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Uncertainty: some examples

Roll a die:

1, 2, 3, 4, 5, 6: ?
Toss a coin:

Head/Tail: ?
Having to perform a measurement:

Which numbers shall come out from our device ?
Having performed a measurement:

What have we learned about the value of the quantity of

interest ?
Many other examples from real life:

Football, weather, tests/examinations, . . .
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Rolling a die

Let us consider three outcomes:

E1 = ‘6’

E2 = ‘even number’

E3 = ‘≥ 2’

G. D’Agostini, Introduction to probabilistic reasoning – p. 3



Rolling a die

Let us consider three outcomes:

E1 = ‘6’

E2 = ‘even number’

E3 = ‘≥ 2’

We are not uncertain in the same way about E1, E2 and E3:

G. D’Agostini, Introduction to probabilistic reasoning – p. 3



Rolling a die

Let us consider three outcomes:

E1 = ‘6’

E2 = ‘even number’
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We are not uncertain in the same way about E1, E2 and E3:
• Which event do you consider more likely, possible, credible,

believable, plausible?
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• Which event do you consider more likely, possible, credible,
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Rolling a die

Let us consider three outcomes:

E1 = ‘6’

E2 = ‘even number’

E3 = ‘≥ 2’

We are not uncertain in the same way about E1, E2 and E3:
• Which event do you consider more likely, possible, credible,

believable, plausible?
• You will get a price if the event you chose will occur. On

which event would you bet?
• On which event are you more confident? Which event you

trust more, you believe more? etc
• Imagine to repeat the experiment: which event do you

expect to occur mostly? (More frequently)
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Rolling a die

Let us consider three outcomes:

E1 = ‘6’

E2 = ‘even number’

E3 = ‘≥ 2’

⇒ Many expressions to state our preference
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Rolling a die

Let us consider three outcomes:

E1 = ‘6’

E2 = ‘even number’

E3 = ‘≥ 2’

⇒ Many expressions to state our preference

Which reasoning have we applied to prefer E3?
Can we use it for all other events of our interest?
( → two envelop ‘paradox’)
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Rolling a die

Let us consider three outcomes:

E1 = ‘6’

E2 = ‘even number’

E3 = ‘≥ 2’

⇒ Many expressions to state our preference

Which reasoning have we applied to prefer E3?
Can we use it for all other events of our interest?
( → two envelop ‘paradox’)

Indeed, using David Hume’s words,† “this process of the thought
or reasoning may seem trivial and obvious”
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A counting experiment

Imagine a small scintillation counter, with suitable threshold,
placed

here

now

Fix the measuring time (e.g. 5 second each) and perform 20
measurements: 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 1, 0.
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A counting experiment

Imagine a small scintillation counter, with suitable threshold,
placed

here

now

Fix the measuring time (e.g. 5 second each) and perform 20
measurements: 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 1, 0.
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Think at the 21st measurement:
• Which outcome do you consider more likely? (0, 1, 2, 3, . . . )
• Why?
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A counting experiment
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⇒ Next ?
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A counting experiment
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⇒ Next ?

P (0) > P (1) > P (2)
√

G. D’Agostini, Introduction to probabilistic reasoning – p. 5
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⇒ Next ?

P (0) > P (1) > P (2)
√

P (3) < P (4), or P (3) ≥ P (4)?
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A counting experiment
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⇒ Next ?

P (0) > P (1) > P (2)
√

P (3) < P (4), or P (3) ≥ P (4)?
P (3) = 0, or P (5) = 0?
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A counting experiment
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⇒ Next ?

P (0) > P (1) > P (2)
√

P (3) < P (4), or P (3) ≥ P (4)?
P (3) = 0, or P (5) = 0?
Not correct to say “we cannot do it”, or “let us do other
measurements and see”:

In real life we are asked to make assessments (and take
decisions) with the information we have NOW. If, later, the
information changes, we can (must!) use the update one
(and perhaps update our opinion).
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A counting experiment

0 1 2 3 4 5 6 7 8 9
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⇒ Next ?

Why we, as physicists, tend to state P (3) > P (4) and P (5) > 0?
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A counting experiment
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⇒ Next ?

Why we, as physicists, tend to state P (3) > P (4) and P (5) > 0?
Given our ‘experience’, ‘education’, ‘mentality’ (. . . )

‘know’
‘assume’

We ‘hope’ regularity of nature
‘guess’
‘postulate’
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A counting experiment
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⇒ Next ?

Why we, as physicists, tend to state P (3) > P (4) and P (5) > 0?
Given our ‘experience’, ‘education’, ‘mentality’ (. . . )

‘know’
‘assume’

We ‘hope’ regularity of nature
‘guess’
‘postulate’
‘believe’
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A philosopher, physicist and mathematician joke

A philosopher, a physicist and a mathematician travel by
train through Scotland.

The train is going slowly and they see a cow walking along a
country road parallel to the railway.
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country road parallel to the railway.

• Philosopher: “In Scotland cows are black”
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A philosopher, physicist and mathematician joke

A philosopher, a physicist and a mathematician travel by
train through Scotland.

The train is going slowly and they see a cow walking along a
country road parallel to the railway.

• Philosopher: “In Scotland cows are black”
• Physicist: “In Scotland there is at least a black cow”
• Mathematician: “In Scotland at least a cow has a black side”

Physicists’ statements about reality have plenty of tacit – mostly
very reasonable! — assumptions that derive from experience
and rationality.
⇒ We constantly use theory/models to link past and future!.
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Transferring past to future

0 1 2 3 4 5 6 7 8 9
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⇒ Next ?

