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General 

Confusion Over Measures of Evidence (p's) Versus Errors (a's) 
in Classical Statistical Testing 

Raymond HUBBARD and M. J. BAYARRI 

Confusion surrounding the reporting and interpretation of re- 
sults of classical statistical tests is widespread among applied 
researchers, most of whom erroneously believe that such tests 
are prescribed by a single coherent theory of statistical inference. 
This is not the case: Classical statistical testing is an anony- 
mous hybrid of the competing and frequently contradictory ap- 
proaches formulated by R. A. Fisher on the one hand, and Jerzy 
Neyman and Egon Pearson on the other. In particular, there is a 
widespread failure to appreciate the incompatibility of Fisher's 
evidential p value with the Type I error rate, a, of Neyman- 
Pearson statistical orthodoxy. The distinction between evidence 
(p's) and error (a's) is not trivial. Instead, it reflects the funda- 
mental differences between Fisher's ideas on significance test- 
ing and inductive inference, and Neyman-Pearson's views on 
hypothesis testing and inductive behavior. The emphasis of the 
article is to expose this incompatibility, but we also briefly note 
a possible reconciliation. 

KEY WORDS: Conditional error probabilities; Fisher; Hy- 
pothesis test; Neyman-Pearson; p Values; Significance test. 

1. INTRODUCTION 

Modern textbooks on statistical analysis in the business, so- 
cial, and biomedical sciences, whether at the undergraduate 
or graduate levels, typically present the subject matter as if it 
were gospel: a single, unified, uncontroversial means of statis- 
tical inference. Rarely do these texts mention, much less dis- 
cuss, that classical statistical inference as it is commonly pre- 
sented is essentially an anonymous hybrid consisting of the mar- 
riage of the ideas developed by Ronald Fisher on the one hand, 
and Jerzy Neyman and Egon Pearson on the other (Gigerenzer 
1993; Goodman 1993, 1999; Royall 1997). It is a marriage of 
convenience that neither party would have condoned, for there 
are important philosophical and methodological differences be- 
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tween them, Lehmann's (1993) attempt at partial reconciliation 
notwithstanding. 

Most applied researchers are unmindful of the historical de- 
velopment of methods of statistical inference, and of the confla- 
tion of Fisherian and Neyman-Pearson ideas. Of critical impor- 
tance, as Goodman (1993) pointed out, is the extensive failure to 
recognize the incompatibility of Fisher's evidential p value with 
the Type I error rate, a, of Neyman-Pearson statistical ortho- 
doxy. The distinction between evidence (p's) and error (a's) is 
no semantic quibble. Instead, it illustrates the fundamental dif- 
ferences between Fisher's ideas on significance testing and in- 
ductive inference, and Neyman-Pearson's views on hypothesis 
testing and inductive behavior. Because statistics textbooks tend 
to anonymously cobble together elements from both schools of 
thought, however, confusion over the reporting and interpreta- 
tion of statistical tests is inevitable. Paradoxically, this misun- 
derstanding over measures of evidence versus error is so deeply 
entrenched that it is not even seen as being a problem by the 
vast majority of researchers. In particular, the misinterpretation 
of p values results in an overstatement of the evidence against 
the null hypothesis. A consequence of this is the number of "sta- 
tistically significant effects" later found to be negligible, to the 
embarrassment of the statistical community. 

Given the above concerns, this article has two major objec- 
tives. First, we outline the marked differences in the conceptual 
foundations of the Fisherian and Neyman-Pearson statistical 
testing approaches. Second, we show how the rival ideas from 
the two schools of thought have been unintentionally mixed to- 
gether. We illustrate how this mixing has resulted in widespread 
confusion over the interpretation of p values and a levels. This 
mass confusion, in turn, has rendered applications of classical 
statistical testing all but meaningless among applied researchers. 
In passing, we suggest a possible reconciliation between p's and 
a's. 

2. FISHER'S SIGNIFICANCE TESTING AND 
INDUCTIVE INFERENCE 

Fisher's views on significance testing, presented in his re- 
search papers and in various editions of his enormously influen- 
tial texts, Statistical Methods for Research Workers (1925) and 
The Design of Experiments (1935a), took root among applied 
researchers. Central to his conception of inductive inference is 
what he called the null hypothesis, Ho. Fisher sought to provide 
a more "objective" approach to inductive inference. Therefore, 
he rejected the methods of inverse probability, that is, the proba- 
bility of a hypothesis (H) given the data (x), or Pr(H |x), in favor 
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of the direct probability, or Pr(| H). This was facilitated by his 
conviction that: "it is possible to argue from consequences to 
causes, from observations to hypotheses" (Fisher 1966, p. 3). 
More specifically, Fisher used discrepancies in the data to reject 
the null hypothesis, that is, the probability of the data given the 
truth of the null hypothesis, or Pr( |Ho). Thus, a significance 
test is a procedure for establishing the probability of an outcome, 
as well as more extreme ones, on a null hypothesis of no effect 
or relationship. 

In Fisher's approach the researcher sets up a null hypothe- 
sis that a sample comes from a hypothetical infinite population 
with a known sampling distribution. The null hypothesis is said 
to be "disproved," as Fisher called it, or rejected if the sample 
estimate deviates from the mean of the sampling distribution by 
more than a specified criterion, the level of significance. Ac- 
cording to Fisher (1966, p. 13), "It is usual and convenient for 
experimenters to take 5 per cent. as a standard level of signif- 
icance, in the sense that they are prepared to ignore all results 
which fail to reach this standard...." Consequently, the Fishe- 
rian scheme of significance testing centers on the rejection of the 
null hypothesis at the p < .05 level. Or as he (Fisher 1966, p. 16) 
declared: "Every experiment may be said to exist only in order 
to give the facts a chance of disproving the null hypothesis." 

For Fisher (1926, p. 504), then, a phenomenon was considered 
to be demonstrable when we know how to conduct experiments 
that will typically yield statistically significant (p < .05) re- 
sults: "A scientific fact should be regarded as experimentally 
established only if a properly designed experiment rarely fails 
to give this level of significance." (Original emphasis.) But it 
would be wrong, contrary to popular opinion, to conclude that 
although Fisher (1926, p. 504) endorsed the 5% level, that he 
was wedded to it: "If one in twenty does not seem high enough 
odds, we may, if we prefer it, draw the line at one in fifty (the 2 
per cent point), or one in a hundred (the 1 per cent point)." 

Fisher regarded p values as constituting inductive evidence 
against the null hypothesis; the smaller the p value, the greater 
the weight of said evidence (Johnstone 1986, 1987b; Spielman 
1974). In terms of his famous disjunction, a p value < .05 on 
the null hypothesis indicates that "Either an exceptionally rare 
chance has occurred or the theory is not true" (Fisher 1959, p. 
39). Accordingly, a p value for Fisher represented an "objec- 
tive" way for researchers to assess the plausibility of the null 
hypothesis: 

... the feeling induced by a test of significance has an objective basis in 
that the probability statement on which it is based is a fact communica- 
ble to and verifiable by other rational minds. The level of significance 
in such cases fulfils the conditions of a measure of the rational grounds 
for the disbelief [in the null hypothesis] it engenders (Fisher 1959, p. 
43). 

In other words, Fisher considered the use of probability values 
to be more reliable than, say, "eyeballing" results. 

