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& REFERENCES

ORIGINAL PREFACE

These notes are based on a series of lectures gfitba Radiation Laboratory in the summer of 1958ish to make clear my
lack of familiarity with the mathematical literatuand the corresponding lack of mathematical rigdhis presentation. The
primary source for the basic material and apprga@sented here was Enrico Fermi. My first introdarctto much of the

material here was in a series of discussions witicB Fermi, Frank Solmitz, and George Backus atUhiversity of Chicago
in the autumn of 1953. | am grateful to Dr. Framindtz for many helpful discussions and | have drdwavily from his report
"Notes on the Least Squares and Maximum Likelihbtathods." [L] The general presentation will be to study the $3aian

distribution, binomial distribution, Poisson distition, and least-squares method in that order @dications of the

maximume-likelihood method.

August 13, 1958

PREFACE TO REVISED EDITION

Lawrence Radiation Laboratory has granted permisgiaeproduce the original UCRL-8417. This revisedsion consistsf
the original version with corrections and clarifioas including some new topics. Three completew mppendices have been
added.

Jay Orear
July 1982

1. DIRECT PROBABILITY

Books have been written on the "definition" of pabbity. We shall merely note two propertiest) (statistical independence
(events must be completely unrelated), dn)dife law of large numbers. This says that,ifs the probability of getting an event

in Class 1 and we observe tmqtout ofN events are in Class 1, then we have
N

lim | —f = p.

N—oo |

A common example of direct probability in physissthat in which one has exact knowledge of a fatale wave function (or
probability density). One such case is that in Whie know in advance the angular distributigk), wherex = codl of a certain
scattering experiment, In this example one canipredth certainty that the number of particlesttieave at an angle, in an

interval Ax, is Nf (x;)Ax;, whereN, the total number of scattered particles, is  \ange number. Note that the functi{r) i
normalized to unity:

!
f flr)de = 1.
1

As physicists, we call such a function a distribntfunction. Mathematicians call it a probabilitgrsity function. Note that an
element of probabilitygp, is

dp= fla)dx

2. INVERSE PROBABILITY

The more common problem facing a physicist is tratwishes to determine the final-state wave funcfiom experimental
measurements. For example, consider the decayspfnalz particle, the muon, which does not cons@asdty. Becausef
angular-momentum conservation, we have the a gamwledge that
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However, the numerical value af is some univep$sisical constant yet to be determined. We shaihyd use theubscriy
zero to denote the true physical value of the patamunder question. It is the job of the physitastietermine: ;. Usuallythe

physicist does an experiment and quotes a resulta* 2 Aa. The major portion of this report is devotexthe question
What do we mean byx * anAa ? and What is the "besty @ calculater * ancha ? These are guestionsxbfel
importance to all physicists.

Crudely speakinghn  is the standard deviati@hahd what the physicist usually means is that'iebability" of finding
(o — Aa) < o < (o + Aee) 15 68.3%

(the area under a Gaussian curve out to one sthrt#aiation). The use of the word "probability” timle previous sentence
would shock a mathematician. He would say the gritihaof having

le' — Av) < g < (a0 4+ M) s either 0 or 1.

The kind of probability the physicist is talking@li here we shall call inverse probability, in dast to the direct probability
used by the mathematician. Most physicists useséime word, probability, for the two completely difint concepts: direct
probability and inverse probability. In the remaénaf this report we will conform to this sloppyysicist-usage of the word
"probability.”

3. LIKELIHOOD RATIOS

Suppose it is known that either Hypothesis A or éthpsis B must be true. And it is also known tHafiis true the
experimental distribution of the variabtenust bef ,(x), and if B is true the distribution fg(x). For example, if Hypothesis A is

that the K meson has spin zero, and hypothesis8itthas spin 1, then it is "known” thig(x) = 1 andfg(x) = 2x, wherex is
the kinetic energy of the decmydivided by its maximum value for the decay méde> 1w + 2n*.

If Ais true, then the joint probability for getgra particular result of N events of valugsx,,..., X is

N
{'ilj'-".'l = H_,l'.“'rr',:u.".r',.
1=1

The likelihood ratio is

o

- - -'I.'lll.'rl.lI
R=1I+ (1)

=1 .II.I'i I._-rl_nl

This is the probability, that the particular expegntal result oN events turns out the way it did, assuming A is tdivided by
the probability that the experiment turns out they\it did, assuming B is true. The foregoing leggslentence is a correct
statement using direct probability. Physicists hawhorter way of saying it by using inverse prdlitgbThey say Eq. (1) is the
betting odds of A against B. The formalism of irseprobability assigns inverse probabilities wheg® is the likelihood ratio
in the case in which there exist no prior probé&bdi favoring A or B. B] All the remaining material in this report is besen
this basic principle alone. The modifications apglivhen prior knowledge exists are discussegkin 10.

An important job of a physicist planning new expeents is to estimate beforehand how many eventglheeed to "prove" a
hypothesis. Suppose that for ti&-> 1 + 2n* one wishes to establish betting odds df tt01 against spin 1. How many events
will be needed for this? The problem and the gdmmecedure involved are discussedfippendix|: Predictionof Likelihood
Ratios

4. MAXIMUM-LIKELIHOOD METHOD

The preceding section was devoted to the caseichvame had a discrete set of hypotheses amondwitichoose. It is more
common in physics to have an infinite set of hype#s; i.e., a parameter that is a continuous \tari&br example, in thg-e
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decay distribution

1+ e
flogx) e

the possible values fai ) belong to a continuous rather than a discretelséhis case, as before, we invoke the sbasi

principle which says the relative probability ofyatwo different values ofx is the ratio of the padbilities of gettingou
particular experimental resultg;, assuming first one and then the other, valua @ true. This probability function cé i

called the likelihood functior,;l': ol ).

N
£1lex) H Flovsxy)

()

The likelihood function, L & ), is the joint probalplidensity of getting a particular
experimental resultx,, ... , X, assumingf (a;x) is the true_normalizedistribution

function:
f flee w)de = 1.

The relative probabilities ofx  can be displayedaaplot of L () vs.x . The most probable value af  &led 1

maximume-likelihood solutior: *. The rms (root-meagugre) spread ¢ aboiit * is a conventional meastitke accurac
of the determination: @ *.We shall call A

[ e — o )2 Leday |_

A :
“ T Lda

®3)

In general, the likelihood function will be close®aussian (it can be shown to approach a Gaudisitibbution asN -> o) and
will look similar to Fig. 1b.

Fig. larepresents what is called a case of poor statidticsuch a case, it is better to present a (bl J:tjar) rather tharmerely
quotinga * andwn . Straightforward procedures for abitay An are presented Bectionss and?.

tay (9 ) B)

,D ——3
a* a " a* a

Figure 1. Two examples of likelihood functior £ a( ).