Basic reasoning: assuming regularity of nature and a regular
flow from the past to the future, we tend to believe that the
effects that happened more frequently in the past will also occur
more likely in the future.
Again, well expressed by Hume.†
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Uncertainties in measurements

Having to perform a measurement:
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Uncertainties in measurements

Having to perform a measurement:

Which numbers shall come out from our device?

Having performed a measurement:

What have we learned about the value of the quantity of
interest?

How to quantify these kinds of uncertainty?
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Uncertainties in measurements

Having to perform a measurement:

Which numbers shall come out from our device?

Having performed a measurement:

What have we learned about the value of the quantity of
interest?

How to quantify these kinds of uncertainty?

Under well controlled conditions (calibration) we can make
use of past frequencies to evaluate ‘somehow’ the detector
response f(x |µ).
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Uncertainties in measurements

Having to perform a measurement:

Which numbers shall come out from our device?

Having performed a measurement:

What have we learned about the value of the quantity of
interest?

How to quantify these kinds of uncertainty?

Under well controlled conditions (calibration) we can make
use of past frequencies to evaluate ‘somehow’ the detector
response f(x |µ).

There is (in most cases) no way to get directly hints about
f(µ |x).

G. D’Agostini, Introduction to probabilistic reasoning – p. 8



Uncertainties in measurements

x

Μ0

Experimental
response

?

f(x |µ) experimentally accessible (though ’model filtered’)
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Uncertainties in measurements

x

Μ

x0

?

Inference

f(µ |x) experimentally inaccessible
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Uncertainties in measurements

x

Μ

x0

?

Inference

f(µ |x) experimentally inaccessible

but logically accessible!

→ we need to learn how to do it
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Uncertainties in measurements

x

Μ

x0

Μ given x

x given Μ

• Review sources of uncertainties
• How measurement uncertainties are currently treated
• How to treat them logically using probability theory

(But we also need to review what we mean by ‘probability’!)
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Uncertainties in measurements

x

Μ

x0

Μ given x

x given Μ

• Review sources of uncertainties −→ See next
• How measurement uncertainties are currently treated
• How to treat them logically using probability theory

(But we also need to review what we mean by ‘probability’!)

G. D’Agostini, Introduction to probabilistic reasoning – p. 9



From past to future

Task of the ‘physicist’ (scientist, decision maker):
• Describe/understand the physical world

⇒ inference of laws and their parameters
• Predict observations

⇒ forecasting
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From past to future

Process
• neither automatic
• nor purely contemplative
→ ‘scientific method’
→ planned experiments (‘actions’) ⇒ decision.
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From past to future

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

⇒ Uncertainty:

1. Given the past observations, in general we are not sure
about the theory parameter (and/or the theory itself)

2. Even if we were sure about theory and parameters, there
could be internal (e.g. Q.M.) or external effects
(initial/boundary conditions, ‘errors’, etc) that make the
forecasting uncertain.
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From past to future

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

⇒ Decision
• What is be best action (’experiment’) to take in order ‘to be

confident’ that what we would like will occur?
(Decision issues always assume uncertainty about future
outcomes.)

• Before tackling problems of decision we need to learn to
reason about uncertainty, possibly in a quantitative way.
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About predictions

Remember:

“Prediction is very difficult,
especially if it’s about the future” (Bohr)
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About predictions

Remember:

“Prediction is very difficult,
especially if it’s about the future” (Bohr)

But, anyway:

“It is far better to foresee even without
certainty than not to foresee at all”
(Poincaré)
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Deep source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→
Past observations — ? −→

Theory — ? −→ Future observations
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Deep source of uncertainty

Observations

(past)

Theory

Observations

(future)

? ?

parameters

?

Uncertainty:

Theory — ? −→ Future observations

Past observations — ? −→ Theory

Theory — ? −→ Future observations
=⇒ Uncertainty about causal connections

CAUSE ⇐⇒ EFFECT
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Causes → effects

The same apparent cause might produce several,different
effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.
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Causes → effects

The same apparent cause might produce several,different
effects

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Given an observed effect, we are not sure about the exact cause
that has produced it.

E2 ⇒ {C1, C2, C3}?

G. D’Agostini, Introduction to probabilistic reasoning – p. 13



The essential problem of the experimental method

“Now, these problems are classified as probability of
causes, and are most interesting of all their scientific
applications. I play at écarté with a gentleman whom I know
to be perfectly honest. What is the chance that he turns up
the king? It is 1/8. This is a problem of the probability of
effects.
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The essential problem of the experimental method

“Now, these problems are classified as probability of
causes, and are most interesting of all their scientific
applications. I play at écarté with a gentleman whom I know
to be perfectly honest. What is the chance that he turns up
the king? It is 1/8. This is a problem of the probability of
effects.

I play with a gentleman whom I do not know. He has dealt
ten times, and he has turned the king up six times. What is
the chance that he is a sharper? This is a problem in the
probability of causes. It may be said that it is the essential
problem of the experimental method.”

(H. Poincaré – Science and Hypothesis)
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Uncertainty

The human mind is used to live — and survive — in
conditions of uncertainty and has developed mental
categories to handle it.
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Uncertainty

The human mind is used to live — and survive — in
conditions of uncertainty and has developed mental
categories to handle it.

As a matter of fact, although we are in a constant state of
uncertainty about many events which might or might not
occur,
◦ we can be “more or less sure — or confident — on

something than on something else”;
◦ “we consider something more or less probable (or

likely)”;
◦ or “we believe something more or less than something

else”.
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Uncertainty

The human mind is used to live — and survive — in
conditions of uncertainty and has developed mental
categories to handle it.