Fisher believed that statistics could play an important part in 
promoting inductive inference, that is, drawing inferences from 
the particular to the general, from samples to populations. For 
him, the p value assumes an epistemological role. As he put it, 
"The conclusions drawn from such [significance] tests constitute 
the steps by which the research worker gains a better understand- 
ing of his experimental material, and of the problems it presents" 

(Fisher 1959, p. 76). He proclaimed that "The study of inductive 
reasoning is the study of the embryology of knowledge" (Fisher 
1935b, p. 54), and that "Inductive inference is the only process 
known to us by which essentially new knowledge comes into the 
world" (Fisher 1966, p. 7). In announcing this, however, he was 
keenly aware that not everyone shared his inductivist approach, 
especially 

... mathematicians [like Neyman] who have been trained, as most 
mathematicians are, almost exclusively in the technique of deductive 
reasoning [and who as a result would] ... deny at first sight that rig- 
orous inferences from the particular to the general were even possible 
(Fisher 1935b, p. 39). 

This concession aside, Fisher steadfastly argued that inductive 
reasoning is the primary means of knowledge acquisition, and 
he saw the p values from significance tests as being evidential. 

3. NEYMAN-PEARSON HYPOTHESIS TESTING 
AND INDUCTIVE BEHAVIOR 

Neyman-Pearson (1928a, 1928b, 1933) statistical methodol- 
ogy, originally viewed as an attempt to "improve" on Fisher's 
approach, gained in popularity after Word War II. It is widely 
thought of as constituting the basis of classical statistical testing 
(Royall 1997; Spielman 1974). Their work on hypothesis test- 
ing, terminology they employed to contrast with Fisher's "sig- 
nificance testing," differed markedly, however, from the latter's 
paradigm of inductive inference. (We keep the traditional name 
"Neyman-Pearson" to denote this school of thought, although 
Lehmann (1993) mentioned that Pearson apparently did not par- 
ticipate in the confrontations with Fisher.) The Neyman-Pearson 
approach formulates two competing hypotheses, the null hy- 
pothesis (Ho) and the alternative hypothesis (HA). In a not so 
oblique reference to Fisher, Neyman commented on the rationale 
for an alternative hypothesis: 

... when selecting a criterion to test a particular hypothesis H, should 
we consider only the hypothesis H, or something more? It is known 
that some statisticians are of the opinion that good tests can be devised 
by taking into consideration only the [null] hypothesis tested. But my 
opinion is that this is impossible and that, if satisfactory tests are ac- 
tually devised without explicit consideration of anything beyond the 
hypothesis tested, it is because the respective authors subconsciously 
take into consideration certain relevant circumstances, namely, the al- 
ternative hypothesis that may be true if the hypothesis tested is wrong 
(Neyman 1952, p. 44; original emphasis). 

Specification of an alternative hypothesis critically distinguishes 
between the Fisherian and Neyman-Pearson methodologies, and 
this was one of the topics that both camps vehemently disagreed 
about over the years. 

In a sense, Fisher used some kind of casual, generic, unspec- 
ified, alternative when computing p values, somehow implicit 
when identifying the test statistic and "more extreme outcomes" 
to compute p values, or when talking about the sensitivity of an 
experiment. But he never explicitly defined nor used specific 
alternative hypotheses. In the merging of the two schools of 
thought, it is often taken that Fisher's significance testing im- 
plies an alternative hypothesis which is simply the complement 
of the null, but this is difficult to formalize in general. For ex- 
ample, what is the complement of a N(0, 1) model? Is it the 
mean differing from 0, the variance differing from 1, the model 
not being Normal? Formally, Fisher only had the null model in 
mind and wanted to check if the data were compatible with it. 
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In Neyman-Pearson theory, therefore, the researcher chooses 
a (usually point) null hypothesis and tests it against the alterna- 
tive hypothesis. Their framework introduced the probabilities of 
committing two kinds of errors based on considerations regard- 
ing the decision criterion, sample size, and effect size. These 
errors were false rejection (Type I error) and false acceptance 
(Type II error) of the null hypothesis. The former probability is 
called a, while the latter probability is designated /3. 

The Neyman-Pearson theory of hypothesis testing introduced 
the completely new concept of the power of a statistical test. The 
power of a test, defined as (1 - /3), is the probability of rejecting 
a false null hypothesis. Because Fisher's statistical testing pro- 
cedure admits of no alternative hypothesis (HA), the concepts 
of Type II error and the power of the test are not relevant. Fisher 
made this clear: "The notion of an error of the so-called 'sec- 
ond kind,' due to accepting the null hypothesis 'when it is false' 
... has no meaning with respect to simple tests of significance, 
in which the only available expectations are those which flow 
from the null hypothesis being true" (Fisher 1966, p. 17). Fisher 
never saw the need for an alternative hypothesis (but see our 
comments above). 

Fisher (1966, p. 21) nevertheless hints at the notion of the 
power of a test when he referred to how "sensitive" an experi- 
ment might be in detecting departures from the null. As Neyman 
(1967, p. 1459) later expressed, "The consideration of power 
is occasionally implicit in Fisher's writings, but I would have 
liked to see it treated explicitly." Essentially, however, Fisher's 
"sensitivity" and Neyman-Pearson's "power" refer to the same 
concept. But here ends the, purely conceptual, agreement: power 
has no methodological role in Fisher's approach whereas it has 
a crucial one in Neyman-Pearson's. 

Although Fisher's view of inductive inference focused on the 
rejection of the null hypothesis, Neyman and Pearson dismissed 
the entire idea of inductive reasoning out of hand. Instead, their 
concept of inductive behavior sought to establish rules for mak- 
ing decisions between two hypotheses, irrespective of the re- 
searcher's belief in either one. Neyman explained: 

Thus, to accept a hypothesis H means only to decide to take action A 
rather than action B. This does not mean that we necessarily believe 
that the hypothesis H is true ... [while rejecting H] ... means only that 
the rule prescribes action B and does not imply that we believe that H 
is false (Neyman 1950, pp. 259-260). 

Neyman-Pearson theory, then, replaces the idea of inductive 
reasoning with that of inductive behavior. In defending his pref- 
erence for inductive behavior over inductive inference, Neyman 
wrote: 

... the term "inductive reasoning" remains obscure and it is uncertain 
whether or not the term can be conveniently used to denote any clearly 
defined concept. On the other hand ... there seems to be room for the 
term "inductive behavior." This may be used to denote the adjustment 
of our behavior to limited amounts of information. The adjustment is 
partly conscious and partly subconscious. The conscious part is based 
on certain rules (if I see this happening, then I do that) which we call 
rules of inductive behavior. In establishing these rules, the theory of 
probability and statistics both play an important role, and there is a 
considerable amount of reasoning involved. As usual, however, the rea- 
soning is all deductive (Neyman 1950, p. 1; our emphasis). 

The Neyman-Pearson approach is deductive in nature and ar- 
gues from the general to the particular. They formulated a "rule 
of behavior" for choosing between two alternative courses of ac- 

tion, accepting or rejecting the null hypothesis, such that "... in 
the long run of experience, we shall not be too often wrong" 
(Neyman and Pearson 1933, p. 291). 

The decision to accept or reject the hypothesis in their frame- 
work depends on the costs associated with committing a Type I 
or Type II error. These costs have nothing to do with statistical 
theory, but are based instead on context-dependent pragmatic 
considerations where informed personal judgment plays a vital 
role. Thus, the researcher would design an experiment to control 
the probabilities of the a and 3 error rates. The "best" test is one 
that minimizes /3 subject to a bound on a (Lehmann 1993). And 
in an act that Fisher, as we shall see, could never countenance, 
Neyman referred to a as the significance level of a test: 

The error that a practicing statistician would consider the more impor- 
tant to avoid (which is a subjective judgment) is called the error of the 
first kind. The first demand of the mathematical theory is to deduce 
such test criteria as would ensure that the probability of committing 
an error of the first kind would equal (or approximately equal, or not 
exceed) a preassigned number a, such as a = 0.05 or 0.01, etc. This 
number is called the level of significance (Neyman 1976, p. 161; our 
emphasis). 