A confirmation of this inverse probability approastthe Maximume-Likelihood Theorem, which is proviedCramer §] by use
of direct probability. The theorem states thathia timit of largeN, «* -> a; and furthermore, there is no other method

estimation that is more accurate.

In the general case in which there dMeparametersy,, ..., o), to be determined, the procedure for obtainingntiaeimur
likelihood solution is to solve thd simultaneous equations,
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i |
—_ 0 wherew=In Lo vy).
s | L . @

=
& 1

5. GAUSSIAN DISTRIBUTIONS

As a first application of the maximum-likelihood thed, we consider the example of the measuremempbi/sical parameter
o o, Where x is the result of a particular type of measurenteat is known to have a measuring eror . Then if

Gaussian-distributed, the distribution function is

i . ‘II - i Y2 10 27
Flexg; ) e exp[—(x — ay)” /257,
Vit a

For a set ofN measurements, each with its own measurement elcpt‘ne likelihood function is

oy 1
Llex)
(@) =11 V27 oy

o
exp|—(x; — a)” [2a7]:

then

1 N I:_.I', o “:I';'
= —= ——— + coustant;
i oy

u ay —
T 2 0

The maximum-likelihood solution is

)

'I'.;I
[4
i

The weighted mean. (6)

Note that the measurements must be weighted accorditigetinverse squares of their errors. When alhtbasuring errors are
the same we have

ik e

Next we consider the accuracy of this determina
6. MAXIMUM-LIKELIHOOD ERROR, ONE PARAMETER

It can be shown that for lardé, L () approaches a Gaussian distribution. To thip@pmation (actually the abovexampl
is always Gaussian i ), we have

Lla) o exp[—(h/2){a — a*)7],

where 1 A'h is the rms spread @ abcut *,
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i, s
w = —lke—d |7+ constant.,
s
oy
[
o

= Rfx—a'),

_lllr

SinceAa as defined in Eq. (3) is vh , we have

i

‘}!’p! H

Mgy

Maximum — likelihood Frror @)

It is also proven in Crame#] that no method of estimation can give an errcalfanthan that of Eq. 7 (or its alternate form Eq.
8). Eq. 7 is indeed very powerful and importansHould be at the fingertips of all physicists. letnow apply this formula to
determine the error associated with *in Eq. 6. dfferentiate Eq. 5 with respecttn . The answer is

i -1

Using this in Eq. 7 gives
A b L]
ik —_
a; |

This formula is commonly known as the law of conation of errors and refers to repeated measureroétite same quantity
which are Gaussian-distributed with "errogs"

In many actual problems, neithar * riix may be tbanalytically. In such cases the cu Lo () cando@d numericall
by trying several values @ and using Eq. (2)ebtge corresponding values La (). The completetfan is therobtaine:

by drawing a smooth curve through the point: Lfa is Baussian-like, @ / 8a2 is the same everywhere. If not, it is best
use the average

[ fOa®) Ldao
iho® [ Codry

A plausibility argument for using the above avergges as follows: If the tails L a( ) drop off malwly thanGaussie
tails, “ s smaller than

ihee?
|
|

et | L
1

Thus, use of the average second derivative givesettuired larger error.
Note that use of Eq. 7 fcAnx  depends on having a paati@xperimental result before the error can berddhed.Howevel

it is often important in the design of experimetise able to estimate in advance how many datébeiheeded in order to
obtain a given accuracy. We shall now develop arrate formula for the maximume-likelihood errotieh depends only on
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knowledge off («; x). Under these circumstances we wish to detern Fuw averaged over many repeategperimer
b
consisting olN events each. For one event we have

Py ff'F In f

o oe?

[ dr;

for N events

Fur _ A—'[MI dx

e he?
This can be put in the form of a first derivatiwefallows:

Flnf a (1;};) 1 (e:r,r)“Jr 13 f

02 Oa \[da 2\ o I a?
#Fnf NS TA bz .
[ TI dp = — [ 7 (JT] dr + f Az [dr.

The last integral vanishes if one integrates betloeedifferentiation because

[}' dr =1

Thus

P [l faryt
—_— = —."r.'f— — | dr,
s f (fj‘:t) e

and Eq. (7) leads to

v |4 T \Ba

L

L [#azapx® . ™
Mg = — I['/ (ij :J.r'] maximmun — likeliliood ervor (8)

Example 1

Assume in thgi-e decay distribution functior,(a; X) = (1 +a x) / 2, thata; = - 1/3. How manyu-e decays are needéd
establish a to a 1% accuracy (ice., A =100)?

af =
)
1 u | .

LA [ in? H (l+n) .
T . B
_-/I f (flu] i AT +ax) i 2“;1[[“ S %]

t [ @ae -

= N [ I -|-{:1
VA Lt — D

d 1—q

http://nedwww.ipac.caltech.edu/level5/Sept01/Of@aéar.html
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Note tha
lim [Ac 3
amplbal =y x
For
1 2.8
—, M | —
ik 3 k |I.I \h

For this problem

1

=i 2.52 % 107 events .
A

7. MAXIMUM-LIKELIHOOD ERRORS, M-PARAMETERS CORRELATED ERRORS

When M parameters are to be determined from a singlerempnt containingN events, the error formulas of the preceding
section are applicable only in the rare case irckvttie errors are uncorrelated.. Errors are uniedec: only for

(o — o) — o ) =0 for all cases with=j. For the general case we Taylor-expaifa) about & *):
i
uee) = wia’) + z (;}: ' j oy — zzﬂrm Hy Hy +
1 | = a b
where
8 =0y — o)
and
i
Hii=—-—+ .
d dogdor | . ©)

*

The second term of the expansion vanishes becausé~3 = 0 are the equations fisr
ln Clex) = wia') — Z ZH”,J a, d+
Neglecting the higher-order terms, we h.

-I"_-‘|:“;| C 1\_[JI——ZZI!”,IJ-” 1:':,

_ el

(an M-dimensional Gaussian surface). As before gotar formulas depend on the approximation L i Gaussian-likén
the regions; = o;*. As mentioned inSection4, if the statistics are so poor that this is a pagproximation, then onghoul

merely present a plot L a( ). (see Appendix IV).

According to Eq. (9)H is a symmetric matrix. Léf be the unitary matrix that diagonalizds
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r
E |rl| {
U-H-U' = | hy =h where " = U~  (10)
1
|
L {l Fr_a,,u J
Let 3 = (3, ..., Ay ) ands = 3. . . The element of probability in 15e  -spiace

. 1 S
d p=rc 1*3{[:[— J'It_;' by H- (7 Lfl'l_;ni'"" 3.