As a matter of fact, although we are in a constant state of
uncertainty about many events which might or might not
occur,
◦ we can be “more or less sure — or confident — on

something than on something else”;
◦ “we consider something more or less probable (or

likely)”;
◦ or “we believe something more or less than something

else”.

We can use similar expressions, all referring to the intuitive
idea of probability.

G. D’Agostini, Introduction to probabilistic reasoning – p. 15



The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
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The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
We are in a state of uncertainty concerning several events, the
most important of which correspond to the following questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will we
observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

Our certainty: ∪5
j=0 Hj = Ω

∪2
i=1 Ei = Ω .
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The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
We are in a state of uncertainty concerning several events, the
most important of which correspond to the following questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will we
observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

• What happens after we have extracted one ball and looked
its color?
◦ Intuitively we now how to roughly change our opinion.
◦ Can we do it quantitatively, in an objective way?
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The six box problem

H0 H1 H2 H3 H4 H5

Let us take randomly one of the boxes.
We are in a state of uncertainty concerning several events, the
most important of which correspond to the following questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will we
observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

• What happens after we have extracted one ball and looked
its color?
◦ Intuitively we now how to roughly change our opinion.
◦ Can we do it quantitatively, in an objective way?

• And after a sequence of extractions?
G. D’Agostini, Introduction to probabilistic reasoning – p. 16



The toy inferential experiment

The aim of the experiment will be to guess the content of the box
without looking inside it, only extracting a ball, record its color
and reintroducing in the box
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The toy inferential experiment

The aim of the experiment will be to guess the content of the box
without looking inside it, only extracting a ball, record its color
and reintroducing in the box

This toy experiment is conceptually very close to what we do in
Physics

• try to guess what we cannot see (the electron mass, a
branching ratio, etc)

. . . from what we can see (somehow) with our senses.

The rule of the game is that we are not allowed to watch inside
the box! (As we cannot open and electron and read its
properties, like we read the MAC address of a PC interface)
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Cause-effect representation

box content → observed color
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Cause-effect representation

box content → observed color

An effect might be the cause of another effect −→
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A network of causes and effects
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Doing Science in conditions of uncertainty

The constant status of uncertainty does not prevent us from
doing Science (in the sense of Natural Science and not just
Mathematics)
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Doing Science in conditions of uncertainty

The constant status of uncertainty does not prevent us from
doing Science (in the sense of Natural Science and not just
Mathematics)

Indeed

“It is scientific only to say what is more
likely and what is less likely” (Feynman)
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Una rete di credenze (‘belief network’)

“Le teorie sul mondo si riferiscono alle credenze che
nutriamo sul funzionamento del nostro mondo, sulla
natura della rete causale in cui viviamo e sui possibili
influssi delle nostre decisioni sull’ambiente esterno.

Importanti lati di queste teorie sul mondo riguardano le
credenze sull’intreccio probabilistico (o deterministico)
del mondo e le percezioni del rapporto di causalità.

(Max H. Bazerman, Quanto sei (a)morale?, Il Sole 24 Ore)
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Una rete di credenze (‘belief network’)

“Le teorie sul mondo si riferiscono alle credenze che
nutriamo sul funzionamento del nostro mondo, sulla
natura della rete causale in cui viviamo e sui possibili
influssi delle nostre decisioni sull’ambiente esterno.

Importanti lati di queste teorie sul mondo riguardano le
credenze sull’intreccio probabilistico (o deterministico)
del mondo e le percezioni del rapporto di causalità.

. . . . . . . . . . . .

I manager per avere successo devono possedere
un’accurata conoscenza del loro mondo o, se non ce
l’hanno, devono sapere come procurarsela.”

(Max H. Bazerman, Quanto sei (a)morale?, Il Sole 24 Ore)
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How to quantify all that?
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How to quantify all that?

• Falsificationist approach
[and statistical variations over the theme].
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How to quantify all that?

• Falsificationist approach
[and statistical variations over the theme].

• Probabilistic approach
[In the sense that probability theory is used throughly]
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Falsificationism

Usually associated to the name of Popper

and considered to be the key to scientific progress.
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if Ci −→/ E, then Eobs −→/ Ci

⇒ Causes that cannot produce observed effects are ruled out
(‘falsified’).
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if Ci −→/ E, then Eobs −→/ Ci

⇒ Causes that cannot produce observed effects are ruled out
(‘falsified’).

It seems OK, but it is naive for several aspects.
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if Ci −→/ E, then Eobs −→/ Ci

⇒ Causes that cannot produce observed effects are ruled out
(‘falsified’).

It seems OK, but it is naive for several aspects.

Let start realizing that the method is analogous with method
of the proof by contradiction of classical, deductive logic.
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Falsificationism

Usually associated to the name of Popper

and considered to be the key to scientific progress.

if Ci −→/ E, then Eobs −→/ Ci

⇒ Causes that cannot produce observed effects are ruled out
(‘falsified’).

It seems OK, but it is naive for several aspects.

Let start realizing that the method is analogous with method
of the proof by contradiction of classical, deductive logic.
◦ Assume that a hypothesis is true
◦ Derive ‘all’ logical consequence
◦ If (at least) one of the consequences is known to be

false, then the hypothesis is declared false.
G. D’Agostini, Introduction to probabilistic reasoning – p. 23



Falsificationism? OK, but. . .

• What to do of all hypotheses that are not falsified? (Limbus?
Get stuck?)
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Falsificationism? OK, but. . .