Since a is specified or fixed prior to the collection of the data, 
the Neyman-Pearson procedure is sometimes referred to as the 
fixed a/fixed level approach (Lehmann 1993). This is in sharp 
contrast to the data-based p value, which is a random variable 
whose distribution is uniform over the interval [0, 1] under the 
null hypothesis. Thus, the a and f3 error rates define a "critical" 
or "rejection" region for the test statistic, say z or t > 1.96. If 
the test statistic falls in the critical region Ho is rejected in favor 
of HA, otherwise Ho is retained. 

Moreover, while Fisher claimed that his significance tests 
were applicable to single experiments (Johnstone 1987a; Ky- 
burg 1974; Seidenfeld 1979), Neyman-Pearson hypothesis tests 
do not allow an inference to be made about the outcome of any 
specific hypothesis that the researcher happens to be investigat- 
ing. The latter were quite explicit about this: "We are inclined to 
think that as far as a particular hypothesis is concerned, no test 
based upon the theory of probability can by itself provide any 
valuable evidence of the truth or falsehood of that hypothesis" 
(Neyman and Pearson 1933, pp. 290-291). 

Neyman-Pearson theory is nonevidential. Fisher recognized 
this when agreeing that their "acceptance procedures" approach 
could play a part in repeated sampling, quality control deci- 
sions. This admission notwithstanding, Fisher was adamant that 
Neyman-Pearson's cost-benefit, decision making, orientation to 
statistics was an inappropriate model for the conduct of science, 
reminding us that there exists a: 

... deep-seated difference in point of view which arises when Tests of 
Significance are reinterpreted on the analogy of Acceptance Decisions. 
It is indeed not only numerically erroneous conclusions, serious as these 
are, that are to be feared from an uncritical acceptance of this analogy. 
An important difference is that decisions are final, while the state of 
opinion derived from a test of significance is provisional, and capable, 
not only of confirmation, but of revision (Fisher 1959, p. 100). 

Clearly, Fisher and Neyman were at odds over the role played 
by statistical testing in scientific investigations, and over the 
nature of the scientific enterprise itself. In fact, the dogged in- 
sistence on the correctness of their respective conceptions of 
statistical testing and the scientific method resulted in ongoing 
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acrimonious exchanges, at both the professional and personal 
levels, between them. 

4. CONFUSION OVER THE INTERPRETATION OF 
p's AND a's 

Most users of statistical tests in the applied sciences are 
unaware of the above distinctions between the Fisherian and 
Neyman-Pearson camps (Gigerenzer 1993; Goodman 1993; 
Royall 1997). This is because many statistics textbooks combine 
(sometimes incongruous) ideas from both schools of thought, 
usually without acknowledging, or worse yet, recognizing, this. 
Johnstone (1986) remarked that statistical testing usually fol- 
lows Neyman-Pearson formally, but Fisher philosophically. For 
instance, Fisher's idea of disproving the null hypothesis is taught 
in tandem with the Neyman-Pearson concepts of alternative hy- 
potheses, Type II errors, and the power of a statistical test. 

As a prime example of the bewilderment arising from the mix- 
ing of Fisher's views on inductive inference with the Neyman- 
Pearson principle of inductive behavior, consider the widely un- 
appreciated fact that the former's p value is incompatible with the 
Neyman-Pearson hypothesis test in which it has become embed- 
ded (Goodman 1993). Despite this incompatibility, the upshot 
of this merger is that the p value is now inextricably entangled 
with the Type I error rate, a. As a result, most empirical work in 
the applied sciences is conducted along the following approxi- 
mate lines: The researcher states the null (Ho) and alternative 
(HA) hypotheses, the Type I error rate/significance level, a, and 
supposedly-but very rarely-calculates the statistical power 
of the test (e.g., t). These procedural steps are entirely consis- 
tent with Neyman-Pearson convention. Next, the test statistic is 
computed for the sample data, and in an attempt to have one's 
cake and eat it too, an associated p value is determined. The p 
value is then mistakenly interpreted as a frequency-based Type 
I error rate, and simultaneously as an incorrect (i.e., p < a) 
measure of evidence against Ho. 

Confusion over the meaning and interpretation of p's and a's 
is close to total. It is almost guaranteed by the fact that, Fisher's 
efforts to distinguish between them to the contrary, this same 
confusion exists among some statisticians. These themes are 
addressed below. 

4.1 Fisher-The Significance Level (p) of a Test is Not a 
Type I Error Rate (a) 

Fisher was insistent that the significance level of a test had no 
ongoing sampling interpretation. With respect to the .05 level, 
for example, he emphasized that this does not indicate that the 
researcher "allows himself to be deceived once in every twenty 
experiments. The test of significance only tells him what to ig- 
nore, namely all experiments in which significant results are not 
obtained" (Fisher 1929, p. 191). For Fisher, the significance level 
provided a measure of evidence for the "objective" disbelief in 
the null hypothesis; it had no long-run frequentist characteris- 
tics. 

Indeed, interpreting the significance level of a test in terms 
of a Neyman-Pearson Type I error rate, a, rather than via a p 
value, infuriated Fisher who complained: 

In recent times one often-repeated exposition of the tests of significance, 
by J. Neyman, a writer not closely associated with the development of 
these tests, seems liable to lead mathematical readers astray, through 

laying down axiomatically, what is not agreed or generally true, that 
the level of significance must be equal to the frequency with which 
the hypothesis is rejected in repeated sampling of any fixed population 
allowed by hypothesis. This intrusive axiom, which is foreign to the 
reasoning on which the tests of significance were in fact based seems 
to be a real bar to progress... " (Fisher 1945, p. 130). 

And he periodically reinforced these sentiments: 

The attempts that have been made to explain the cogency of tests of 
significance in scientific research, by reference to supposed frequencies 
of possible statements, based on them, being right or wrong, thus seem 
to miss the essential nature of such tests (Fisher 1959, p. 41). 

Here, Fisher is categorically denying the equivalence of p values 
and Neyman-Pearson a levels, that is, long-run frequencies of 
rejecting Ho when it is true. Fisher captured a major distinction 
between his and Neyman-Pearson's notions of statistical tests 
when he pronounced: 

This [Neyman-Pearson] doctrine, which has been very dogmatically 
asserted, makes a truly marvellous mystery of the tests of significance. 
On the earlier view, held by all those to whom we owe the first examples 
of these tests, such a test was logically elementary. It presented the 
logical disjunction: Either the hypothesis is not true, or an exceptionally 
rare outcome has occurred (Fisher 1960, p. 8). 

Seidenfeld (1979) and Rao (1992) agreed that the correct read- 
ing of a Fisherian significance test is through this disjunction, 
as opposed to some long-run frequency interpretation. In direct 
opposition, however, "the essential point [of Neyman-Pearson 
theory] is that the solution reached is always unambiguously in- 
terpretable in terms of long range relative frequencies" (Neyman 
1955, p. 19). Hence the impasse. 

4.2 Confusion Over p's and a's Among Some Statisticians 

4.2.1 Misinterpreting the p Value as a Type I Error Rate 

Despite the admonitions about the p value not being an error 
rate, Casella and Berger (1987, p. 133) voiced their concern that 
"there are a great many statistically naive users who are interpret- 
ing p values as probabilities of Type I error ..." Unfortunately, 
such misinterpretations are confined not only to the naive users 
of statistical tests. For example, Gibbons and Pratt (1975, p. 
21), in an article titled "P-Values: Interpretation and Methodol- 
ogy," erroneously stated: "Reporting a P-value, whether exact 
or within an interval, in effect permits each individual to choose 
his own level of significance as the maximum tolerable probabil- 
ity of a Type I error." Again, Hung, O'Neill, Bauer, and Kohne 
(1997, p. 12) noted that the p value is a measure of evidence 
against the null hypothesis, but then go on to confuse p values 
with Type I error rates: "The a level is a preexperiment Type 
I error rate used to control the probability that the observed P 
value in the experiment of making an error rejection of Ho when 
in fact Ho is true is a or less." 