Since U] = 1 is the Jacobian relating the volume eleméf# anddVv, we have
d"p=c ex I[_I_E harild™
! Xl ¥ = ) I

Now that the general M-dimensional Gaussian surfasebean put in the form of the product of indepenhader-dimensional
Gaussians we have

—_— - -1
TaTh = dm‘:'rj-” E
Then

H - ZZ -H_-lll{rllfrll.lj
[T

Z ll..-J-l'l : Irjl'l-I F I.I'l_i

(U b U

According to Eq. (10)d = U1 -h- U, so that the final result is

i i
(o, —o ), — 0t ) = (H 1., where H, = —
4 . . dlor, o Maxd
aximum
Averaged over repoated experinents Iélrkr?)lrlzoc}d

M parameters (11)

NSNS AT AN
H|_| = NN / JT(H) (E) il

(A rule for calculating the inverse matiik? is

ijth minor of

(H') = (~1)" x

determinant of

If we use the alternate notatidnfor the error matrixd 1, then wheneveH appears, it must be replaced with!; i.e., the
likelihood function is

Lier) x exp|— éi v f] (11a)
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Example 2

Assume that the ranges of monoenergetic particle$Gaussian-distributed with mean rargg and straggling coefficiers .
(the standard deviation)l particles having ranges,..., x are observed. Find@ *, a,* and their errors . Then

i | S i
Ll ey = H ——— exp[—{a; — e ) 206
i—1 V2T iy
1 (zi— oy )* . .
i ——Z 1—_1}— Nlnow — N Inf27)
5 7
25 £
f.}-!J' Z f,'.r', = -I'I]':l
oy . 5
chu 1 ; - N
— = =} (-0 ) - —
doy o T

The maximume-likelihood solution is obtained by Beftthe above two equations equal to zero.

) %Z.r',

i
. V2
N J Al d — o)

(ks —

3 \ N

The reader may remember a standard-deviation fermukhichN is replaced byN - 1):

[

— v
TR

T

This is because in this case the most probablesyaly*, and the meant,Ti2 , do not occur at the same place. Mean vatues
such quantities are studiedSection16. The matrix H is obtained by evaluating the foliogvquantities ai,* and cx,*:

& N Fu 3 N aN

o
= ——=——3% (1 — oy == ——when vy =,
iy o’ dal i z I fr oy? I I
Fu 2
i = —— ¥ (1, — vy ) = 0 when o = o,
ey 05 Z ' : : I
=¥ 0 o {

2z Tl
H=|% N and H'=| N e
LES 2] = a3’

0 = 0 = |

P L Af

According to Eqg. (11), the errors @ anda, are the square roots of the diagonal elementseoétror matrixH1:

%

) (this is sometimes called the

kg
Ay = and Aoy = ——
TN * VN error of the error).

We note that the error of the mean is 1/9djrt5 whereg =, is the standard deviation. The error on the detetion ofg is
a/sqri[2N].
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Correlated Errors

The matrixVij =, —a)a, —at) is defined as the error matrix (also calleddbeariance matrix ¢& ). In Eq. 11 vimave
1 Y J It

shown thay = H1 whereHij =-&Fw/ (8o énrj). The diagonal elements ¥fare the variances of thz  's. If all thié-diagona
elements are zero, the errors’n  are uncorretad Example 2. In this case contours of constgpibtted in {x,, «,) spac
would be ellipses as shown filg. 2a The errors irx; anda, would be the semi-major axes of the contour edliwberew ha:
dropped by % unit from its maximume-likelihood val@nly in the case of uncorrelated errors is the emnorﬂmj = (Hjj)‘l/2 anc
then there is no need to perform a matrix inversion

a, fa) - (B

woare)

Figure 2. Contours of constant as a function of; andea,. Maximum
likelihood solution is atv = w*. Errors ina; ande, are obtained from
ellipse wherav = (W* - %2).

(a) Uncorrelated errors.

(b) Correlated errors. In either caAz,? = V,, = (H1),; andAa 2 =
Vy, = (H )22 Note that it would be a serious mistake to usedlipse
"halfwidth" rather than the extremum tAxn

In the more common situation there will be one @renoff-diagonal elements tél and the errors are correlated pas
off-diagonal elements). In this cagéid. 2b) the contour ellipses are inclined to g o, axes. The rms spreadaf is still A

oy = sqrtV, 4], but it is the extreme limit of the ellipse profed on thex,-axis. (The ellipse "halfwidth" axis i$-lgl)‘1/2 which is
smaller.) In cases where Eq. 11 cannot be evaluatalyjtically, thex: *'s can be found numerically ahd errors ira:  cabe
found by Plotting the ellipsoid wheng is 1/2 unit less thaw * . The extremums of this ellipsoid are the rms eimathe «x's
One should allow all the:rj to change freely and search for the maximum chamge; which makesw = (w " - ), Thi

maximum change i#;, is the error iry; and is sqryy, ;].

8. PROPAGATION OF ERRORS: THE ERROR MATRIX

Consider the case in which a single physical gtianti is some function of tha 'g:=y(a, ..., a),). The "best" value foy is
theny* = y(«+,*). For exampley could be the path radius of an electron circlimg iuniform magnetic field where tieeasure
quantities arex; = 7, the period of revolution, ana', = v, the electron velocity. Our goal is to find thecgrin y giventh:
errors inx . To first order irnj - o;*) we have

Z oy
uy—y = — (i, — =
Z £k, :

—_— dy iy -
(g —y*)? vy — oed ey — o) ],
Z Z v, g Sy ¢

|:__~'t'!-' Jemy = JZ Z % !"”Jr r||'.l

v, Pexy

(12)

(4
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A well-known special case of Eq. (12), which hotudy when the variables are completely uncorrelated

| [y
£ A Ly )2
I., —\'L!I-r,.ll s q ; (‘:‘}“” ) II. —\."“"1 .II b

In the example of orbit radius in terms»f  antthis becomes

AN AR\
S \“;—) (ar+ () @ sy + ol

in the case of uncorrelated errors. HoweveA7 A nde-zero as one might expect, then Eq. (12) gives

AR 'l.. v T+ J—_l_"Ul + 2 (.:_) {;) AN FAN]

n ._EI

It is a common problem to be interestedMrphysical parameters,, ...,y,,, which are known functions of tha. In fact they,
can be thought of as a new sepbr a change of basis from toy.. If the error matrix of they; is known, then we have

_ ey
( — i My —u3) Z Z —H,;'. (13

:}n :J'n

In some such cases thg 83a, cannot be obtained directly, but tht; @ dy, are easily obtainable. Then

oy, ey,

(J '), where Jis

ey, Ay

Example 3

Suppose one wishes to use radius and accelerat&petify the circular orbit of an electron in afarm magnetic field; i.e.y;
=r andy, = a. Suppose the original measured quantitiesajre r = (10 + 1us anda, = v = (100 + 2) km/s. Also sincthe

velocity measurement depended on the time measuntethere was a correlated enZi7 A = 1.5 2310, Findr,Ar, a,
Aa

Sincer =vr /2n = 0.159 mand = 2nv/ 7 = 6.28 x 18°m/s we havey, =a o,/ 2n andy, = 2n o,/ a,. Then §, / 8 =
ol 21, 8y / By =y /21, 8,/ Brxy = -2]'Lr12/r11 oy, / 8, = 21 |, . The measurement errors specify the error magrix

1 & 1.5 =107 m

1.5 x 107 m 4 x 10° m2/s

Eqg. 13 gives

(Ayy )2 r'—i Vi +2 r_J {@J Vot r:—_'J Vis

AT 2k

=330 107 m

Thusr =(0.159 £ 0.184) m
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Fory,, Eq. 13 gives

2 e, i e, | 1277 e i
(Aya)? = {— h..+z[——.- {—Jl.-ﬁ{ Jn-.: 2.02 x 101 =

ik 5t

Thusa = (6.28 + 0.54) x 18 m/<.