• What to do of all hypotheses that are not falsified? (Limbus?
Get stuck?)

• What to do is nothing of what can be observed is
incompatible with the hypothesis (or with many
hypotheses)?

E.g. Hi being a Gaussian f(x |µi, σi)
⇒ Given any pair or parameters {µi, σi}, all values of x

between −∞ and +∞ are possible.
⇒ Having observed any value of x, none of Hi can be,

strictly speaking, falsified.
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Falsificationism and statistics

. . . then, statisticians have invented the “hypothesis tests”
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Falsificationism and statistics

. . . then, statisticians have invented the “hypothesis tests”

in which the impossible is replaced by the improbable!

But from the impossible to the improbable there is not just a
question of quantity, but a question of quality.

This mechanism, logically flawed, is particularly perverse,
because deeply rooted in most people, due to education, but is
not supported by logic.

⇒ Basically responsible of all fake claims of discoveries in the
past decades.

[I am particularly worried about claims concerning our
health, or the status of the planet, of which I have no control
of the experimental data.]
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In summary

A) if Ci −→/ E, and we observe E

⇒ Ci is impossible (‘false’)
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In summary
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B) if Ci −−−−−−−−−→
small probability

E, and we observe E

⇒ Ci has small probability to be true
“most likely false”
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In summary

A) if Ci −→/ E, and we observe E OK
⇒ Ci is impossible (‘false’)

B) if Ci −−−−−−−−−→
small probability

E, and we observe E

⇒ Ci has small probability to be true
“most likely false”
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In summary

A) if Ci −→/ E, and we observe E OK
⇒ Ci is impossible (‘false’)

B) if Ci −−−−−−−−−→
small probability

E, and we observe E NO

⇒ Ci has small probability to be true
“most likely false”

G. D’Agostini, Introduction to probabilistic reasoning – p. 26



Example 1

Playing lotto

H: “I play honestly at lotto, betting on a rare combination”
E: “I win”

H −−−−−−−−−−−−−→
“practically impossible”

E
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Example 1

Playing lotto

H: “I play honestly at lotto, betting on a rare combination”
E: “I win”

H −−−−−−−−−−−−−→
“practically impossible”

E

“practically to exclude”
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Example 1

Playing lotto

H: “I play honestly at lotto, betting on a rare combination”
E: “I win”

H −−−−−−−−−−−−−→
“practically impossible”

E

“practically to exclude”

⇒ almost certainly I have cheated. . .
(or it is false that I won. . . )

G. D’Agostini, Introduction to probabilistic reasoning – p. 27



Example 2

An Italian citizen is selected at random to undergo an AIDS test.
Performance of clinical trial is not perfect, as customary.
Toy model:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

H1=’HIV’ (Infected) E1 = Positive

H2=’HIV’ (Healthy) E2 = Negative
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Example 2

An Italian citizen is selected at random to undergo an AIDS test.
Performance of clinical trial is not perfect, as customary.
Toy model:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

H1=’HIV’ (Infected) E1 = Positive

H2=’HIV’ (Healthy) E2 = Negative

Result: ⇒ Positive
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Example 2

An Italian citizen is selected at random to undergo an AIDS test.
Performance of clinical trial is not perfect, as customary.
Toy model:

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

? H1=’HIV’ (Infected) E1 = Positive

? H2=’HIV’ (Healthy) E2 = Negative

Result: ⇒ Positive

Infected or healthy?
G. D’Agostini, Introduction to probabilistic reasoning – p. 28



Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

• ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”?
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?
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

• ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”
• “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

?
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

• ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”

• “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

? NO
Instead, P (HIV |Pos, random Italian) ≈ 45%
(We will see in the sequel how to evaluate it correctly)
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

• ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”

• “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

? NO
Instead, P (HIV |Pos, random Italian) ≈ 45%
⇒ Serious mistake! (not just 99.8% instead of 98.3% or so)
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Example 2

Being P (Pos |HIV) = 0.2% and having observed ‘Positive’,
can we say

• ”It is practically impossible that the person is healthy,
since it was practically impossible that an healthy person
would result positive”

• “There is only 0.2% probability that the person has no HIV”
• “We are 99.8% confident that the person is infected”

• “The hypothesis H1=Healthy is ruled out with 99.8% C.L.”

? NO
Instead, P (HIV |Pos, random Italian) ≈ 45%
⇒ Serious mistake! (not just 99.8% instead of 98.3% or so)

... which might result into very bad decisions!

G. D’Agostini, Introduction to probabilistic reasoning – p. 29



‘Standard’ statistical tests, p-values, etc

• This kind of logical mistake is quite common.
“Si sbaglia da professionisti” (P. Conte)
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‘Standard’ statistical tests, p-values, etc

• This kind of logical mistake is quite common.
“Si sbaglia da professionisti” (P. Conte)

• Yes, statisticians have invented p-values (something like
‘probability of the tail(s)’ – I cannot enter into details) to
overcome the problem that often the probability of any
observation is always very small and the null hypotheses
would always be rejected.
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‘Standard’ statistical tests, p-values, etc

• This kind of logical mistake is quite common.
“Si sbaglia da professionisti” (P. Conte)

• Yes, statisticians have invented p-values (something like
‘probability of the tail(s)’ – I cannot enter into details) to
overcome the problem that often the probability of any
observation is always very small and the null hypotheses
would always be rejected.
But
◦ as far as logic is concerned, the situation is worsened

(. . . although p-values ‘often, by chance work’).
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‘Standard’ statistical tests, p-values, etc

• This kind of logical mistake is quite common.
“Si sbaglia da professionisti” (P. Conte)

• Yes, statisticians have invented p-values (something like
‘probability of the tail(s)’ – I cannot enter into details) to
overcome the problem that often the probability of any
observation is always very small and the null hypotheses
would always be rejected.
But
◦ as far as logic is concerned, the situation is worsened

(. . . although p-values ‘often, by chance work’).
• Mistrust statistical tests, unless you know the details of what

it has been done.
→ You might take bad decisions!