Or consider Berger and Sellke's response to Hinkley's (1987) 
comments on their article: 

Hinkley defends the P value as an "unambiguously objective error rate." 
The use of the term "error rate" suggests that the [Neyman-Pearson] 
frequentist justifications ... for confidence intervals and fixed a-level 
hypothesis tests carry over to P values. This is not true. Hinkley's 
interpretation of the P value as an error rate is presumably as follows: 
the P value is the Type I error rate that would result if this observed 
P value were used as the critical significance level in a long sequence 
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of hypothesis tests ... This hypothetical error rate does not conform 
to the usual classical notion of "repeated-use" error rate, since the P 
value is determined only once in this sequence of tests. The frequentist 
justifications of significance tests and confidence intervals are in terms 
of how these procedures perform when used repeatedly. 

Can P values be justified on the basis of how they perform in repeated 
use? We doubt it. For one thing, how would one measure the perfor- 
mance of P values? (Berger and Sellke 1987, p. 136; our emphasis). 

Berger and Delampady (1987, p. 329) correctly insisted that 
the interpretation of the p value as an error rate is strictly pro- 
hibited: "P-values are not a repetitive error rate... A Neyman- 
Pearson error probability, a, has the actual frequentist inter- 
pretation that a long series of a level tests will reject no more 
than 100a% of true Ho, but the data-dependent-P-values have 
no such interpretation." (Original emphasis). In sum, although 
p's and a's have very different meanings, Bayarri and Berger 
(2000) nevertheless contended that among statisticians there is 
a near ubiquitous misinterpretation of p values as frequentist 
error probabilities. 

4.2.2 Using the p < a Criterion as a Measure of Evidence 
Against Ho 

At the same time that the p value is being incorrectly reported 
as a Neyman-Pearson Type I error rate, it will also be incor- 
rectly interpreted in a quasi-Fisherian sense as evidence against 
Ho. This is accomplished in an unusual manner by examining 
the inequality between a measure of evidence and a long-term 
error rate, or p < a. If p < a, a statistically significant find- 
ing is reported, and the null hypothesis is disproved, or at least 
discredited. Statisticians also commit this mistake. In an article 
published in the Encyclopedia of Statistical Sciences intended 
to clarify the meaning of p values, for example, Gibbons (1986, 
p. 367) falsely concluded that: "Hence the relationship between 
P values and the classical [Neyman-Pearson] method is that if 
P < a, we should reject Ho, and if P > a, we should accept 
Ho." But Gibbons is by no means alone among statisticians re- 
garding this confusion over the evidential content (and mixing) 
of p's and a's. For instance, Donahue (1999, p. 305) stated: "Ob- 
viously, with respect to rejecting the null hypothesis and small 
values of P, we proceed as tradition dictates by rejecting H if 
P < a." (Our emphasis.) 

But the p value plays no role in Neyman-Pearson theory. In- 
stead, their framework focuses on decision rules with a priori 
stated error rates, a and /3, which are limiting frequencies based 
on long-run repeated sampling. If a result falls into the criti- 
cal region Ho is rejected and HA is accepted, otherwise Ho is 
accepted and HA is rejected. 

Of course, for a fixed, prespecified a, the Neyman-Pearson 
decision rule is fully determined by the critical region of the 
sample, which in turn can be characterized in terms of many 
different statistics (in particular, of any one-to-one transforma- 
tion of the original test statistic). Therefore, it could be defined 
equivalently in terms of the p value, and stated as saying that 

the null hypothesis should be rejected if the observed p < a, 
and accepted otherwise. But in this manner, only the Neyman- 
Pearson interpretation is valid, and no matter how small the p 
value is, the appropriate report is that the procedure guarantees 

a 100a% false rejections of the null on repeated use. Otherwise 
stated, only the fact that p < a is of any interest, not the specific 
value of p itself. 

A related issue is whether one can carry out both testing proce- 
dures in parallel. We have seen from a philosophical perspective 
that this is extremely problematic. We do not recommend it from 
a pragmatic point of view either, because the danger in interpret- 
ing the p value as a data-dependent adjustable Type I error is too 
great, no matter the warnings to the contrary. Indeed, if a re- 
searcher is interested in the "measure of evidence" provided by 
the p value, we see no use in also reporting the error probabilities, 
since they do not refer to any property that the p value has. (In 
addition, the appropriate interpretation of p values as a measure 
of evidence against the null is not clear. We delay this discussion 
until Section 5.) Likewise, if the researcher is concerned with 
error probabilities the specific p value is irrelevant. 

Despite the above statements, Goodman (1993, 1999) and 
Royall (1997) noted that because of its superficial resemblance 
to the Neyman-Pearson Type I error rate, a, the p value has been 
absorbed into the former's hypothesis testing method. In doing 
so, the p value has been interpreted as both a measure of evidence 
and an "observed" error rate. This has led to widespread confu- 
sion over the meaning of p values and a levels. Unfortunately, 
as Goodman pointed out: 

... because p-values and the critical regions of hypothesis tests are both 
tail area probabilities, they are easy to confuse. This confusion blurs 
the division between concepts of evidence and error for the statistician, 
and obscures it completely for nearly everyone else (Goodman 1992, 
p. 879). 

4.3 p's, a's and the .05 Level 

It is ironic that the confusion surrounding the distinction be- 
tween p's and a's was unwittingly exacerbated by Neyman and 
Pearson themselves. This occurred when, despite their insis- 
tence on flexibility over the balancing of a and / errors, they 
adopted as a matter of expediency Fisher's 5% and 1% signifi- 
cance levels to help define their Type I error rates (Pearson 1962). 
Consequently, it is small wonder that many researchers confuse 
Fisher's evidential p values with Neyman-Pearson behavioral 
error rates when both concepts are commonly employed at the 
5% and 1% levels. 

Many researchers will no doubt be surprised by the statisti- 
cians' confusion over the correct meaning and interpretation of 
p values and a levels. After all, one might anticipate that the 
properties of these commonly used statistical measures would 
be completely understood. But this is not the case. To under- 
score this point, in commenting on various issues surrounding 
the interpretation of p values, Berger and Sellke (1987, p. 135) 
unequivocally spelled out that: "These are not dead issues, in 
the sense of being well known and thoroughly aired long ago; 
although the issues are not new, we have found the vast majority 
of statisticians to be largely unaware of them." (Our emphasis.) 
Schervish's (1996) article almost a decade later, tellingly entitled 
"P Values: What They Are and What They Are Not," suggests 
that confusion remains in this regard within the statistics com- 
munity. 

The near-universal confusion among researchers over the 
meaning of p values and a levels becomes easier to appreci- 
ate when it is formally acknowledged that both expressions are 
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used to indicate the "significance level" of a test. But note their 
completely different interpretations. The level of significance 
shown by a p value in a Fisherian significance test refers to the 
probability of observing data this extreme (or more so) under 
a null hypothesis. This data-dependent p value plays an epis- 
temic role by providing a measure of inductive evidence against 
Ho in single experiments. This is very different from the sig- 
nificance level denoted by a in a Neyman-Pearson hypothesis 
test. With Neyman-Pearson, the focus is on minimizing Type 
II, or /3, errors (i.e., false acceptance of a null hypothesis) sub- 
ject to a bound on Type I, or a, errors (i.e., false rejections of a 
null hypothesis). Moreover, this error minimization applies only 
to long-run repeated sampling situations, not to individual ex- 
periments, and is a prescription for behaviors, not a means of 
collecting evidence. When seen from this vantage, the two con- 
cepts of statistical significance could scarcely be further apart in 
meaning. 