9. SYSTEMATIC ERRORS

"Systematic effects" is a general category whidhuides effects such as background, selection s@asining efficiency, energy
resolution, angle resolution, variation of courg#ficiency with beam position and energy, dead tigte. The uncertainty in the
estimation of such a systematic effect is callédyatematic error”. Often such systematic effeais their errors are estimated
by separate experiments designed for that spemifipose. In general, the maximum-likelihood metbhad be used in such an
experiment to determine the systematic effect daadefror. Then the systematic effect and its emxw folded into the
distribution function of the main experiment. Idgathe two experiments can be treated as one g@iperiment with an added
parameteir,,, ; to account for the systematic effect.

In some cases a systematic effect cannot be estinagart from the main experiment. Example 2 caméeée into such a case.
Let us assume that among the beam of mono-energaticles there is an unknown background of plagianiformly
distributed in range. In this case the distribufi@mction would be

1

1
Ty, o, g7 ) —{

V2T oy

C exp[—(x — oy )* /203] + 0y

4

where

'y ety ) j I

The solutiora;* is simply related to the percentage of backgrodree systematic error is obtained using Eq. 11.

10. UNIQUENESS OF MAXIMUM-LIKELIHOOD SOLUTION

Usually it is a matter of taste what physical qitgns chosen an . For example, in a lifetime eikpent some workera/oulc
solve for the lifetimer *, while others would solfer A* where A = 14 . Some workers prefer to use raotam, andther
energy, etc. Consider the case of two related paygarameter A ars' . The maximum-likelihood sotufor & isobtaine
from the equation\/ 3= = 0. The maximum-likelihood solution fAr  ibtained from &/ 8o = 0. But then we have

the dhe O h

X" Ja ON 0, and B 0.

Thus the condition for the maximum-likelihood saduat is unique and independent of the arbitraririgselved in choiceof
physical parameter. A lifetime res#'t * would béated to the solutioA *by *= XN *

The basic shortcoming of the maximum-likelihood Ineet is what to do about the prior probabilitymflf the prior probability
of & is G(ax) and the likelihood function obtained for the ekment alone iiH « ), then the joint likelihood ftina is
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Ll = Gl Hin):

ur = Ind7 + In'H.

FiTE o i)
— = —|niy + —InH.
e iy 5 i it

el i X
FHia* = — 2 IntGiar
{_-}“l[LH._H ] ”“lu( (e )

give the maximum-likelihood solution. In the absermd any prior knowledge the term on the right-hait® is zero. In other
words, the standard procedure in the absence op@oryinformation is to use a prior distributiomhich all values of: are
equally probable. Strictly speaking, it is impo$sito know a "true"G(«), because it in turn must depend on its qwio!
probability. However, the above equation is usefinen G(«) is the combined likelihood function of all preuis experiment
andH { ) is the likelihood function of the experimentder consideration.

There is a class of problems in which one wishedetermine an unknown distribution é G(«x), rather than a single valw
For example, one may wish to determine the momeuiistribution of cosmic ray muons. Here one observe

Li67) / Gl ) H (v o ) eden

whereH { ;x) is known from the nature of the experiment an#)3é the function to be determined. This type aftpemis
discussed in Reference 5.

11. CONFIDENCE INTERVALS AND THEIR ARBITRARINESS

So far we have worked only in terms of relativelyadoilities and rms values to give an idea of treueacy of the determination
o = a*. One can also ask the question, What is tiedaiility thate lies between two certain valueshsasa ' andx "? Thig
called a confidence interval,

I'l‘l‘l =
[} . - [ i
Plo' <o <o) frﬂﬂn; [ Ly
i =

Unfortunately such a probability depends on thétiaty choice of what quantity is chosen ior . Tomw this consider the area
under the tail o £ 4 ).

[ Cder
Pla>ad)=Z
[ Lo
ilu]
Qa
o
Figure 3. Shaded area B(xx >a'"). (Sometimes called the confidence limit of

a')

If A= A(x) had been chosen as the physical paranmetzad, the same confidence interval is
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fLdy [ L£2da

¥ oy (i[5

T can T cd
= Ploe > o').

Thus, in general, the numerical value of a confideinterval depends on the choice of the physiaedipeter. This is also true

to some extent in evaluatin& o

. Only the maximunelihood solution and the relative probabilities areaffected bythi

choice ofa: . For Gaussian distributions, confideimtervals can be evaluated by using tables of theability integral.Table:
of cumulative binomial distributions and cumulati®eisson distributions are also availal@pendixV contains a plot of the

cumulative Gaussian distribution.

12. BINOMIAL DISTRIBUTION

Here we are concerned with the case in which amteweist be one of two classes, such as up or déwward or back,
positive or negative, etc. Lptbe the probability for an event of Class 1. Thernp) is the probability for Class 2, and the joint
probability for observindN; events in Class 1 out dftotal events is

i
PN N)

N "
AT

The binomial

J. _nur "l - N L7
i P distribution

(14)

Note thatEj:lN p(, N) = [p + (1 -p)]N = 1. The factorials correct for the fact that we mot interested in the order in which the

events occurred. For a given experimental resu;afut ofN events in Class 1, the likelihood functi L p) (s then

Al
N H Wy (1 M= Ny
L NN =N il =
F Nylup+ (N =N ) ln(l — p) + const (15)
eh N N-=-N
ip 1] l—p
P N N-N
iy (1= p? (16)
From Eg. (15) we have
+ = I
P v (17)
From (16) and (17):
WPoPr = B N-N
P (1= p)? (18)
S i aah
[p(1—p)
Ap Ve rs

N

The results, Egs. (17) and (18), also happen thdsame as those using direct probability. Then
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and
(N =N PP =Np(l —p)

Example 4

In Example 1 on thg-e decay angular distribution we found that

Moy =2 |l.|I al®

is the error on the asymmetry parameier . Suppegétte individual cosineg, of each event is not known. In this problem all

we know is the number up vs. the number down. Wit isAno ? Letp be the probability of a decay in the bpmispher
then we have

F 1 + e 1+ a
P ] dx =
2 2

[
By Eq. (18),
u[PO=7)

V=~

] 0
4 a*?

