
## Corso di Laurea in Fisica – Meccanica Classica – A. A. 2007-2008

## Esercizio da consegnare martedì 15 Aprile 2008

Nome ......Cognome .....



Ad un blocco di **massa m** = **4.80 kg**, che si trova su un piano inclinato di un angolo  $\alpha = 39.0^{\circ}$  rispetto all'orizzontale, è applicata la forza F = 46.0 N, orizzontale, disegnata in figura. Il **coefficiente di attrito dinamico** fra blocco e piano inclinato è  $\mu_D = 0.330$ . All'istante iniziale t=0 il blocco è in moto lungo il piano inclinato con velocità  $\mathbf{v_0} = 4.3$  m/s verso l'alto. Si osserva che per tempi successivi il blocco rallenta, fino a fermarsi in corrispondenza del tempo  $\mathbf{t^*}$ . Considerare |g| = 9.81 m/s². Calcolare:

- (1) la **legge del moto** del blocco fino all'istante di arresto t\*; [8] Scegliamo un sistema di riferimento cartesiano ortogonale levogiro, con asse x giacente lungo il piano inclinato, positivo verso l'alto, e asse y ortogonale al piano inclinato. Poniamo l'origine del sistema in corrispondenza della posizione occupata dal blocco al tempo t=0 [x(t=0) = y(t=0) = 0].  $\vec{F}_{TOT} = \vec{F} + m\vec{g} + \vec{R} = m\vec{a}$ , proiettata sugli assi:
- $\begin{cases} (x) & F \cos \alpha mg \sin \alpha R_x = ma \\ (y) & -F \sin \alpha mg \cos \alpha + R_y = 0 \end{cases}$  La componente  $R_x |R_x| = \mu_D |R_y|$  rappresenta la forza di **attrito dinamico**, che si oppone al moto del blocco, ed è quindi negativa.

Risolvendo il sistema, si trova:

$$\begin{cases} R_y = F \sin \alpha + mg \cos \alpha = 65.5 \text{ N} \implies |R_x| = 21.6 \text{ N} \\ a = \frac{1}{m} (F \cos \alpha - mg \sin \alpha - R_x) = -3.23 \text{ m/s}^2 \text{ Moto uniformemente decelerato} \end{cases}$$

La legge oraria del moto (che avviene lungo la direzione x) è quindi:

$$v(t) = at + v_0 \implies x(t) = \frac{1}{2}at^2 + v_0t$$

(2) il tempo **t**\* in corrispondenza del quale il blocco si ferma; [3]

t\* tale che  $v(t^*) = 0 = at^* + v_0 \implies t^* = -\frac{v_0}{a} = 1.33 \text{ s}$ 

- (3) il **lavoro** compiuto complessivamente dalle forze agenti sul blocco nell'intervallo di tempo t\*; [5] Il lavoro è uguale alla variazione di energia cinetica:  $L = \Delta K = K_f K_i = 0 \frac{1}{2} m v_0^2 = -44.4 \text{ J}$
- (4) nell'intervallo di tempo t\*, l'**impulso** della forza risultante applicata al blocco e l'impulso fornito dalle singole forze agenti sul blocco. [4+4]

L'impulso della forza risultante è uguale alla variazione della quantità di moto:  $\vec{I}_{TOT} = \Delta \vec{q} = mv_f - m\vec{v}_i$  è un vettore orientato come l'asse x (direzione del moto), verso negativo e modulo  $|I_{TOT}| = 20.6 \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$ 

Per ciascuna delle forze agenti sul sistema vale la relazione  $\vec{I} = \int_0^{t^*} \vec{f} \cdot dt$ . Se  $\vec{f}$  è una forza costante (come sono, in

effetti le forze agenti sul sistema:  $\vec{F}$ ,  $m\vec{g}$  e  $\vec{R}$ ) si ottiene un vettore parallelo a  $\vec{f}$  e di modulo  $|\vec{I}| = |\vec{f}| \cdot t^*$ , quindi:

$$|\vec{I}_F| = |\vec{F}| \cdot t^* = 61.2 \text{ N} \cdot \text{s}, \quad |\vec{I}_p| = |m\vec{g}| \cdot t^* = 61.2 \text{ N} \cdot \text{s}, \quad |\vec{I}_R| = |\vec{R}| \cdot t^* = 91.8 \text{ N} \cdot \text{s}, \text{ avendo calcolato il modulo di } \vec{R} : |\vec{R}| = \sqrt{R_x^2 + R_y^2} = 69.0 \text{ N}.$$

(5) per  $t \ge t^*$  il valore della forza di **attrito statico** agente sul corpo. [3]

Dall'equazione della dinamica proiettata lungo x, ponendo a=0 si ottiene:  $F \cos \alpha - mg \sin \alpha + R_x = 0 \Rightarrow R_x^* = -(F \cos \alpha - mg \sin \alpha) = -6.12 \text{ N}$ , cioè si trova che la forza di attrito statico ha segno negativo.

(6) Il vincolo può fornire la forza di attrito calcolata al punto (5)? [3]

 $R_x^*$  deve essere minore della forza di attrito massima  $f_{MAX} = \mu_S R_y$ . Pur non conoscendo il coefficiente di attrito statico  $\mu_S$ , sappiamo che esso è sempre maggiore di  $\mu_D$ . Pertanto, dal momento che  $R_x^*$  calcolata al punto (5) è inferiore al prodotto  $\mu_D R_y$ , essa è senz'altro inferiore a  $f_{MAX}$ , e quindi il vincolo può fornire  $R_x^*$ .