The problem is that these distinctions between p's and a's are 
seldom made explicit in the literature. Instead, they tend to be 
used interchangeably, especially in statistics textbooks aimed at 
practitioners. Thus, we have a nameless amalgamation of the 
Fisherian and Neyman-Pearson paradigms, with the p value 
serving as the conduit, that has created the potent illusion of 
a uniform statistical methodology somehow capable of gener- 
ating evidence from single experiments, while at the same time 
minimizing the occurrence of errors in both the short and long 
hauls (Goodman 1993). It is now ensconced in college curricula, 
textbooks, and journals. 

5. WHERE DO WE GO FROM HERE? 

If researchers are confused over the meaning of p values and 
Type I error probabilities, and the Fisher and Neyman-Pearson 
theories seemingly cannot be combined, what should we do? 
The answer is not obvious since both schools have important 
merits and drawbacks. In the following account we no longer 
address the philosophical issues concerning the distinctions be- 
tween p's and a's that have been the main themes of previous 
sections, in the hope that these are clear enough. Instead, we con- 
centrate on the implications for statistical practice: Is it better to 
report p values or error probabilities from a test of hypothesis? 
We follow this with a discussion of how we can, in fact, rec- 
oncile the Fisherian and Neyman-Pearsonian statistical testing 
frameworks. 

5.1 Some Practical Problems with p's and a's 

Neyman-Pearson theory has the advantage of its clear inter- 
pretation: Of all the tests being carried out around the world at 
the .05 level, at most 5% of them result in a false rejection of the 
null. [The frequentist argument does not require repetition of the 
exact same experiment. See, for instance, Berger (1985, p. 23) 
and references there.] Its main drawback is that the performance 
of the procedure is always the prespecified level. Reporting the 
same "error," .05 say, no matter how incompatible the data seem 
to be with the null hypothesis is clearly worrisome in applied sit- 
uations, and hence the appeal of the data-dependent p values in 
research papers. On the other hand, for quality control problems, 
a strict Neyman-Pearson analysis is appropriate. 

The chief methodological advantage of the p value is that 
it may be taken as a quantitative measure of the "strength of 
evidence" against the null. However, while p values are very 
good as relative measures of evidence, they are extremely diffi- 
cult to interpret as absolute measures. What exactly "evidence" 
of around, say, .05 (as measured by a p value) means is not 
clear. Moreover, the various misinterpretations of p values all 
result, as we shall see, in an exaggeration of the actual evidence 
against the null. This is very disconcerting on practical grounds. 
Indeed, many "effects" found in statistical analyses have later 
been shown to be mere flukes. For examples of these, visit the 
Web pages mentioned in www.stat.duke.edu/~berger under "p 
values." Such results undermine the credibility of the profession. 

A common mistake by users of statistical tests is to misinter- 
pret the p value as the probability of the null hypothesis being 
true. This is not only wrong, but p values and posterior prob- 
abilities of the null can differ by several orders of magnitude, 
the posterior probability always being larger (see Berger 1985; 
Berger and Delampady 1987; Berger and Sellke 1987). Most 
books, even at the elementary level, are aware of this misinter- 
pretation and warn about it. It is rare, however, for these books 
to emphasize the practical consequences of falsely equating p 
values with posterior probabilities, namely, the conspicuous ex- 
aggeration of evidence against the null. 

As we have shown throughout this article, researchers rou- 
tinely confuse p values with error probabilities. This is not only 
wrong philosophically, but also has far-reaching practical impli- 
cations. To see this we urge those teaching statistics to simulate 
the frequentist performance of p values in order to demonstrate 
the serious conflict between the student's intuition and reality. 
This can be done trivially on the Web, even at the undergraduate 
level, with an applet available at www.stat.duke.edu/~berger. 
The applet simulates repeated normal testing, retains the tests 
providing p values in a given range, and counts the proportion 
of those for which the null is true. The exercise is revealing. For 
example, if in a long series of tests on, say, no effect of new 
drugs (against AIDS, baldness, obesity, common cold, cavities, 
etc.) we assume that about half the drugs are effective (quite a 
generous assumption), then of all the tests resulting in a p value 
around .05 it is fairly typical to find that about 50% of them 
come, in fact, from the null (no effect) and 50% from the al- 
ternative. These percentages depend, of course, on the way the 
alternatives behave, but an absolute lower bound, for any way 
the alternatives could arise in the situation above, is about 22%. 
The upshot for applied work is clear. Most notably, about half 
(or at the very least over 1/5 ) of the times we see a p value 
of .05, it is actually coming from the null. That is, a p value of 
.05 provides, at most, very mild evidence against the null. When 
practitioners (and students) are not aware of this, they very likely 
interpret a .05 p value as much greater evidence against the null. 

Finally, sophisticated statisticians (but very few students) 
might offer the argument that p values are just a measure of 
evidence in the sense that "either the null is false, or a rare event 
has occurred." The main flaw in this viewpoint is that the "rare 
event," whose probability (under the null) the p value computes, 
is not based on observed data, as the previous argument implies. 
Instead, the probability of the set of all data more extreme than 
the actual data is computed. It is obvious that in this set there can 
be data far more incompatible with the null than the data at hand, 
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and hence this set provides much more "evidence" against the 
null than does the actual data. This conditional fallacy, therefore, 
also results in an exaggeration of the evidence against the null 
provided by the observed data. Our informal argument is made 
in a rigorous way in Berger and Sellke (1987) and Berger and 
Delampady (1987). 

5.2 Reconciling Fisher's and Neyman-Pearson's Methods 
of Statistical Testing 

So, what should we do? One possible course of action is to 
use Bayesian measures of evidence (Bayes factors and posterior 
probabilities for hypothesis). Space constraints preclude debat- 
ing this possibility here. Suffice it to say that there is a long- 
standing misconception that Bayesian methods are necessarily 
"subjective." In fact, objective Bayesian analyses can be carried 
out without incorporating any external information (see Berger 
2000), and in recent years the objective Bayesian methodology 
for hypothesis testing and model selection has experienced rapid 
development (Berger and Pericchi 2001). 

The interesting question, however, is not whether another 
methodology can be adopted, but rather can the ideas from the 
Neyman-Pearson and Fisher schools somehow be reconciled, 
thereby retaining the best of both worlds? This is what Lehmann 
(1993, p. 1248) had in mind, but he recognized that "A fun- 
damental gap in the theory is the lack of clear principles for 
selecting the appropriate framework." There is, however, such 
a unifying theory which provides the "appropriate framework" 
Lehmann (1993) sought. This was clearly presented by Berger 
(2002). The intuitive notion behind it is that one should report 
conditional error probabilities. That is, reports that retain the 
unambiguous frequency interpretation, but that are allowed to 
vary with the observed data. The specific proposal is to condition 
on data that have the same "strength of evidence" as measured 
by p values. We see this as the ultimate reconciliation between 
the two opposing camps. Moreover, it has an added bonus: the 
conditional error probabilities can be interpreted as posterior 
probabilities of the hypotheses, thus guaranteeing easy compu- 
tation as well as marked simplifications in sequential scenarios. 