Ay |l.|.' Tl“l - T}

My

For smallx this idee = sqrt[4M] as compared to sqrt[3\] when the full information is used.

13. POISSON DISTRIBUTION
A common type of problem which falls into this cgdey is the determination of a cross section oreamfree path. For a mean

free pathA |, the probability of getting an evenamintervaldx is dx/ A. LetP(0, X) be the probability of getting no eventszin
lengthx. Then we have

il
dP0,e) = =P, x) = T

o P, x) —%+ Const, (19)

Pl x) = %4 fat ¢ =1). P(0,2)=1).

Let P(N, x) be the probability of findind\ events in a lengtk. An element of this probability is the joint prdiility of N events
atdx,, ..., dx times the probability of no events in the remagriength:

N 3
<. -
'Iil.“. f'-'li__-"l.__ .l":l , 1_[ [1' o A (20)
The entire probability is obtained by integratingeptheN-dimensional space. Note that the integral
A LA

i=1
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does the job except that the particular probabdigment in Eq. (20) is swept throughtimes. Dividing byN! gives

{.r' J-‘f _
= the Poisson
P{N. ) '1{.. e/ distribution  21)

As a check, note

Likewise it can be shown thtV = V)* & Equation (&19ften expressed in termsf

N+ the Poisson
o R
P(N,N) N1+ distribution (22)

This form is useful in analyzing counting experitgeMhen the "true" counting rate;

We now consider the case in which, in a certainegrment, N events were observed. The problem is to deterrtiige
maximum-likelihood solution forx = & and its error:

Lex) F‘I “
o Nineo — o —In NI,
o N
i ——1
iy ik
i W
o? Tl
Thus we have
ot =N
and by Eq. (7),
0
iy —
0 TN

In a cross-section determination, we have px, wherep is the number of target nuclei pef amdx is the total pathength
Then

In conclusion we note tha == @@
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T LTI T N+l —e
_ ij: e el (JI' o e o (N + 1)t -
T = i : '
[ Llex)idn [ a¥ e-da N

i

14. GENERALIZED MAXIMUM-LIKELIHOOD METHOD

So far we have always worked with the standard mami-likelihood formalism, whereby the distributiumctions are always
normalized to unity. Fermi has pointed out thattbemalization requirement is not necessary so Esthe basic principle is
observed: namely, that if one correctly writes dotle probability of getting his experimental resuhien this likelihood

function gives the relative probabilities of thergmaeters in question. The only requirement is thatprobability of getting a
particular result be correctly written. We shallinconsider the general case in which the probghofitgetting an event idx is

F(x)dx, and
f Fdr = N{a)

is the average number of events one would getifsiime experiment were repeated many times. Acaptdi Eq. (19), the
probability of getting no events in a small finitéerval Ax is

r4ar

expl — [ Fdx).

The probability of getting no events in the entim@rvalx ;. <X <X, .. is the product of such exponentials or

x| — ff-'nf.r':l e

The element of probability for a particular expegintal result oN events ak = x;, ... ,X is then
_ K
d'p=e" H Fiugjdr;.
i=1

Thus we have

and

n Tagpx
) ZIHI- (o) — f Floeade.
=1 Tanan

The solutionsy; = a;* are still given by the M simultaneous equations:

o

ey,

1.
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The errors are still given by

3 T T T i 1
Il.'“' _'“I.l”l.'“_l_ '“_ul I\E .lll_l'
where
o
=
IIU 7 v
oy ex

The only change is th&t no longer appears explicitly in the formula
_ FPw f L [aF | [aF ] i
o e I -r'lr_t,_ -r'lr_t,_ o
A derivation similar to that used for Eq. (8) shawatN is already taken care of in the integration dvgq).
In a private communication, George Backus has prousing direct probability, that the Maximum-Likedod Theorem also
holds for this generalized maximum-likelihood methand that in the limit of largdl there is no method of estimation that is

more accurate. Also see Sect. 9.&ef. 6.

In the absence of the generalized maximum-likelhoethod our procedure would have been to normé&if@3 x) to unity by
using

) Flee; )
floge) = ———

o [ Fdz

For example, consider the sample containing just tadioactive species, of lifetimes, anda,. Let o« 5 and « , be thetw
initial decay rates. Then we have

Irs rlvs

Flog:x) = g e 4+ gy e
wherex is the time. The standard method would then hesé&o

[ Ty + ;e Xy

k) + (k500

o ey
floar)

which is normalized to one. Note that the four o parameters have been reduced to three by 3= o, / a5. Thena,
anda, would be found by using the auxiliary equation

f Fdr= N,
il

the total number of counts. In this standard pracethe equation
N{g) = N,

must always hold. However, in the generalized maririkelihood method these two quantities are restessarily equal. Thus
the generalized maximum-likelihood method will gevelifferent solution for thay;, which should, in principle, be better.
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Another example is that the best value for a ceesdiono is not obtained by the usual procedursettingp oL = N (th

number of events in a path length). The fact that one has additional prior informatisuch as the shape of the angular
distribution enables one to do a somewhat betteojaalculating the cross section.

15. THE LEAST-SQUARESMETHOD

Until now we have been discussing the situatiownich the experimental result I$ events giving precise values, ... , Xy
where the;, may or may not, as the case may be, be all diftere

From now on we shall confine our attention to tleec of p measurements (not p events) at the pokys ... , Xp- The
experimental results arg,(+ g,), ... ,le * cp). One such type of experiment is where each measant consists dfl; events
Theny, =N, and is Poisson-distributed wigh= sqrtN;]. In this case the likelihood function is

BT 1 )
r H [fl-r'r-:\::'!_ o )

and

I .lr
ut Z Nilugag) — Z T+ const.
=1

We use the notatioy «f; x) for the curve that is to be fitted to the expemal points. The best-fit curve corresponda fe
a;*. In this case of Poisson-distributed points, $b&utions are obtained from the M simultaneous toos

»

y ) 5 Mo Oo)iza)
= O Tlra) Oy

a=1 =

If all the N; >> 1, then it is a good approximation to assunehegais Gaussian-distributed with standard deviagnn(It is

better to us<,i'?i'i rather thar\; for ciz wherei'?i'i can be obtained by integrati¥ x) Qver the ith interval.) Then one can ke
famous least squares method.

The remainder of this section is devoted to the ¢asvhichy; are Gaussian-distributed with standard deviatmnSeeFig. 4.