G. D’Agostini, Introduction to probabilistic reasoning – p. 30



Conflict: natural thinking ⇔ cultural superstructure

Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).

G. D’Agostini, Introduction to probabilistic reasoning – p. 31



Conflict: natural thinking ⇔ cultural superstructure

Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).

• In this, still dominant approach (frequentism) it is forbidden
to speak about probability of hypotheses, probability of
causes, probability of values of physical quantities, etc.
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Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).

• In this, still dominant approach (frequentism) it is forbidden
to speak about probability of hypotheses, probability of
causes, probability of values of physical quantities, etc.

• The concept of probability of causes [“The essential
problem of the experimental method” (Poincaré)] has
been surrogated by the mechanism of hypothesis test
and ‘p-values’. (And of ‘confidence intervals’ in parametric
inference)
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Conflict: natural thinking ⇔ cultural superstructure

Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).

• In this, still dominant approach (frequentism) it is forbidden
to speak about probability of hypotheses, probability of
causes, probability of values of physical quantities, etc.

• The concept of probability of causes [“The essential
problem of the experimental method” (Poincaré)] has
been surrogated by the mechanism of hypothesis test
and ‘p-values’. (And of ‘confidence intervals’ in parametric
inference)

⇒ BUT people think naturally in terms of probability of causes,
and use p-values as if they were probabilities of null
hypotheses.
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Conflict: natural thinking ⇔ cultural superstructure

Why? ‘Who’ is responsible?
• Since beginning of ’900 it is dominant an unnatural

approach to probability, in contrast to that of the founding
fathers (Poisson, Bernoulli, Bayes, Laplace, Gauss, . . . ).

• In this, still dominant approach (frequentism) it is forbidden
to speak about probability of hypotheses, probability of
causes, probability of values of physical quantities, etc.

• The concept of probability of causes [“The essential
problem of the experimental method” (Poincaré)] has
been surrogated by the mechanism of hypothesis test
and ‘p-values’. (And of ‘confidence intervals’ in parametric
inference)

⇒ BUT people think naturally in terms of probability of causes,
and use p-values as if they were probabilities of null
hypotheses. ⇒ Terrible mistakes!

G. D’Agostini, Introduction to probabilistic reasoning – p. 31



Probabilistic reasoning

What to do?
⇒ Back to the past
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Probabilistic reasoning

What to do?
⇒ Back to the past
But benefitting of

• Theoretical progresses in probability theory
• Advance in computation (both symbolic and numeric)
→ many frequentistic ideas had their raison d’être in the

computational barrier (and many simplified – often
simplistic – methods were ingeniously worked out)
→ no longer an excuse!
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Probabilistic reasoning

What to do?
⇒ Back to the past
But benefitting of

• Theoretical progresses in probability theory
• Advance in computation (both symbolic and numeric)
→ many frequentistic ideas had their raison d’être in the

computational barrier (and many simplified – often
simplistic – methods were ingeniously worked out)
→ no longer an excuse!

⇒ Use consistently probability theory
◦ “It’s easy if you try”
◦ But first you have to recover the intuitive idea of

probability.

G. D’Agostini, Introduction to probabilistic reasoning – p. 32



Probability

What is probability?

G. D’Agostini, Introduction to probabilistic reasoning – p. 33



Standard textbook definitions

p =
# favorable cases

# possible equiprobable cases

p =
# times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity

p =
# favorable cases

# possible equiprobable cases

p =
# times the event has occurred

# independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity

p =
# favorable cases

# possible equally possible cases

p =
# times the event has occurred

# independent trials under same conditions

Laplace: “lorsque rien ne porte à croire que l’un de ces cas doit
arriver plutot que les autres”

Pretending that replacing ‘equi-probable’ by ‘equi-possible’
is just cheating students (as I did in my first lecture on the
subject. . . ).
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity,
plus other problems

p =
# favorable cases

# possible equiprobable cases

p = limn→∞
# times the event has occurred

# independent trials under same condition

Future ⇔ Past (believed so)

n → ∞: → “usque tandem?”
→ “in the long run we are all dead”
→ It limits the range of applications

G. D’Agostini, Introduction to probabilistic reasoning – p. 34



Definitions → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

# possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.
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Definitions → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

# possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.

BUT they cannot define the concept of probability!
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Definitions → evaluation rules

Very useful evaluation rules

A) p =
# favorable cases

# possible equiprobable cases

B) p =
# times the event has occurred

#independent trials under same condition

If the implicit beliefs are well suited for each case of application.

In the probabilistic approach we are going to see
• Rule A will be recovered immediately (under the

assumption of equiprobability, when it applies).
• Rule B will result from a theorem (under well defined

assumptions).
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Probability

What is probability?
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What is probability?

It is what everybody knows what it is
before going at school
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→ how much we are confident that

something is true
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Probability

What is probability?