A very easy, approximate, calibration of p values was given 
by Sellke, Bayarri, and Berger (2001). It consists of computing, 
for an observed p value, the quantity (1 + [-ep log(p)]-)-1) 1 

and interpreting this as a lower bound on the conditional Type 
I error probability. For example, a p value of .05 results in a 
conditional a of at least .289. (The calibration -ep log(p) can 
be interpreted as a lower bound on the Bayes factor.) That is, even 
though ap value of .05 might seem to give the impression that the 
evidence against Ho is about 20 to 1, and hence quite strong, the 
conditional a of at least .289 (and corresponding Bayes factor of 
at least 0.4) tells us otherwise. In particular, as shown by Sellke, 
Bayarri, and Berger (2001), it can be interpreted (under some 
conditions) as saying that among all the experiments resulting 
in p values around .05, at least 28.9% come from those in which 
the null hypothesis is true. Also, the (Bayesian) odds against Ho 
are at most 2.5 to 1. Both statements reveal that the practical 
evidence against Ho provided by a p value of .05 is, at best, 
rather weak. This, of course, is in flagrant contradiction with 
usual interpretations. [For more discussion of this topic, and 
the corresponding implications, see Sellke, Bayarri, and Berger 

(2001) and Berger (2002).] The formulas introduced above are 
extremely simple and provide the correct order of magnitude 
for interpreting a p value as an error probability, as well as the 
evidence against the null given by a p value. 

6. CONCLUSIONS 

It is disturbing that the ubiquitous p value cannot be correctly 
interpreted by the majority of researchers. As a result, the p 
value is viewed simultaneously in Neyman-Pearson terms as 
a deductive assessment of error in long-run repeated sampling 
situations, and in a Fisherian sense as a measure of inductive ev- 
idence in a single study. In fact, a p value from a significance test 
has no place in the Neyman-Pearson hypothesis testing frame- 
work. Contrary to popular misconception, p's and a's are not 
the same thing; they measure different concepts. 

Nevertheless, both concepts-evidence and error-can be im- 
portant, and we briefly indicated a possible reconciliation by cal- 
ibrating p values as conditional error probabilities. In the broader 
picture, we believe that it would be especially informative if 
those teaching statistics courses in the applied disciplines ad- 
dressed the historical development of statistical testing in their 
classes and their textbooks. It is hoped that this article will stim- 
ulate discussions along these lines. 

[Received October 2001. Revised May 2003.] 
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Discussion 
Kenneth N. BERK 

One could cynically describe Sections 1 to 4 of this article 
as an attempt to tear down traditional statistical testing in an 
effort to sell the books and articles by Berger and his coauthors 
listed in Section 5. It seems likely that statistical testing will 

remain unchanged, although these references offer interesting 
and creative alternative interpretations of p values. 

The theme of Sections 2 and 3 seems to be that Fisher did not 

like what Neyman and Pearson did, and Neyman did not like 

what Fisher did, and therefore we should not do anything that 

combines the two approaches. There is no escaping the premise 

here, but the reasoning escapes me. I can see the image of two 

gods standing on twin mountains and hurling thunderbolts at 

each other, but I still do not see why we cannot talk about p 

values and Type I errors in the same sentence. Section 4 begins 

by saying how terrible it is that "statistics textbooks combine 

(sometimes incongruous) ideas from both schools of thought" 
without mentioning the controversy. 

Many books indeed do introduce the p value and then discuss 

how it can be used to decide whether to accept or reject the null 

hypothesis at the .05 level. And then they are supposed to say 
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how the originators of these ideas would have hated to see them 
combined? This is asking a bit much in a situation where the 
student is trying to learn new terms and difficult concepts, so we 
cannot expect to see a discussion of this historical controversy in 
an introductory text. I doubt that my coauthor and I will include 
it in our new introductory mathematical statistics text. 

Section 4.2 points an accusing finger at some who supposedly 
got it wrong. Gibbons and Pratt are among the chosen ones, be- 
cause they say that reporting a p value allows each individual to 
choose "a level of significance as the maximum tolerable prob- 
ability of a Type I error." If they are guilty, they have a lot of 
company. Textbooks typically describe a similar procedure, and 
that is what a lot of people are doing in statistical practice. The 
computer output comes with a p value, and this allows the user 
to make a judgment about whether it is less than .05 or .01 or 
whatever it takes to convince the user. Often the p value is com- 
municated in the published paper, rather than a statement about 
rejecting the null hypothesis at the .05 level. This is in accord 
with what Moore and McCabe (1997, p. 476) said: "Different 
persons may feel that different levels of significance are appro- 
priate. It is better to report the p value, which allows each of us 
to decide individually if the evidence is sufficiently strong." 

It is especially difficult to see the objections to Gibbons 
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and Pratt (1975) (and presumably Moore and McCabe and pretty 
much the whole statistical world) when you read further in Sec- 
tion 4.2 and see that, "for a prespecified a, the Neyman-Pearson 

decision rule ... could be defined in terms of the p value." There 

must be a linguistic subtlety here that I and many others are 

missing. Maybe the issue is in the "prespecified" part, which 
perhaps is not made sufficiently explicit by some. Indeed, Miller 

and Miller (1999, p. 415) warned against the hazards of allowing 

the choice of a afterward: 

.. consider the temptation one might be exposed to when choosing a 
after having seen the P value with which it is compared. Suppose, for 
instance, that an experiment yields a P value of 0.036. If we are anxious 
to reject the null hypothesis and prove our point, it would be tempting 
to choose a = 0.05; if we are anxious to accept the null hypothesis and 
prove our point it would be tempting to choose a = 0.01. 

Similarly, Anderson and Finn (1996, p. 421) gave this caution: 

One caution must be observed in using a P value to decide if Ho is ac- 
cepted or rejected. It is always tempting to look at a P value, especially 
when it is printed by a computer program, and use it after the fact to 
decide what the a level should be. For example, suppose we did not set 
a in advance of a study and obtained the P value of .0359. If we have 
a large personal investment in the outcome of the study, we might be 
tempted to set a at .05 in order to reject Ho, whereas we might have 
chosen .01 if a was set in advance. 

From the point of view of this article, the worst thing in the 
world is the confusion of the Type I error probability a and the 
p value. One can only wonder about the reaction to this passage 
from Boniface (1995, p. 21): 

The level of significance is the probability that a difference in means 
has been erroneously declared to be significant. Typical values for sig- 
nificance levels are 0.05 and 0.01 (corresponding to 5% and 1% chance 
of error). Another name for significance level is p-value. 

As is pointed out in Section 5, students frequently misinter- 
pret the p value as the probability that the null hypothesis is 
true. You might think therefore that texts would hammer away 
at this fallacy with the hope of defeating it. However, I found 

only one text that makes any effort in this regard. Rice (1995) 
has true/false questions like this: "The p-value of a test is the 
probability that the null hypothesis is correct." 

Paradoxically, Rice's text is used mainly for very well- 
prepared students who presumably have less need for drill of 
this kind. A case could be made that all introductory texts, es- 
pecially those at lower levels, should have such exercises. 

It should be acknowledged that some statisticians might an- 
swer "none of the above" to this article. That is, there are those 
who prefer not to do hypothesis testing in any form, and instead 
prefer confidence intervals. This includes statisticians in psy- 
chology (Harlow, Mulaik, and Steiger 1997), medicine (Roth- 
man 1978), and engineering (Deming 1975; Hahn 1995). Dem- 
ing pointed out what has occurred to many of us in dealing with 
large datasets, that with enough data any hypothesis is rejected. 

[Received October 2001. Revised May 2003.] 
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Discussion 
Matthew A. CARLTON 

The authors of this article rightly point out that many statis- 
tics students-and, we assume by extension, many statistics 
practitioners-regularly misinterpret the p value of a hypoth- 
esis test. My students most commonly fall into the trap that a p 
value indicates the probability that the null hypothesis is true. 
However, the authors adamantly insist that most confusion stems 
from the marriage of Fisherian and Neyman-Pearsonian ideas, 
that such a marriage is a catastrophic error on the part of modern 
statisticians, and that a radically different, Bayesian approach is 
the solution. In this response, I will try to highlight my agree- 
ments and disagreements with the article and to discuss briefly 
some key considerations for statistics teachers when they tackle 
hypothesis testing. 

Matthew A. Carlton is Assistant Professor, Department of Statistics, Califor- 
nia Polytechnic State University, San Luis Obispo, CA 93407 (E-mail: mcarl- 
ton@calpoly.edu). 