We shall now see that the least-squares methodatbematically equivalent to the maximum likelihootkthod. In this
Gaussian case the likelihood function is

b 1
VAT Ty

o L oo .
win) = — ;.‘3 (o) — z o 27 .

a=1

El

exp {—[:'Iu — Mz, \'J .'"'2'-"’5 h

(i

(23)

where

A3

Ll e
Sl = z w 2a)

=l =
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‘. llu| l' l‘ :'l l- l'  §

Figure 4. ¥ (x) is a function of known shape to be fitted to the
experimental points.

The solutionsy; = a;* are given by minimizingy(«) (maximizingw):

5]

ey,

0. (25)

This minimum value ofSis called S*, the least squares sum. The valuesagfwhich minimize are called thieast-squar

solutions. Thus the maximum-likelihood and leastesgs solutions are identical. According to Eq)(11ie least-squares errors
are

1 8
H 2 Do

= 3T x i 1 . 9
(g —af)loj—af) =(H ")y where H

Let us consider the special case in wty:lw;; X) is linear in thew;:

M
o) Zn”_."” ().
ia=1

(Do not confuse thi(x) with thef (x) on page 2.)

Then

- M
5
I Wa — L “.'J.Ilh'._ ru,

I - ||
ﬂ -2 Z = 5 filza). (26)

ia=1 il J
L

Differentiating with respect tay; gives

.”IU Z.Ill'._ru,'.llJ._ru, (27)

a=1 |'J

Define

v

-';u.lll.,ru_.
(28)
1

it I'J
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Then

S
lr_ z ky I'Fll.ll

ey, —1

In matrix notation the M simultaneous equationsrgjthe least-squares solution are
u—a - H,
(29)
is the solution for thax  *'s. The errorsin  areadted using Eq. 11. To summarize:

If 7o ) z{t”_.'ul I

a=1

. i Juln) \
ZZ —(H ais (30)
a “h
B Flaw ) Fda,)
(g —af)lo;— o) =H b where H;. = ZM

U R | —] J o
as
1 i}

Equation (30) is the complete procedure for catoudathe least squares solutions and their erfdoge that even though this
procedure is called curve-fitting it is never neszgyg to plot any curves. Quite often the completpeement may be a
combination of several experiments in which sevditiérent curves (all functions of tha;) may be jointly fitted. Therthe

S-value is the sum over all the points on all theves. Note that since/(«*) decreases by % unit when one of ?’ﬂjehasthe
value p;* + ﬂmrj), theSvalue must increase by one unit. That is,

Sloj..ooojt Ay o) =5 + 1

Example 5 Linear regression with equal errors

;,(x) is known to be of the forty XY= a, +a,x. There arg experimental measuremenyf,:ﬁ o).Using Eq. (30) we have

2
i : 4
: X

L a? a?

& Nl '-T' %0
" /—-:'-"rJL--ru_ rrJ-”—-'rrJ"-rrJ
kg — 3
!.?L_.r” - __/_,.r”_,

i 3
& !}Z I.L-r'rj Ya . E €Iy E Wa
ik

= N e S y2
Poady, — e

These are the linear regression formulas whiclpesgrammed into many pocket calculators. They ghaot be used in those
cases where ttg are not all the same. If tizzare all equal, the errors

i v i 1+
[ Ay ) (H 7
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or
¥l
i
Moy a —_——
prad — (X x.)
Ir | P
/ 1y
Ay ViH e =0 =53
Il]' Pdadiy — | Ladiy

Example 6 Quadratic regression with unequal errors

The curve to be fitted is known to be a parabolaeré are four experimental pointsat= - 0.6, - 0.2, 0.2, and 0.6. The
experimental results are 5+ 2,3+ 1, 5 £ 1, aad?8 Find the best-fit curve.

b
) = oy + oer 4 agr”

h=1 fi=x fi=zx"

1 i gt
H —, Ha e He o
. ;n'ﬁ R A 7
I r"! r"1
iy —, Hy — =My, Hy —
a Ty Ty
25 0 (.26 | 0.664 0 —254
H=1|0 0.26 0 H'=1|0on 3847 0 =V
0.26 0 1].1]{iHJ 251 0 El.llHJ

u= {1125 085 1449)
| = 485, Mg (1.515, ks = )
oy =327, Aos = 196, ety = —2.54

ay = 1808, Ang = 494

®
ik

;(x) = (3.685 + 0.815) + (3.27 = 1.96) (7.808 + 4.94)? is the best fit curve. This is shown with the expental points in

Fig. 5.
Yy
10
a4
=1 =8 0 5 [

Figure 5. This parabola is the least squares fit to the 4
experimental points in Example 6.
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Example 7

In example 6 what is the best estimatg afx = 1? What is the error of this estimate?

Solution: Puttingk = 1 into the above equation gives

y = 3685 + 3.27 4 T.808 = 14,763,

Ay is obtained using Eq. 12.

Ay '.l.-"ffﬂ nHfiVe 4+ Vi + 20 Vi + 20 Vi + 22 3V

V0664 + 22(3.847) + 27(24.418) + 0 + 202(—2.54) +

Settingx = 1 gives

Ay = 5137
Soatx=1,y=14.763 £ 5.137.
Least Squares When tl_gl_eare Not Independent
Let
Vig= s —mlly; — 1)

be the error matrix-of thg measurements. Now we shall treat the more genasal where the off diagonal elements need not be
zero; i.e., the quantitigs are not independent. We see immediately from Eg.that the log likelihood function is

1 . T
w=—sly—7)- V" (y—F) +const.

The maximum likelihood solution is found by minirinig

S={y—g- V' (y-7

where Generalized least squares sum
V (v, — 7y, — ?T_.:'

1] R

16. GOODNESS OF FIT, THE ¥2DISTRIBUTION

The numerical value of the likelihood function £ a}) can, in principle, be used as a check on whetmar is usinghi
correct type of function fof (a; x). If one is using the wrong f, the likelihood faiom will be lower in height and afreate

width. In principle, one can calculate, using dirpmbability, the distribution o L «f *) assuming arcular truef (a g, x)
Then the probability of getting al a( *) smaller thidne value observed would be a useful indicatiomloéther thevrong
type of function for f had been used. If for a jradar experiment one got the answer that thereomaschance in fof getting
such a low value ¢ £ a{ *), one would seriously quasteither the experiment or the functiof;x) that was used.

In practice, the determination of the distributioh L (e *) is usually an impossibly difficult numericahtegration ir

N-dimensional space. However, in the special cagbeofeast-square problem, the integration limits tout to be the radius
vector in p-dimensional space. In this case wetlisalistribution ofS(*) rather than of L & *). We shall first considém
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distribution ofS(rx). According to Egs. (23) and (24) the probabiéitgment is
d"P o exp[—S/2]d"y;.

Note thatS = p?, wherep is the magnitude of the radius vectg-imensional space. The volume gp-@limensional spheria
U xp, The volume element in this space is then

dPy; x p" tdp x SUPEST RS,
Thus
dP(S) o Siwa1 pl=algg,

The normalization is obtained by integrating fr&m 0 toS = oa.

ey 1 A/ 2)—1 Sal2 ao
dP(5) Wcﬂu e dSy (30a)

whereS= §ay).

