Binomial distribution

Consider N independent experiments (Bernoulli trials):

outcome of each is ‘success’ or ‘failure’,
probability of success on any given trial 1s p.

Define discrete r.v. n = number of successes (0 <n < N).

Probability of a specific outcome (in order), e.g. ‘ssfsf’ 1s

pp(1 —p)p(1 —p) = p™(1 — p)V =7
N!
TL!(N — n)!

But order not important; there are

ways (permutations) to get n successes 1n N trials, total
probability for # 1s sum of probabilities for each permutation.
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Binomial distribution (2)

The binomial distribution is therefore

N
' N, — ne1 _ N—n
f/(‘n p) DN — )P (1-p)
random parameters

variable

For the expectation value and variance we find:
N
E[n] = ) nf(n;N,p) = Np

n=0

Vin] = E[n?] — (E[n])? = Np(1 — p)
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Binomial distribution (3)

Binomial distribution for several values of the parameters:

= 04 = 04
Z N=5 = N=20
é 02 + N N p:05 i t‘S\ 02 + N N p:O.I i
0 0 H H Il 0 ] H ” 0 o
0 5 10 15 20 0 5 10 15 20
n n
y 04 2 0.4
= N=10 = N=20
S 02t N P=05 4 S o2t N p=02
0 HHN N”n O,HHH H”ﬂn
0 5 10 15 20 0 5 10 15 20
n n
= 04 = 04
=4 N=20 = N=20
“S\, 02 + p:05 _ s_:, 02 + p:06 _
, s , mlire
0 5 10 15 20 0 5 10 15 20

n n

Example: observe N decays of W+, the number »n of which are
W—Lv 1s a binomial r.v., p = branching ratio.
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Multinomial distribution

Like binomial but now m outcomes instead of two, probabilities are

™m
1=1

For N trials we want the probability to obtain:

n, of outcome 1,
n, of outcome 2,

n, of outcome m.

This is the multinomial distribution for 7 = (nq,...,Nm)
N
f(7#; N, p) = P15 o
nilno!l .- npy!
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Multinomial distribution (2)

Now consider outcome 7 as ‘success’, all others as ‘failure’.

— all n; individually binomial with parameters N, p,

E[n;] = Np;, VIn;] = Np;(1 —p;) foralli
One can also find the covariance to be
Vii = Np;(6;; — p;)

Example: 7 = (ny,...,nm) represents a histogram

with m bins, N total entries, all entries independent.

Methods in Experimental Particle Physics 07/04/19



Poisson distribution

Consider binomial 7 in the Iimit

N — oo, p — 0O, FE[n] = Np—v.
S 04
= v=2
— n follows the Poisson distribution: =, | H N
Vn 0 1 H ” 0 o
fniv) =" (n>0) Co e
- > 0.4 "
E[n]zy, V[n]:y :;0.2—
0 ln [ H H H H oo
0 5 10 15 20
Example: number of scattering events y '
n with cross section o found for a fixed £ V=10
. . . . 02
integrated luminosity, with v = o [ L dt. a1
0 | l0na
0 5 10 15 20

n
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,

From Binomial to Poisson to Gaussian
P(k:n,p)=( Z ]p"(l—p)’“"

ﬂ,ke_k
Pk :n,p) N> p=A > Poiss(k; ) = X

(kY=24, 0, =2

k—>oo=>x=k

Using Stirling Formula

1 2 2
prob(x)=G(x,0 =vJ1)= ~(x-AP 120

e
N2TTOo

This is a Gaussian, or Normal distribution

with mean and variance of A
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Histograms

N collisions

Lo(pp— H) Ae,
Lo(pp)
obs

Prob to see ny; in N collisions is

p(Higgs event) =

N obs _0bs
P(nif’s)=[ | obs jp”’f (1—p)* "

H
—Z, nobs
/’L H
lim,, , P(n") = Poiss(nl” ,A)= <—
n, |
Lo(pp — H) Ac
A=Np=Lo(pp) .

Lo(pp)
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Histograms
pdf = histogram with

infinite data sample,
zero bin width,

normalized to unit area.

N (x)

f(x):m

n — number of entries

Ax = bin width

° Methods in Experimental Particle Physics
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Uniform distribution

Consider a continuous r.v. x with —oo <x < oo . Uniform pdf is:

1 a < < a -
f(w;a,ﬁ)={6_a SesP g ot . B
0 otherwise T P
1 a8 B-a
E[x] — 5(04 _I_ 5) —_
Viz] = L(5 - a)? .
12 » 1 : :

N.B. For any r.v. x with cumulative distribution F(x),

y = F(x) 1s uniform 1n [0,1].