It is what everybody knows what it is
before going at school
→ how much we are confident that

something is true
→ how much we believe something
→ “A measure of the degree of belief

that an event will occur”

[Remark: ‘will’ does not imply future, but only uncertainty.]
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . ,
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . , the numerical
probability p of this event is to be a real number by the indication
of which we try in some cases to setup a quantitative measure
of the strength of our conjecture or anticipation, founded on the
said knowledge, that the event comes true”
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true1. . . , the numerical
probability p of this event is to be a real number by the indication
of which we try in some cases to setup a quantitative measure
of the strength of our conjecture or anticipation, founded on the
said knowledge, that the event comes true”
(E. Schrödinger, The foundation of the theory of probability - I,
Proc. R. Irish Acad. 51A (1947) 51)

1While in ordinary speech “to come true” usually refers to an event that
is envisaged before it has happened, we use it here in the general
sense, that the verbal description turns out to agree with actual facts.
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False, True and probable

Probability

0,10 0,20 0,30 0,400 0,50 0,60 0,70 0,80 0,90 1

0 1

0

0

E

1

1

?

Event E

logical point of view FALSE

cognitive point of view FALSE

psychological
(subjective)

point of view

if certain FALSE

if uncertain,
with
probability

UNCERTAIN

TRUE

TRUE

TRUE
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An helpful diagram

The previous diagram seems to help the understanding of the
concept of probability
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An helpful diagram

(. . . but NASA guys are afraid of ‘subjective’, or
‘psycological’)
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Uncertainty → probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments
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Uncertainty → probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

“If we were not ignorant there would be no probability, there
could only be certainty. But our ignorance cannot be
absolute, for then there would be no longer any probability
at all. Thus the problems of probability may be classed
according to the greater or less depth of our ignorance.”
(Poincaré)
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Uncertainty → probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

The state of information can be
different from subject to subject

⇒ intrinsic subjective nature.
• No negative meaning: only an acknowledgment that several

persons might have different information and, therefore,
necessarily different opinions.
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Uncertainty → probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

The state of information can be
different from subject to subject

⇒ intrinsic subjective nature.
• No negative meaning: only an acknowledgment that several

persons might have different information and, therefore,
necessarily different opinions.

• “Since the knowledge may be different with different
persons or with the same person at different times, they
may anticipate the same event with more or less
confidence, and thus different numerical probabilities may
be attached to the same event” (Schrödinger)
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Uncertainty → probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

Probability is always conditional
probability
‘P (E)’ −→ P (E | I) −→ P (E | I(t))
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Uncertainty → probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

Probability is always conditional
probability
‘P (E)’ −→ P (E | I) −→ P (E | I(t))

• “Thus whenever we speak loosely of ‘the probability of an
event,’ it is always to be understood: probability with regard
to a certain given state of knowledge” (Schrödinger)
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Uncertainty → probability

Probability is related to uncertainty and
not (only) to the results of repeated
experiments

Probability is always conditional
probability
‘P (E)’ −→ P (E | I) −→ P (E | I(t))

• “Thus whenever we speak loosely of ‘the probability of an
event,’ it is always to be understood: probability with regard
to a certain given state of knowledge” (Schrödinger)

• Some examples:
◦ tossing a die;
◦ ’three box problems’;
◦ two envelops’ paradox.
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Unifying role of subjective probability

• Wide range of applicability
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%
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something.
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to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

They all convey unambiguously the same confidence on
something.

• You might agree or disagree, but at least You know what this
person has in his mind. (NOT TRUE with “C.L.’s”!)
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

They all convey unambiguously the same confidence on
something.

• You might agree or disagree, but at least You know what this
person has in his mind. (NOT TRUE with “C.L.’s”!)

• If a person has these beliefs and he/she has the chance to
win a rich prize bound to one of these events, he/she has no
rational reason to chose an event instead than the others.
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

• Probability not bound to a single evaluation rule.
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain next Saturday) = 68%

◦ P (Inter will win Italian champion league) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

• Probability not bound to a single evaluation rule.
• In particular, combinatorial and frequency based ‘definitions’

are easily recovered as evaluation rules
under well defined hypotheses.

• Keep separate concept from evaluation rule.

G. D’Agostini, Introduction to probabilistic reasoning – p. 42



From the concept of probability to the probability theory

Ok, it looks nice, . . . but “how do we deal with ‘numbers’?”
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Coherent bet (de Finetti, Ramsey - ’Dutch book
argument’)

It is well understood that bet odds can express confidence†
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Coherent bet → A bet acceptable in both directions:
◦ You state your confidence fixing the bet odds
◦ . . . but somebody else chooses the direction of the bet
◦ best way to honestly assess beliefs.

→ see later for details, examples, objections, etc
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Consistency arguments (Cox, + Good, Lucas)
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Consistency arguments (Cox, + Good, Lucas)
• Similar approach by Schrödinger (much less known)
• Supported by Jaynes and Maximum Entropy school
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’

→ analogy to measures (we need to measure ’befiefs’)
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’

→ analogy to measures (we need to measure ’befiefs’)

⇒ reference probabilities provided by simple cases in which
equiprobability applies (coins, dice, turning wheels,. . . ).

• Example: You are offered to options to receive a price: a) if
E happens, b) if a coin will show head. Etc. . . .
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’

→ Rational under everedays expressions like “there are 90
possibilities in 100” to state beliefs in situations in which the
real possibilities are indeed only 2 (e.g. dead or alive)

• Example: a question to a student that has to pass an exam:
a) normal test; b) pass it is a uniform random x will be ≤ 0.8.
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box, in
which we have to insert some numbers.
◦ Is there a very general rule?

Lindley’s ‘calibration’ against ‘standards’
• Also based on coherence, but it avoids the ‘repulsion’ of

several person when they are asked to think directly in
terms of bet (it is proved that many persons have reluctance
to bet money).