This distribution is the well-know2 distribution withp degrees of freedor? tables of

[ dPS)

for several degrees of freedom are commonly aveilabeeAppendixV for plots of the above integral.

From the definition ofS (Eq. (24)) it is obvious the.?o = p. One can show, using Eq. (29) 150 — Sa)* = Blence,one
should be suspicious if his experimental resulegignSvalue much greater than

(p+/2p).
Usually« is not known. In such a case one is istegkin the distribution of
5= S(a").

Fortunately, this distribution is also quite simplieis merely theX? distribution of p - M) degrees of freedom, whepeis the
number of experimental points, aktis the number of parameters solved for. Thus wedha

dP(S*) = y* distribution for {p — M) degrees of freedom (31)
5 = (p— M) and AS* -,l,-"fr S+ — 5% -,L,-"r2|: p— M)

|
L}

Since the derivation of Eq. (31) is somewhat lepgithis given inAppendixIl.

Example 8

Determine thé¥2 probability of the solution to Example 6.

25 of 32 09/24/2001 2:57 PM



Notes on Statistics for Physicists, Revised - &al http://nedwww.ipac.caltech.edu/level5/Sept01/Of@aéar.html

5

5— 7—0.6) ] L [3-m-02) ¥ L [3-m0.2) ¥ L [8-mo6) I
2 1 1 2

S* = (1.674 compared to 5% = 4 — 3 = 1.

According to théx? table for one degree of freedom the probabilitgeitingS* > 0.674 is 0.41. Thus the experimental data are
quite consistent with the assumed theoretical sbépe

a— i
= (k] + kol 4 ez,

Example 9 Combining Experiments

Two different laboratories have measured the fifetof theK ,° to be (1.00 + 0.01) x & sec and (1.04 + 0.02) x 1bsec
respectively. Are these results really inconsigtent

According to Eq. (6) the weighted meamis * = 1.608010 sec. (This is also the least squares solutior Ly

Thus

g ll.i]i] - 1.1]1]HJ! {1.1]1 — LS

J 32 FTo9-1=1
001 0.02

According to theX.? table for one degree of freedom, the probabiliygetting S* > 3.2 is 0.074. Therefore, according
statistics, two measurements of the same quatityld be at least this far apart 7.4% of the time.

APPENDIX I: PREDICTION OF LIKELIHOOD RATIOS

An important job for a physicist who plans new expents is to estimate beforehand just how manysveill be needed to
"prove" a certain hypothesis. The usual procedsr®icalculate the average logarithm of the liledith ratio. The average
logarithm is better behaved mathematically tharatherage of the ratio itself. We have

op K .T[ log j,'—1}'_1|:.r':mf.r'. assuming A s true (32)
B
or
= r .|I1.'| P ' .
logW =N [ log JI.—J'” (i )ele, assuming B is true
B

Consider the example (given Section3) of the K* meson. We believe spin zero is true, and we vassstablish betting odds
of 10* to 1 against spin 1. How many events will be ndddethis? In this case Eq. (32) gives

! !
. 1 .
log 10° = 4 [l-::g.',{u—_:uf.r' N [l-::g{ir:lnf.r.
il = i
N =30

Thus about 30 events would be needed on the avdrmyeever, if one is lucky, one might not need smgnevents. Consider
the extreme case of just one event with 0 : ' would then be infinite and this one singlent would be complete proisf

itself that theK™ is spin zero. The fluctuation (rms spread) of ﬁgfor a givenN is
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(log R —Tog R)* = N {fl log j:—1|" fadr — lf log j,'—1_."_1nf.r':|! .
B |

]
APPENDIX II: DISTRIBUTION OF THE LEAST-SQUARES SUM
We shall define the vect@ =y, / 5, and the matri>k:ij = fj(xi) /g,
Note thatH = FT - F by Eq. (27),

ZoF =o' H by g, (28) and (29), (33)

Then
o =Z-F-H" (34)
M .
So= 33 [(Za— a}Fu) + (0 — ay) F)?
a=1 =1

where the unstarret  is used qu.

o

L wf fulx) , . , .
5 da RSBl Lo F —at - FOFf — )T + (o — o) FY - Flat — a7,
l:l ?? {f Ur] | L — — —  —y rl L — — — — rl
So = S HAZ-F—a* F'F)(a' —a)' + (2 F-H' - aHH )\ H(H'F'Z" - H'Ha")

using Eq. (34). The second term on the right is bercause of Eq. (33).

S° So —(Z-F —aF"FYH'"HH " (F' 2" — FTFa"),

—_— =

st (£Z-Z)1-Q(Z - Z) where o - F' = Z and
B s
Q=FH I (34)
Note that

Q= (FH'F)FH'F) = FH'F =Q

If g; is an eigenvalue @, it must be equajiz, an eigenvalue a?. Thusg; = 0 or 1. The trace @ is

Tr {i Z I'-uhjfn'.r'l Ir:: z II-"-'JIIJJ'I Tr I_ A

ahe he

Since the trace of a matrix is invariant under giaumy transformation, the trace always equals tiva sf the eigenvalues of the
matrix. Therefore M of the eigenvalues @fare one, andp(- M) are zero. Let be the unitary matrix which diagonaliz€s
(and also (T Q)). According to Eq. (35),
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5* -U(l=—QU ™" -y, wherey =(Z - Z)- U,
T#
5* Z mmatje where m, are the eigenvalues of (1 — Q).
a=1
=M
g Z i since the M nonzero eigenvalues of () cancel out M of the eigenvalues of L
a=1
Thus
dP(S*) o e 72 gl Mg

whereSt is the square of the radius vector n-(M)-dimensional space. By definition (sBection16) this is thex2 distribution
with (p - M) degrees of freedom.

APPENDIX I11. LEAST SQUARESWITH ERRORSIN BOTH VARIABLES

Experiments in physics designed to determine patemén the functional relationship between quagik andy involve a
series of measurementsfind the corresponding In many cases not only are there measuremen’se&ypfor eachyj, bu

also measurement erro‘Er:;j for eachxj. Most physicists treat the problem as if all ﬁx?= 0 using the standard leasfuare

method. Such a procedure loses accuracy in thendiettion of the unknown parameters contained énftimctiony = f (x) and
it gives estimates of errors which are smaller tiventrue errors.

The standard least squares method of Section Jdshbe used only when all tr&(j << Eyi. Otherwise one must replate
weighting factors 1¢;2 in Eq. (24) with 5j)'2 where

5

2
I

ary’ . 12 @
L:’_’ [d 1° + [ (36)
Ep

Eqg. (24) then becomes

] ] iy — _,l'{.r' :I -
S . {ﬂ—" (37)
i 4

A proof is given in Ref7.