Example: for ¥ — vy, E, is uniform in [E,; , £, ..], with
1 1

Emin = §E7r(1 —B), Emax = §E7T(1 + )
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Exponential distribution

The exponential pdf for the continuous r.v. x is defined by:

1

f(x:€)

%e—x/ﬁ x>0 08 |
f(z; &) =
0] otherwise 06 |
E[m] — S 04 F

0.2 o

Viz] = €2

Example: proper decay time ¢ of an unstable particle

F(tir) = Se=t/7 (7= mean lifetime)
T

Lack of memory (unique to exponential): f(t — to|t > tg) = f(¢)
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Gaussian distribution

The Gaussian (normal) pdf for a continuous r.v. x 1s defined by:

~

T
— u=0v 0:1

Fomo) = L e—@-m2/202  Z oo Boel

V2mo e 1=1, 0=1

04 |

Elz] =p  (N.B. often u, 0 denote
mean, variance of any o2

V[z] = o2 1.V, notonly Gaussian.)

0 k==’

Special case: £ =0, 0>=1 (‘standard Gaussian’):

r) = = e %°/2 )= [ z') da’
pa) = =2, o) =[ p@d

If y ~ Gaussian with uy, 6%, then x = (y — 1) /o follows ¢(x).
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Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random
variable that is a sum of a large number of small contributions
follows it. This follows from the Central Limit Theorem:

For n independent r.v.s x; with finite variances %, otherwise
arbitrary pdfs, consider the sum

n
y= )
1=1

In the limit n — oo, y 1s a Gaussian r.v. with
n

Elyl = 3 Viyl = 3 o?
1=1 )

=1

Measurement errors are often the sum of many contributions, so
frequently measured values can be treated as Gaussian r.v.s.
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Meaning of parameter estimate ok

 We are interested in some physical unknown parameters

« Experiments provide samplings of some PDF which has among
its parameters the physical unknowns we are interested in

« Experiment’s results are statistically “related” to the unknown
PDF

— PDF parameters can be determined from the sample within some
approximation or uncertainty

« Knowing a parameter within some error may mean different
things:
— Frequentist: a large fraction (68% or 95%, usually) of the
experiments will contain, in the limit of large number of

experiments, the (fixed) unknown true value within the quoted
confidence interval, usually [u — o,u + o] (‘coverage’)

— Bayesian: we determine a degree of belief that the unknown
parameter is contained in a specified interval can be quantified as
68% or 95%

«  We will see that there is still some more degree of arbitrariness
in the definition of confidence intervals...
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Statistical inference INFN

Probability

Data fluctuate according
to process randomness

Inference

Model uncertainty due to

fluctuations of the data sample

@ Methods in Experimental Particle Physics 07/04/19



Hypothesis tests

Which hypothesis is the most
consistent with the experimental
data?
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Parameter estimators INFN

* An estimator is a function of a given sample whose
statistical properties are known and related to some
PDF parameters

— “Best fit”

« Simplest example:

— Assume we have a Gaussian PDF with a known o and an
unknown wu

— A single experiment will provide a measurement x
— We estimate uw as ust=x

— The distribution of u*t (repeating the experiment many times)
is the original Gaussian

— 68.27%, on average, of the experiments will provide an
estimate within:u-o<u®'<u+o

« We can determine: u=u*t+ o
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Likelithood function INFN

« Given a sample of N events each with variables (x,, ..., x ), the
likelihood function expresses the probability denS|ty of the sample, as a
function of the unknown parameters:

I — Hfllv"' Zh 0y, 0,)

* Sometimes the used notation for parameters is the same as for
conditional probability:

f($1,-~ 7%‘91,... ,Qm)'

» If the size N of the sample is also a random variable, the extended
likelihood function is also used:

L=p(N:6y,--- >‘9m>Hf<5U?17'” a0y, 0,)

— Where p is most of the times a Poisson distribution whose average is a
function of the unknown parameters

* In many cases it is convenient to use —In L or —2In L: I->
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Maximum likelithood estimates INFN

ML is the widest used parameter estimator

* The “best fit" parameters are the set that
maximizes the likelihood function

— “Very good” statistical properties

* The maximization can be performed
analytically, for the simplest cases, and
numerically for most of the cases

» Minuit is historically the most used
minimization engine in High Energy Physics
— F. James, 1970’s; rewritten in C++ recently
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/CL & Cl measurement [1=1.1£0.3

L(u)= G f1,0,)
= CI of 1=[0.8,14]ar 68% CL

o A confidence interv-al (Cl) is a particular kind of
interv-al estimate of a population parameter.

o Instead of estimating the parameter by a single \ralue,
an interv-al likely to include the parameter is giv-en.

o How likely. the interv-alis to contain the parameter is
determined by the confidence lev-el

o Increasing the desired confidence lev-el will widen the
confidence interv-al.




