spectrum does not model correctly our indifference on all possible
spectra!
(Just a starting point which will influence the solution!)
The solution depends on it!

• Problem solved by iteration:
• unfolded spectrum becomes next prior, etc.
• convergency very fast
• intermediate smoothing makes method very robust.
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A difficult problem solved by iteration

Which initial spectrum? Flat?
BUT a flat spectrum does not model correctly our indifference on all possible
spectra!
(Just a starting point which will influence the solution!)
The solution depends on it!

• Problem solved by iteration:
• unfolded spectrum becomes next prior, etc.
• convergency very fast
• intermediate smoothing makes method very robust.

⇒ see demo
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Upper/lower limits

“Ogni limite ha una pazienza” (Totò)
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Upper/lower limits

“Ogni limite ha una pazienza” (Totò)

A very simple problem:
• counting experiment described by a binomial of unkown p;
• our aim is to ‘get’ p, in the sense of evaluating f(p |data);
• we make n trials and get x = 0 successes.
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Upper/lower limits

“Ogni limite ha una pazienza” (Totò)

A very simple problem:
• counting experiment described by a binomial of unkown p;
• our aim is to ‘get’ p, in the sense of evaluating f(p |data);
• we make n trials and get x = 0 successes.

Bayes’ theorem:

f(p |n, x = 0,B) =
f(x = 0 |n,B) f0(p)

∫ 1

0
f(x = 0 |n,B) f0(p) dp

with

f(x = 0 |n,B) = (1 − p)n
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Inference about p from 0 counts

Using flat prior, i.e. f0(p) = k

f(p |n, x = 0,B) = (n + 1) (1 − p)n

pmax = 0

E(p) =
1

n + 2
→ 1

n

σ(p) =

√

(n + 1)

(n + 3)(n + 2)2
→ 1

n

p95%UL = 1 − n+1
√

0.05.
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Inference about p from 0 counts

Using flat prior, i.e. f0(p) = k

f(p |n, x = 0,B) = (n + 1) (1 − p)n

pmax = 0

E(p) =
1

n + 2
→ 1

n

σ(p) =

√

(n + 1)

(n + 3)(n + 2)2
→ 1

n

p95%UL = 1 − n+1
√

0.05.

As n increases, we get more and more convinced that p has to
be very small
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Inference about p from 0 counts

f(p |n, x = 0,B) = (n + 1) (1 − p)n

p95%UL = 1 − n+1
√

0.05.
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Inference about p from 0 counts

Seems not problematic at all, but we have to remember that it
relies on

f(x = 0 |n,B) = (1 − p)n

f0(p) = k

G. D’Agostini,Probabilistic Reasoning – p. 19



When likelihoods are non ‘closed’

Where is the problem? (Flat priors are regulary used, and are
often assumed in other approaches, e.g. ML methods)
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When likelihoods are non ‘closed’

The major problem is not in f0(p), but rather in the likelihood
f(x = 0, |n,B) that does not go to zero on both sides!
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When likelihoods are non ‘closed’

The major problem is not in f0(p), but rather in the likelihood
f(x = 0, |n,B) that does not go to zero on both sides!

A different representation of the likelihood (properly rescaled)
helps:

0

0.2

0.4

0.6

0.8

1

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

R
(p

)

p

R(p,50)
R(p,10)

R(p,3)
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A probabilistic lower bound for the Higgs?

A similar think happens with the direct searches of the Higgs
particle at LEP

ℜ

(1999 figure, but substance unchanged) G. D’Agostini,Probabilistic Reasoning – p. 21



A probabilistic lower bound for the Higgs?

Impossible to express our confidence in probabilistic terms,
unless we define an upper cut!

ℜ
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A probabilistic lower bound for the Higgs?

Confidence limit ⇒ Sensitivity bound

ℜ
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Conclusions

• Probabilistic reasoning helps . . .
• . . . at least to avoid conceptual errors.

• Several ‘standard’ methods (like Least Square, etc.) can be
easily recovered under well defined assumptions.

• But if this is not the case, nowdays there are no longer
excuses to avoid the more general approach.

• Bayesian networks are a powerful conceptual and
computational tool.
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BAT - the Bayesian Analysis Toolkit

http://mppmu.mpg.de/bat/
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End

FINE
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