G. D’Agostini, Introduction to probabilistic reasoning – p. 43



Basic rules of probability

They all lead to

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪ B) = P (A) + P (B) [ if P (A ∩ B) = ∅ ]

4. P (A ∩ B) = P (A |B) · P (B) = P (B |A) · P (A) ,

where
• Ω stands for ‘tautology’ (a proposition that is certainly true
→ referring to an event that is certainly true) and ∅ = Ω.

• A∩B is true only when both A and B are true (logical AND)

(shorthands ‘A,B’ or AB often used → logical product)
• A ∪ B is true when at least one of the two propositions is

true (logical OR)
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Basic rules of probability

Remember that probability is always conditional probability!

1. 0 ≤ P (A | I) ≤ 1

2. P (Ω | I) = 1

3. P (A ∪ B | I) = P (A | I) + P (B | I) [ if P (A ∩ B | I) = ∅ ]

4. P (A ∩ B | I) = P (A |B, I) · P (B | I) = P (B |A, I) · P (A | I)

I is the background condition (related to information I)

→ usually implicit (we only care on ‘re-conditioning’)
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Subjective 6= arbitrary

Crucial role of the coherent bet
• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.
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Subjective 6= arbitrary

Crucial role of the coherent bet
• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.

• You claim that this coin has 30% to give head?
⇒ Just reverse the bet

(Like sharing goods, e.g. a cake with a child)
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Subjective 6= arbitrary

Crucial role of the coherent bet
• You claim that this coin has 70% to give head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e.
⇒ If OK with you, let’s start.

• You claim that this coin has 30% to give head?
⇒ Just reverse the bet

(Like sharing goods, e.g. a cake with a child)

⇒ Take into account all available information in the most
‘objective way’
(Even that someone has a different opinion!)

⇒ It might seem paradoxically, but the ‘subjectivist’ is much
more ‘objective’ than those who blindly use so-called
objective methods.
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Summary on probabilistic approach

• Probability means how much we believe something
• Probability values obey the following basic rules

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪ B) = P (A) + P (B) [ if P (A ∩ B) = ∅ ]

4. P (A ∩ B) = P (A |B) · P (B) = P (B |A) · P (A) ,

• All the rest by logic

→ And, please, be coherent!
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Inference

Inference

⇒ How do we learn from data
in a probabilistic framework?

G. D’Agostini, Introduction to probabilistic reasoning – p. 48



From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects
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Effects

Our conditional view of probabilistic causation

P (Ei |Cj)
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Effects

Our conditional view of probabilistic causation
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Our conditional view of probabilistic causation

P (Ei |Cj)

Our conditional view of probabilistic inference

P (Cj |Ei)

The fourth basic rule of probability:

P (Cj , Ei) = P (Ei |Cj)P (Cj) = P (Cj |Ei)P (Ei)

G. D’Agostini, Introduction to probabilistic reasoning – p. 49



Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

Got ‘after’ Calculated ‘before’

(where ‘before’ and ‘after’ refer to the knowledge that Ei is true.)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj.”

It follows

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

”post illa observationes” “ante illa observationes”

(Gauss)
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Application to the six box problem

H0 H1 H2 H3 H4 H5

Remind:
• E1 = White
• E2 = Black

G. D’Agostini, Introduction to probabilistic reasoning – p. 51



Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)
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P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

Our prior belief about Hj
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

Probability of Ei under a well defined hypothesis Hj

It corresponds to the ‘response of the apparatus in
measurements.
→ likelihood (traditional, rather confusing name!)
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
Easy in this case, because of the symmetry of the problem.
But already after the first extraction of a ball our opinion
about the box content will change, and symmetry will break.
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

But it easy to prove that P (Ei | I) is related to the other
ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)
P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

But it easy to prove that P (Ei | I) is related to the other
ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely

‘decomposition law’: P (Ei | I) =
∑

j P (Ei |Hj , I) · P (Hj | I)

(→ Easy to check that it gives P (Ei | I) = 1/2 in our case).
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Collecting the pieces of information we need

Our tool:

P (Hj |Ei, I) = P (Ei |Hj , I)·P (Hj | I)
P

j
P (Ei |Hj , I)·P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) =
∑

j P (Ei |Hj , I) · P (Hj | I)

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

We are ready!
−→ R program
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First extraction

After first extraction (and reintroduction) of the ball:
• P (Hj) changes

• P (Ej) for next extraction changes

Note: The box is exactly in the same status as before
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First extraction

After first extraction (and reintroduction) of the ball:
• P (Hj) changes

• P (Ej) for next extraction changes

Note: The box is exactly in the same status as before

Where is probability?
→ Certainly not in the box!

G. D’Agostini, Introduction to probabilistic reasoning – p. 53



Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes
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P (Hj |Ei)

P (Hj)
=
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)∑
j P (Ei |Hj) · P (Hj)
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)∑
j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj)
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Bayes theorem

The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

Neglecting the background state of information I:
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)∑
j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj)

Different ways to write the

Bayes’ Theorem
G. D’Agostini, Introduction to probabilistic reasoning – p. 54



Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)

Bayesian inference
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)

Learning from data using probability theory
G. D’Agostini, Introduction to probabilistic reasoning – p. 55



Solution of the AIDS test problem

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

We miss something: P◦(HIV) and P◦(HIV): Yes! We need some
input from our best knowledge of the problem. Let us take
P◦(HIV) = 1/600 and P◦(HIV) ≈ 1 (the result is rather stable
against reasonable variations of the inputs!)

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P◦(HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500 × 1

600
=

1

1.2
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Odd ratios and Bayes factor

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P (HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500 × 1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .
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Odd ratios and Bayes factor

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P (HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500 × 1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .

