Esercitazione 12 - 08/04/2008

→ Dinamica del punto materiale

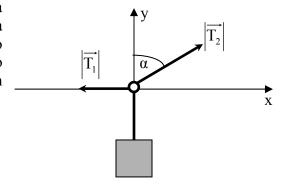

(1) La pallina nella conca –

conservazione dell'energia meccanica;

moto armonico: piccole oscillazioni attorno alla posizione di equilibrio;

Un punto materiale scivola su una guida rettilinea priva di attrito, con angolo di inclinazione $\alpha=5^{\circ}$. Il punto parte da fermo dalla posizione A, situata alla quota h=0.50m rispetto ad un piano orizzontale. Come mostrato in figura, in B la guida rettilinea si raccorda con una guida avente la forma di un arco racchiudente un angolo pari a 2α e con raggio di curvatura r=1.5m. Si assuma la validità dell'approssimazione $sen\theta(t)\approx\theta(t)$ (vedi figura) per tutte le posizioni occupate dal punto materiale sull'arco di circonferenza e si calcoli:

- (a) la velocità v_B con cui il punto materiale giunge in B;
- (b) la legge oraria $\theta = \theta(t)$ che caratterizza il moto del punto materiale nel percorrere il tratto **BC**;
- (c) l'accelerazione, radiale e tangenziale, del punto materiale nel tratto curvilineo, in funzione del tempo;
- (d) t^* tale che si abbia $\theta(t)=0$
- (e) il modulo della velocità e dell'accelerazione radiale quando $\theta(t)=0$ (Si assuma $|\vec{g}|=9.8~ms^{-2}$)



(2) Pista sopraelevata – Forza centripeta; reazione vincolare

Un'automobile percorre una pista circolare la cui superficie è inclinata di un angolo $\theta = \pi/4$ rispetto al piano orizzontale. Calcolare la velocità $|\vec{v}|$ dell'automobile sapendo che percorre la pista senza sbandare, con moto circolare uniforme di raggio r = 50m.

(3) Forze di tensione e forza peso; equilibrio delle forze (statica)

Un oggetto di massa m=50kg è sostenuto da due funi (di massa trascurabile), una orizzontale e l'altra inclinata di un angolo $\alpha=30^{\circ}$ con la verticale. Calcolare il modulo delle tensioni T_1 e T_2 delle due funi in condizioni di equilibrio.