One point made by the authors is well worth repeating: a p 
value is not the same thing as a Type I error rate. In fact, it is 
questionable whether we can interpret the p value as an error rate 
at all. Statisticians generally agree on the following definition: 

Given a hypothesis H and a random sample of data, we define 
the P value to be the probability of observing data at least as 
contradictory to H as our data, under the assumption that H is 
true. 

That definition does not sound anything like an error rate, so 
why would someone make that misinterpretation? As the authors 
note, the numerical comparison of the p value to the significance 
level a, combined with the identification of a as the probability 
of a Type I error, make the two seem analogous. Our own statis- 
tical terminology increases the confusion: some texts refer to the 
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p value as the observed significance level, further cementing in 
the students' minds that p values and a's are somehow siblings. 

In the authors' words: "P values are not a repetitive error 
rate." This conclusion, which seems quite reasonable in light of 
the above definition, distinguishes the p value from a, which we 
understand to represent the long-run error rate across all tests of 
true null hypotheses. That is, 

a = PrH(Reject H), 

where H is the null hypothesis being tested and "Reject H" ab- 
breviates the rejection rule for our particular test. In a frequentist 
sense, a 5% significance level ensures that, in the long run, (at 
most) 5% of all true hypotheses will be mistakenly rejected by 
our standard hypothesis testing procedure. 

The confusion brought about by the interplay of these two 
quantities (the p value and a) and the vocabulary we use to de- 
scribe them indeed warrants attention, and I am grateful to the 
authors for cautioning the statistical community on their mis- 
use. But the authors claim this confusion runs rampant among 
researchers, without any real evidence to back up that concern. 
More troubling, they seem intent on establishing that P val- 
ues and Type I errors cannot coexist in the same universe. It is 
unclear whether the authors have given any substantive reason 
why we cannot utter "p value" and "Type I error" in the same 
sentence. Indeed, a good portion of their article is devoted to 
attacking all those who would dare combine the work of Fisher, 
Neyman, and Pearson without any justification for their hostility, 
other than the confusion between p values and a's per se. They 
write: "[C]onsider the widely unappreciated fact that [Fisher's] p 
value is incompatible with the Neyman-Pearson hypothesis test 
in which it has become embedded" (their emphasis). The "fact" 
of their incompatibility comes as surprising news to me, as I'm 
sure it does to the thousands of qualified statisticians reading the 
article. The authors even seem to suggest that among the reasons 
statisticians should now divorce these two ideas is that Fisher 
and Neyman were not terribly fond of each other (or each other's 
philosophies on testing). I have always viewed our current prac- 
tice, which integrates Fisher's and Neyman's philosophies and 
permits discussion of both P values and Type I errors-though 
certainly not in parallel-as one of our discipline's greater tri- 
umphs. 

The authors then argue two seemingly contradictory lines of 
thought on the respective worth of p values and a's. They cor- 
rectly note that a rejection decision in invariant under a one-to- 
one transformation, so that, for example, "z > za" might equate 
to "p value < a" in the appropriate setting. But they state: "only 
the fact that p < a is of any interest, not the specific value of p 
itself." That statement follows the strict Neyman-Pearson phi- 
losophy, but most statisticians recognize that the p value also 
gives us a sense of the magnitude of disparity between our data 
and the null hypothesis (Fisher's "measure of evidence"). The 
authors follow up this statement shortly thereafter with: "In- 
deed, if a researcher is interested in the 'measure of evidence' 
provided by the p value, we see no use in also reporting the 
error probabilities, since they do not refer to any property that 
the p value has." Arguably, the researcher following a strictly 
Fisherian philosophy of measuring significance may not need 

a, but those who will make real-world decisions based upon the 
research (the FDA, the actuary's boss) do. 

Finally, the authors offer their solution to what they allege is 
"near-universal confusion among researchers over the meaning 
of p values and a levels" (though, again, they fail to present sig- 
nificant data to support this allegation). They propose a Bayesian 
approach: in essence, they have imposed a prior distribution on 
their hypotheses (e.g., half of all new treatments are effective) 
and thereby computed that using a "p value < 5%" rule results 
in 22% of rejected hypotheses being true. They imply that the 
disparity between 5% and 22% is an indictment of the p value 
method while failing to mention that these two percents do not 
measure the same thing. A 5% cutoff means that 5% of true 
hypotheses are rejected, not that 5% of rejected hypotheses are 
true. Conceding for the moment the inherent validity of their 
Bayesian framework, they have compared Pr(x H) = 5% to 
Pr(H|z) = 22% and become distraught at their dissimilarity. 

Back to the main issue: they profess that, by having statis- 
tical practitioners compute the "conditional a" (their empha- 
sis), (1 + [-e p log p]- )- 1, the Fisher-Neyman-Pearson feud 
shall be resolved, and all this unnecessary confusion about evi- 
dence versus error shall go away. If the whole point is ostensi- 
bly to avoid confusion among modern researchers, how does the 
Bayesian methodology in general, and this nonintuitive formula 
in particular, help? Surely the authors are not suggesting that we 
teach Bayesian hypothesis testing, let alone this lower bound 
for a conditional error rate, at the high school or undergraduate 
service course level. 

If researchers really do misinterpret and misapply statistical 
testing methodology, then a main initiative as statisticians should 
be to access these individuals so we can re-educate them, not to 
discard the procedural paradigm itself. 

So, what should a statistics educator do with p values and 
a's-throw away one (or both) of these notions in favor of con- 
ditional errors and Bayesian methodology? Not in my view. Al- 
though the authors' warnings do make me reconsider whether 
I should focus more on the "classical" rejection region method 
to avoid confusion, I still believe students (and, by extension, 
professional researchers) can handle both p values and a's if 
taught carefully and thought about carefully. 

Drawing on my own experiences teaching statistics, I would 
advocate the following game plan for teaching hypothesis test- 
ing in a manner that incorporates both Fisherian and Neyman- 
Pearsonian ideas. 

* Begin with an informal example, avoiding the terms "p 
value" and "level of significance (a)." Lead them through the 
logical process: assuming this particular claim is true, what does 
the sampling distribution of our statistic look like? What would 
be the chances of observing a sample statistic value of or 
more extreme? Now, suppose we take a random sample and we 
do observe a statistic value of . What can we say about the 
credibility of the original claim? 

This leads into Fisher's dichotomy that either a rare event 
has occurred, or the predicate claim is false. Incidentally, I see a 
trichotomy when presented with a small p value: a rare event has 
occurred, or the predicate claim is false, or the original sample 
was not random. When I ask students, "why would we get a 
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probability so low?" they generally offer up a nonrandom sample 
as the first explanation. 

* Next, formalize the procedure. Introduce the terminology: 
null hypothesis, alternative hypothesis, probability value (aka p 
value). Identify these elements of the original informal exam- 
ple. Emphasize that we questioned the credibility of the claim 
because this probability was small. 

* Almost invariably, students will ask what qualifies as a 
"small p value." Now is the time to introduce the significance 
level, a. I usually describe a as a predetermined cutoff for what 
we consider "small" and "not small" probabilities in the context 
of our hypothesis test. At this point, students should accept that 
the significance level for a test is an agreed upon (e.g., 5%) but, 
in some sense, arbitrary choice. I teach my students to (1) report 
their p value, not just "Reject Ho" or "Fail to Reject Ho" and 
(2) frame their conclusions relative to a; for example, at the 5% 
significance level, we cannot reject the claim that.... 

* Emphasize the difference between statistical significance 
(the p value was less than 5%) and practical significance (the 
evidence suggests a process change has occurred and that we 
should react to that change). Many introductory textbooks give 
nice examples of this seemingly minor idea, but at its heart is 
a key philosophical difference between Neyman-Pearson and 
Fisher. 