There are some advantages in expressing Bayes theorem in
terms of odd ratios:

• There is no need to consider all possible hypotheses (how
can we be sure?)
We just make a comparison of any couple of hypotheses!
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Odd ratios and Bayes factor

P (HIV |Pos)

P (HIV |Pos)
=

P (Pos |HIV)

P (Pos |HIV)
· P◦(HIV)

P (HIV)

=
≈ 1

0.002
× 0.1/60

≈ 1
= 500 × 1

600
=

1

1.2
⇒ P (HIV |Pos) = 45.5% .

There are some advantages in expressing Bayes theorem in
terms of odd ratios:

• There is no need to consider all possible hypotheses (how
can we be sure?)
We just make a comparison of any couple of hypotheses!

• Bayes factor is usually much more inter-subjective, and it is
often considered an ‘objective’ way to report how much the
data favor each hypothesis.
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Bayesian networks

Let consider again our causes-effects network

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects
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Bayesian networks

Let consider again our causes-effects network

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

In complex, real live situations the effects themselves can be
considered as causes of other effects, and so on.
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Bayesian networks

Basic network:
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Bayesian networks

• The ball color is told by a reporter who might lie.
(Devices might err!)

• We are not sure about the way the box was prepared.
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Bayesian networks

⇒ Let us play with the six boxes
using HUGIN Expert software
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Conclusions

• Subjective probability recovers intuitive idea of probability.
• Nothing negative in the adjective ’subjective’. Just

recognize, honestly, that probability depends on the status
of knowledge, different from person to person.

• Most general concept of probability that can be applied to a
large variety of cases.

• The adjective Bayesian comes from the intense use of
Bayes’ theorem to update probability once new data are
acquired.

• Subjective probability is foundamental in decision issues, if
you want to base decision on the probability of different
events, together with the gain of each of them.

• Bayesian networks are powerful conceptuals/mathematical/
software tools to handle complex problems with variables
related by probabilistic links.
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Are Bayesians ‘smart’ and ‘brilliant’?
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End of lecture

End of lecture
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Notes

The following slides should be reached
by hyper-links, clicking on words with the
symbol †
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Determinism/indeterminism

Pragmatically, as far as uncertainty and inference matter,
it doesn’t really matter.

“Though there be no such thing as Chance in the world; our
ignorance of the real cause of any event has the same influence
on the understanding, and begets a like species of belief or
opinion” (Hume)

Go Back
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Hume’s view about ‘combinatoric evaluation’

“There is certainly a probability, which arises from a superiority
of chances on any side; and according as this superiority
increases, and surpasses the opposite chances, the probability
receives a proportionable increase, and begets still a higher
degree of belief or assent to that side, in which we discover the
superiority.”
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Hume’s view about ‘combinatoric evaluation’

“There is certainly a probability, which arises from a superiority
of chances on any side; and according as this superiority
increases, and surpasses the opposite chances, the probability
receives a proportionable increase, and begets still a higher
degree of belief or assent to that side, in which we discover the
superiority. If a dye were marked with one figure or number of
spots on four sides, and with another figure or number of spots
on the two remaining sides, it would be more probable, that the
former would turn up than the latter; though, if it had a thousand
sides marked in the same manner, and only one side different,
the probability would be much higher, and our belief or
expectation of the event more steady and secure.” (David Hume)

Go Back
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Hume’s view about ‘frequency based evaluation’

“Being determined by custom to transfer the past to the future, in
all our inferences; where the past has been entirely regular and
uniform, we expect the event with the greatest assurance, and
leave no room for any contrary supposition.”
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Hume’s view about ‘frequency based evaluation’

“Being determined by custom to transfer the past to the future, in
all our inferences; where the past has been entirely regular and
uniform, we expect the event with the greatest assurance, and
leave no room for any contrary supposition. But where different
effects have been found to follow from causes, which are to
appearance exactly similar, all these various effects must occur to
the mind in transferring the past to the future, and enter into our
consideration, when we determine the probability of the event.”
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Hume’s view about ‘frequency based evaluation’

“Being determined by custom to transfer the past to the future, in
all our inferences; where the past has been entirely regular and
uniform, we expect the event with the greatest assurance, and
leave no room for any contrary supposition. But where different
effects have been found to follow from causes, which are to
appearance exactly similar, all these various effects must occur to
the mind in transferring the past to the future, and enter into our
consideration, when we determine the probability of the event.”
Though we give the preference to that which has been found
most usual, and believe that this effect will exist, we must not
overlook the other effects, but must assign to each of them a
particular weight and authority, in proportion as we have found it
to be more or less frequent.” (David Hume)
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Bet odds to express confidence

“The best way to explain it is, I’ll bet you
fifty to one that you don’t find anything”
(Feynman)
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“The best way to explain it is, I’ll bet you
fifty to one that you don’t find anything”
(Feynman)

“It is a bet of 11,000 to 1 that the error on
this result (the mass of Saturn) is not
1/100th of its value” (Laplace)
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fifty to one that you don’t find anything”
(Feynman)

“It is a bet of 11,000 to 1 that the error on
this result (the mass of Saturn) is not
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Bet odds to express confidence

“The best way to explain it is, I’ll bet you
fifty to one that you don’t find anything”
(Feynman)

“It is a bet of 11,000 to 1 that the error on
this result (the mass of Saturn) is not
1/100th of its value” (Laplace)
→ 99.99% confidence on the result

⇒ Is a 95% C.L. upper/lower limit a ‘19 to 1 bet’?
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