Confidence Interval & Coverage

«Say you have a measurement p_ of p with p, ,, being
the unknown true vralue of p

«Assume you know the probability distribution function
P(Hyneqs!H)

ebased on your statistical method you deduce
that there is a 95% Confidence interval [p,,u,].

(it is 95% likely that the ... is in the quoted interval)

The correct statement:
oln an ensemble of experiments 95% of the obtained
confidence interv-als will contain the true v-alue of p.




Confidence intervals in practice

The recipe to find the interval [a, b] boils down to solving

o0 R - 0 —~ —~
a = / g(e;e)cw:/ 9(8:a) do
Uoz(e) obs

vg(f ~ ~ Oobs .
B = /5()9(9;9)d9=/ ° g(0;b)do .

—00 —00

g(8:q)
g(0:h)

(@)

05 0.5 r

— a 1s hypothetical value of 8 such that P( > 0,pc) = «.
— b 1s hypothetical value of 6 such that P(0 < 0,,5) = 3.
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Meaning of a confidence interval

N.B. the interval is random, the true @ is an unknown constant.

A

Often report interval [a, b] as éfg, lLe. C = é — a, d=0b-—20.

So what does 8 = 80.25"’8:%% mean? It does not mean:

P(80.00 < # < 80.56) = 1 — o — 3, but rather:

repeat the experiment many times with same sample size,
construct interval according to same prescription each time,

in 1 — a — 3 of experiments, interval will cover 6.
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Confidence Interval & Coverage

oYou claim, Cl,=[p,,K,] at the 95% CL

i.e. In an ensemble of experiments CL (95%) of the
obtained confidence interv-als will contain the true

Vvalue of M.

off your statement is accurate, you hav-e full
coverage

off the true CL is>95%, your interv-al has an over
coverage

off the true CL is <95%, your interv-al has an
undercoverage
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How to deduce a Cl RN

o One can show that if the data is
distributed normal around the

34% 34
average i.e. P(datalp )=normal ° 7 aecoemes
| —'3’.,"‘1"2 Side Note:

A Clis an intervalin the
true parameters phase-
space

fl@|mo)=—=c

o then one can construct a 68% CI
around the estimator of p to be

X+0 lie.x,, €[i-0.,k+0,|@68% CL

o Howev-er, nlot all dts;c.rtf\f;to:}s eOne can guarantee a
are normal, many distributions coverage with the

are even un:known and . Neyman Construction
cov-erage might be a real issue (1937)

Neyman, J. (193#)
Philosophical Transactions of the Royal Society. of London A, 236, 333-380. 1017

true




The Frequentist Game a ’la
Neyman

Or

How to ensure a Coverage with
Neyman construction




Y Y
o(8)  x4:(0p) X

Y

\

Fig. 7.1 Graphical illustration of Neyman belt construction (left) and inversion (right)

x"P (6)
l—a= J(x]6)dx
x1°(6o)
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Neyman Construction

Prob(s, |s,)is known

St




Neyman Construction

Prob(s, |s,)is known

St




) Neyman Construction

Prob(s,, |s,)is known

St

s [ 8ts. 15,)ds, =68% The INTERVAL contains 68% of the
t1 fet

Acceptance Interval terms with t|'1c maximum likc[zhood




Yl
' e
Neyman Construction
Prob(s,, |s,)is known
St
3 [ 8ts. 15,)ds, = 68% The INTERVAL contains 68% of the
t1 Acce \t‘-{,@u-_@ Interval  terms with the maximum likelihood




- Ney.man Construction

Prob(s, |s,)is known

St

S f"'g(sa |5, )ds, = 68% The INTERVAL contains 68% of the
t1

Aéiovibniee kel terms with t]'wc maximum lil«:lxhooci




Ney.man Construction

Prob(s, |s,)is known

r,}»x rAY .
{ | A
LNV ¥ S W §

. - &3

N\ Py e P - = =y
S ‘ .