Notice that, thus far, I have made no mention of Type I error, 
though I claimed it can and should be maintained in our current 
hypothesis testing framework. I generally wait until I am well 
into hypothesis testing before I introduce the topics of Type I 
and Type II error. This distance between when the students learn 
about p values and when they learn about error rates seems to 

greatly reduce their tendency to then misinterpret a p value itself 
as an error rate. 

* Finally, introduce Type I and Type II errors. Explain what 
the two potential errors are, both generically and in the context 
of a particular example. Then, inform them that our heretofore 
"arbitrary" a is, in fact, the probability of committing a Type 
I error (assuming a simple null, of course). I generally do not 
prove this fact to my introductory level students; they seem to 
take my word for it, and a "proof" with any real rigor would 
only confuse them. They should understand that Type I and II 
errors balance each other, in the sense that to reduce the chance 
of one error a priori we must raise the chance of the other. This 
brings up an important point: emphasize to the students that a 
must be selected in the context of the problem, but in advance 
of observing the data. The choice of a (5%, lower, or higher) 
reflects the researcher's judgment on the relative severity of the 
practical consequences of Type I and Type II errors in the context 
of his or her situation. 

One last note: How can we make students understand the def- 
inition of a p value? The classic analogy of hypothesis testing to 
a jury trial serves well here: suppose you are seated on a jury in 
a criminal trial. You are required by law to operate under a "pre- 
sumption of innocence"; that is, to assume the defendant's claim 
to be true until proven otherwise. In the jury room, your delib- 
erations boil down to the following question: What's the chance 
the prosecution could amass this much evidence if the defendant 
were innocent? That is what the p value, in a loose sense, calcu- 
lates: the chance of acquiring this much evidence against a true 
null hypothesis. (This also allows us to interpret a as the cut-off 
between "reasonable doubt" and "beyond reasonable doubt.") 

Rejoinder 

We thank the discussants for their valuable insights and inter- 
esting comments on this difficult and fascinating area. In fact, 
Matthew Carlton has already answered many of the issues raised 
by Kenneth Berk, so we will not repeat his clarifying comments. 
We organize our brief rejoinder around three main themes that 
interest both discussants. 

1. Emphasis of the article. We want to clearly state that the 
main goal of this article is to warn against the extensive mis- 
conception that a p value is a frequentist measure just because it 
is computed as a tail area. Frequentism aims at reporting mea- 
sures of performance that behave nicely in the long run, in the 
sense that the average reported performance is no better than the 
long run actual performance of the statistical procedure. P val- 
ues simply do not have this property. We wanted to use Fisher's 
and Neyman's words because they perfectly understood their re- 
spective philosophies. It was later that these philosophies were 
cobbled together, the end result being that the p value is now in- 
delibly linked in researchers' minds with the Type I error rate, a. 
And this is precisely what Fisher (1955, p. 74) had complained 
about when he accused Neyman-Pearson of attempting "to as- 

similate a test of significance to an acceptance procedure." This 
assimilation is now all but complete in the statistics curriculum. 

As we stated in our article, Fisher saw the p value as a measure 
of evidence, not as a frequentist evaluation. Unfortunately, as a 
measure of evidence it is very misleading; but this is the topic 
of other papers, not this one. The main problem is that the p 
value computes not the probability (or density) of the observed 
data given the null hypothesis, but the probability of this and 
more extreme data. Most difficulties with p values stem from the 
natural (but wrong) tendency to interpret the latter as the former. 
If the p value had been introduced as the probability (or density) 
of the observed data (and only that data) under the null model, 
the confusion between p's and a's and the exaggeration of the 
evidence against Ho provided by a p value would probably have 
never happened. (Notice that in the computation of the p value, 
very extreme data, strongly unfavorable to the null hypothesis 
is included.) 

2. The proposed solution. Our original intent was not to pro- 
pose a solution to the p's versus a's dilemma. We did this on 
purpose so as not to distract from the main goal of our article, 
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stated previously, which is a crucial one in our view. Our aim was 
to reveal how the anonymous merger of two incompatible test- 
ing paradigms now dominates statistical teaching and practice. 
We only touched on our favorite solution to this incompatibility 
at the request of a referee, and did so just to introduce the reader 
to relevant papers addressing this topic. Section 5.2 of our arti- 
cle has only this modest role; it is not intended to fully explain 
or defend the adequacy of the proposed novel procedure, since 
other papers we cited already do this. 

The proposed solution is a novel methodology, and hence 
difficult to grasp without careful reading of the mentioned pa- 
pers, and definitely impossible from the very little mention we 
make of it in Section 5.2. We do, however, want to emphasize 
that the conditional frequentist test to which we briefly refer is 
not a Bayesian solution. Rather, this solution is derived under 
strict frequentist methodology, computes frequentist error prob- 
abilities, and conditions on p values as statistics reflecting the 
"evidence" in the data (see Sellke, Bayarri, and Berger 2001, for 
details). 

3. The correct teaching of hypothesis testing. This extremely 
important issue itself deserves several articles (with discussion). 
Again, however, it was not the focus of this article. Let us, never- 
theless, make some brief remarks on Berk's and Carlton's com- 
ments: 

a. Hypothesis testing problems. Both discussants refer to the 
convenience of treating some hypothesis testing problems as 
estimation problems. We agree that many problems posed and 
solved as hypothesis testing problems are in reality estimation 
problems. Only "real" hypotheses (those having some clear, dis- 
tinctive, meaning and plausibility) should ever enter a hypothesis 
testing problem. We should never use hypothesis testing tools for 
a problem that is intrinsically an estimation problem (nor vice 
versa, although this misuse is less common). It is especially im- 
portant when the null hypothesis is a point null or a precise null 
approximated by a point null. [For conditions under which this 
approximation is valid, see Berger and Sellke (1987); in fact, 
when n is very large, this is usually not possible. Realization 
of this fact would alleviate many of the problems encountered 
when testing point nulls with very large n.] 

b. Role of p values in testing. As a measure of evidence, the 
p value is so misleading that there is real danger in teaching 
it (unless it is used in a much weaker sense as a conditioning 

statistic). In a purely frequentist framework, there seems to be 
no place for p values at all. A very modest role for them might 
be as handy one-to-one transformations (when possible) of the 
test statistics, one that allows easy checking of how far on the 
tail of the null distribution the observed value of the test statistic 
is. This makes them convenient in reporting (in papers, or in 
outputs from computer software). However, even this modest 
role poses more real dangers than advantages. Indeed, the use of 
the p < a criterion has been the source of much of the confusion 
that we have attempted to convey in our article. We would be 
much happier if its usage were dropped altogether. 

Measures of evidence (as p values or likelihood ratios) have 
radically different interpretations to frequentist measures of per- 
formance (as Type I errors and power functions), and mixing 
both of them in the same analysis is always delicate. It certainly 
requires a fair amount of statistical training and sophistication, 
and we believe that it is way too dangerous to encourage its use 
by the casual, statistically untrained, user. 

c. What should we do? This is an extremely important issue, 
and one which cannot be adequately addressed in this brief re- 
joinder. We wish we had the magic solution that would please 
everyone, but we do not. We have our own preferred solutions, 
but we do not want to enter into this argument here. This article 
warns against one of the things we should not do: We should 
not take a p value as a Type I error adjustable with data. Smart 
applied statisticians are aware of the problem, but users at large 
are not. Other articles have already warned against interpreting a 
small p value as important evidence against the null hypothesis. 
Last, the confusion between p values and posterior probabilities 
is well understood and taught in most elementary courses (how- 
ever, this is still probably the mistake most frequently committed 
by students and users). 

[Received October 2001. Revised May 2003.] 
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