We see that the standard least squares computgrapte may still be used. In the case wherea ; + a,x one may usavha

are called linear regression programs, and whiesea polynomial inx one may use multiple polynomial regression program
The usual procedure is to guess starting valuedffod x and then solve for the paramet&ﬁs using Eg. (30) with::j replace

by o;. Then new [8/ 6 X] j can be evaluated and the procedure repeated.l{Jsug} two iterations are necessary. Tdféective
variance method is exact in the limit thaft /80 x is constant over the regi0'51><j. This means it is always exact flinea
regressions.

==t I | Zonte ntsl" Previous ||

APPENDIX IV.NUMERICAL METHODS FOR MAXIMUM LIKELIHOOD AND LEAST
SQUARES SOLUTIONS

In many cases the likelihood function is not anegftor else, if analytical, the procedure for frmyitherrj* and the errors is too
cumbersome and time consuming compared to numenieddods using modern computers.

For reasons of clarity we shall first discuss aeffinient, cumbersome method called the grid methafier such an
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introduction we shall be equipped to go on to aevedficient and practical method called the metbbsteepest descent.

The grid method

If there areM parametersz ,, ... , o), to be determined one could in principle map otiha grid in M-dimensionabkpac

evaluatingw(rx) (or S(x)) at each point. The maximum value obtainedwads the maximum likelihood solution*. One coulc
then map out contour surfacesmE (W* - %), (w* - 1), etc. This is illustrated fdvl = 2 inFig. 6.

a
. (w=-3/2)
{w®-)
(w*-172
0
a,

Figure 6. Contours of fixed w enclosing the max.
likelihood solutionw*.

In the case of good statistics the contours woeldrball ellipsoidsEig. 7 illustrates a case of poor statistics.

a,
t'll'-ual\
i
i
[ ]
"
[ .
ﬂl E
1 | 1
b :
st 1.
- L ] L
a,, a, a, a

Figure 7. A poor statistics case of Fig. 6.

Here it is better to present the* - ¥2) contour surface (or thest + 1) surface) than to try to quote errorsin ofie istc
quote errors it should be in the foim™ <« < r':l"' wherec:;” andﬂrl+ are the extreme excursions the surface makas (se:

; ; i + i
Fig. 7). It could be a serious mistake to quatera” as the errors i ;.

In the case of good statistics the second derigsiw / der, 6y = - H,, could be found numerically in the region negr The

errors in thenx 's are then found by inverting thenbtrix to obtain the error matrix fai ; i.eler; — of Jex, — a}) H‘(l)ij‘
The second derivatives can be found numericallydigg
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A
o o
—w{ o, o+ Aoy )| [ Ao A

[wr( g + Ay, 0 + Do) + wilen, o) — wioy + Aeg, o)

In the case of least squares brﬁe: Y2 8B/ 8oy 6arj .

So far we have for the sake of simplicity talkederms of evaluatingv(=) over a fine grid inM-dimensional space. Imos
cases this would be much too time consuming. Aeradxtensive methodology has been developed fdinfjnmaxima or
minima numerically. In this appendix we shall auwtlijust one such approach called the method opastelescent. We shall
show how to find the least squares minimun$). (This is the same as finding a maximunmvii)).

Method of Steepest Descent

At first thought one might be tempted to vary (keeping the othes s fixed) until a minimum isifial. Then vary:, (keepin

the others fixed) until a mew minimum is found, awdon. This is illustrated iRig. 8 whereM = 2 and the errors are strongly
correlated. But inFig. 8 many trials are needed. This stepwise procedues donverge, but in the caseFf. 8, much too
slowly. In the method of steepest descent one magamst the gradient iz -space:

as as ..

VS = — iy + —" + ...
ity ihrwa
e| STARTING (z)
POINT —=
()
Y
3]
(S"+1)
5.
v ] a,

Figure 8. Contours of constan vs. a; and a .
Stepwise search for the minimum.

So we change all tha s simultaneously in the @8i68a, : 8S/ 8, 1 8S/ 8y 1 ... . In order to find the minimum alorigis

line in o -space one should use an efficient step. sfn effective method is to assun®s) varies quadratically fronthe
minimum positiors* where s is the distance along this line. Thenstiep size to the minimum is

" As 35 — 45, 4+ 5

H X —_—

T TS 98, + S,

whereS,, S,, andS; are equally spaced evaluations() alongs with step sizeAs starting froms,; i.e.,s, =s, + As, s; =5, +

2As. One or two iterations using the above formuld vahch the minimum along s shown as point (2Fig. 9. The nex
repetition of the above procedure takes us to g@ntn Fig. 9. It is clear by comparingig. 9 with Fig. 8 that the methoaf
steepest descent requires much fewer computeragicala ofS(«x) than does the one variable at a time method.
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Qg ATART ING
POINT = ()

Q a,

Figure 9. Same asFig. 8, but using the method of
steepest descent.

Least Squares with Constraints

In some problems the possible values ofripare restricted by subsidiary constraint relatidts. example, consider afastit
scattering event in a bubble chamber where the umesmentsy; are track coordinates and tka, are track directiongin
momenta. However, the combinationscfthat are physically possible are restricted byrgpenomentum conservatioithe

most common way of handling this situation is te tise 4 constraint equations to eliminate 4 of #& in S(«). Then St
minimized with respect to the remaining 's. In teasmple there would be (9 - 4) = 5 independnt twa:for orientationof
the scattering plane, one for direction of incomtrack in this plane, one for momentum of incominack, and one for
scattering angle. There could also be constralatioes among the measurable quantitfesin either case, if the methal

substitution is too cumbersome, one can use theadeif Lagrange multipliers.

In some cases the constraining relations are iigiggaather than equations. For example, supfidseknown thafe; mustbe

a positive quantity. Then one could define a netwo$e: 's where rf:l')z =g, @y = a,, etc. Now ifS(a') is minimizedn
non-physical values of a will be used in the se&oclthe minimum.

Appendix V. Cumulative Gaussian and Chi-Squared Distributions

TheX2 confidence limit is the probability of Chi-squarexceeding the observed value; i.e.,
x*

WherePp for p degrees of freedom is given by Eg. (30a).

Gaussian Confidence Limits

2 _ 2 _
Let®< = [x/@]° Then fomny = 1,

1 o)™t ]  [r® 1 Y]
3 ol | I ) . ot |
an Yl 1‘|:_I—Z| L‘IJ = \‘ Az @ L‘IJ - {JE‘ *p ( ggzj | di

a

Thus CL forny is twice the area under a single Gaussian tail.example theny = 1 curve for¥2 = 4 has a value ofL =
0.046. This means that the probability of gettir,= 25 is 4.6% for a Gaussian distribution.
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Figure 10. X2 Confidence Level vs¥2 for ny Degrees
of Freedom (9).
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