FIEAINS OO0 OF LK

!, 1.1

- > vy 14 ol by ~
» maximum hkelihood




Neyman Construction

Prob(s, |s,)is known

Confidence Belt




Prob(s, |s,)is known

Neyman Constructic)/n
St

Confidence Belt




Neyman Construction

Prob(s, |s,)is known

“onfidence Belt

[s,,s,] 68% Confidence Interval
In 68% of the experiments the derived C.l. contains the unknown true value of s




- Ney.man Construction

Prob(s, |s,)is known

—o>3
& i Sl R L
u
Cénfidence Belt
g
_&!Z'
Sl """""""""""""""""""""""""""""""""
Sm1 =

- With Neyman Construction we guarantee a coverage via construction, i.e. for
any value of the unknown true s, the Construction Confidence Interval will
\ with the correct rate.




Ney.ma,n Construction
=g X=S pdf f(x10)is known

for each prospective 8 generate x

true measured

f(z|@) construct aninterval in DATA phase— space

Interval = | f (x10)dx = 68%

repeat for each 0
92 / A

Use the Confidence belt to construct the
CI =[6,,6,](for a given x,,)

in 6 phase — sﬁace

Figure from K Cranmer L T




Confidence intervals in practice

The recipe to find the interval [a, b] boils down to solving

o0 R - 0 —~ —~
a = / g(e;e)cw:/ 9(8:a) do
Uoz(e) obs

vg(f ~ ~ Oobs .
B = /5()9(9;9)d9=/ ° g(0;b)do .

—00 —00

g(8:q)
g(0:h)

(@)

05 0.5 r

— a 1s hypothetical value of 8 such that P( > 0,pc) = «.
— b 1s hypothetical value of 6 such that P(0 < 0,,5) = 3.
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Meaning of a confidence interval

N.B. the interval is random, the true @ is an unknown constant.

A

Often report interval [a, b] as éfg, lLe. C = é — a, d=0b-—20.

So what does 8 = 80.25"’8:%% mean? It does not mean:

P(80.00 < # < 80.56) = 1 — o — 3, but rather:

repeat the experiment many times with same sample size,
construct interval according to same prescription each time,

in 1 — a — 3 of experiments, interval will cover 6.
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Wy (

Uy (

3
XO) 12:(%s

Xg) b

\ (M) o \%&\\\\\\\§§ I_

XO ° X "‘"(“;‘f\‘

) . x;(sapJ xi
| G X a0
J ) mydv=a
(#)
he probability to m <x, if th e value U=, (x,) is (1-a)/2

]
X, X, if the true value U=, (x,) is (1-a)/2

P(x, (1) <xy<x,(()) =



Neyman’s construction

R 1 07 N

,,

<3

§

-

_

Wi(x) “OFemmmeeeeXy

XO Xa
xy (1)

=

L)

.

.

i

By construction the probability to measure x,"<x if the true value u=,(x,) is (1-at)/2
X, X, if the true value U=, (x,) is (1-a)/2

Coverage: suppose W* the true value
P(x(u)<x,<x,())=«
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\ |
) x,(6)) X Xo

Y

Y

Y
X

Fig. 7.1 Graphical illustration of Neyman belt construction (left) and inversion (right)
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o

Fig. 7.3 Neyman belt for the parameter p of a Gaussian with 0 = 1 at the 68.27%
confidence level
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Suppose Poisson variable and n=0 is measured (no background) Upper limit (lower limit =0)

=> 0X0 (freq) or 1x1 (Bayes) ?

By construction the probability to measure x,’<x if the true value W=, (x,) is (1-a) (only one limit)
or the probability to measure x> x,, if the true value U=W,(x,) is o

[} n —l
P>0/ =52 1 e —g
gy frequentist
A =-In(l-a)
_ -1
g(/l/n:()):mp(n_()/l)f()(l) — € =e—/1

Bayesian

(uniform prior)

[p(n=0/2)f,(A)dA ]oe—ﬂd/l
0 0

A _
p(A<A)= J‘e_/ld/’tzl—e_’1 =
0

g(A/n=0)

90% | 95% | 99%
23 3.0 4.6

|
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Poisson

12 T T T T T

—
N

(@)

—
o

classical v.up (1-B=0.95)
Bayesian v (1-$=0.95)
[+2]

Fig. 9.9 Upper limits v.P at a confidence level of 1 — 3 = 0.95 for different numbers of events
observed nqps and as a function of the expected number of background events uvy,. (a) The
classical limit. (b) The Bayesian limit based on a uniform prior density for v;.
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