Binomial distribution

Consider *N* independent experiments (Bernoulli trials):

outcome of each is 'success' or 'failure', probability of success on any given trial is *p*.

Define discrete r.v. n = number of successes $(0 \le n \le N)$.

Probability of a specific outcome (in order), e.g. 'ssfsf' is

$$pp(1-p)p(1-p) = p^{n}(1-p)^{N-n}$$

But order not important; there are $\frac{N!}{n!(N-n)!}$

ways (permutations) to get n successes in N trials, total probability for n is sum of probabilities for each permutation.

Binomial distribution (2)

The binomial distribution is therefore

$$f(n; N, p) = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}$$
random parameters
variable

For the expectation value and variance we find:

$$E[n] = \sum_{n=0}^{N} nf(n; N, p) = Np$$
$$V[n] = E[n^{2}] - (E[n])^{2} = Np(1 - p)$$

Binomial distribution (3)

Binomial distribution for several values of the parameters:

Example: observe N decays of W^{\pm} , the number n of which are $W \rightarrow \mu \nu$ is a binomial r.v., p = branching ratio.

Multinomial distribution

Like binomial but now m outcomes instead of two, probabilities are

$$\vec{p} = (p_1, \dots, p_m), \text{ with } \sum_{i=1}^m p_i = 1.$$

For N trials we want the probability to obtain:

$$n_1$$
 of outcome 1,
 n_2 of outcome 2,
 \vdots
 n_m of outcome m .

This is the multinomial distribution for $\vec{n} = (n_1, \dots, n_m)$

$$f(\vec{n}; N, \vec{p}) = \frac{N!}{n_1! n_2! \cdots n_m!} p_1^{n_1} p_2^{n_2} \cdots p_m^{n_m}$$

Multinomial distribution (2)

Now consider outcome *i* as 'success', all others as 'failure'.

 \rightarrow all n_i individually binomial with parameters N, p_i

$$E[n_i] = Np_i, \quad V[n_i] = Np_i(1-p_i)$$
 for all i

One can also find the covariance to be

$$V_{ij} = Np_i(\delta_{ij} - p_j)$$

Example: $\vec{n} = (n_1, \dots, n_m)$ represents a histogram with m bins, N total entries, all entries independent.

Poisson distribution

Consider binomial *n* in the limit

$$N o \infty$$
,

$$p \rightarrow 0$$
,

$$N \to \infty$$
, $p \to 0$, $E[n] = Np \to \nu$.

 \rightarrow *n* follows the Poisson distribution:

$$f(n;\nu) = \frac{\nu^n}{n!} e^{-\nu} \quad (n \ge 0)$$

$$E[n] = \nu \,, \quad V[n] = \nu \,.$$

Example: number of scattering events *n* with cross section σ found for a fixed integrated luminosity, with $\nu = \sigma \int L dt$.

From Binomial to Poisson to Gaussian

$$P(k:n,p) = \begin{pmatrix} n \\ k \end{pmatrix} p^{k} (1-p)^{n-k}$$

$$P(k:n,p) \xrightarrow{n \to \infty, np = \lambda} Poiss(k;\lambda) = \frac{\lambda^k e^{-k}}{k!}$$

$$\langle k \rangle = \lambda, \ \boldsymbol{\sigma}_{k} = \sqrt{\lambda}$$

$$k \to \infty \Longrightarrow x = k$$

Using Stirling Formula

prob(x)=G(x,
$$\sigma = \sqrt{\lambda}$$
) = $\frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\lambda)^2/2\sigma^2}$

This is a Gaussian, or Normal distribution with mean and variance of λ

Histograms

N collisions

$$p(Higgs\ event) = \frac{\mathcal{L}\sigma(pp \to H)\,A\epsilon_{ff}}{\mathcal{L}\sigma(pp)}$$

Prob to see n_H^{obs} in N collisions is

$$P(n_H^{obs}) = \begin{pmatrix} N \\ n_H^{obs} \end{pmatrix} p^{n_H^{obs}} (1-p)^{N-n_H^{obs}}$$

$$\ell im_{N\to\infty} P(n_H^{obs}) = Poiss(n_H^{obs}, \lambda) = \frac{e^{-\lambda} \lambda^{n_H^{obs}}}{n_H^{obs}!}$$

$$\lambda = Np = \mathcal{L}\sigma(pp) \cdot \frac{\mathcal{L}\sigma(pp \to H) A\epsilon_{ff}}{\mathcal{L}\sigma(pp)} = n_H^{exp}$$

Histograms

pdf = histogram with

infinite data sample, zero bin width, normalized to unit area.

$$f(x) = \frac{N(x)}{n \wedge x}$$

n = number of entries

 $\Delta x = \text{bin width}$

Uniform distribution

Consider a continuous r.v. x with $-\infty < x < \infty$. Uniform pdf is:

$$f(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta - \alpha} & \alpha \le x \le \beta \\ 0 & \text{otherwise} \end{cases}$$

$$E[x] = \frac{1}{2}(\alpha + \beta)$$

$$V[x] = \frac{1}{12}(\beta - \alpha)^2$$

N.B. For any r.v. x with cumulative distribution F(x), y = F(x) is uniform in [0,1].

Example: for $\pi^0 \to \gamma \gamma$, E_{γ} is uniform in $[E_{\min}, E_{\max}]$, with

$$E_{\min} = \frac{1}{2} E_{\pi} (1 - \beta), \quad E_{\max} = \frac{1}{2} E_{\pi} (1 + \beta)$$

Exponential distribution

The exponential pdf for the continuous r.v. *x* is defined by:

$$f(x;\xi) = \begin{cases} \frac{1}{\xi}e^{-x/\xi} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

$$E[x] = \xi$$

$$V[x] = \xi^2$$

Example: proper decay time t of an unstable particle

$$f(t;\tau) = \frac{1}{\tau}e^{-t/\tau}$$
 (τ = mean lifetime)

Lack of memory (unique to exponential): $f(t - t_0 | t \ge t_0) = f(t)$

Gaussian distribution

The Gaussian (normal) pdf for a continuous r.v. x is defined by:

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

 $E[x] = \mu$ (N.B. often μ , σ^2 denote mean, variance of any

 $V[x] = \sigma^2$ r.v., not only Gaussian.)

Special case: $\mu = 0$, $\sigma^2 = 1$ ('standard Gaussian'):

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
, $\Phi(x) = \int_{-\infty}^{x} \varphi(x') dx'$

If $y \sim$ Gaussian with μ , σ^2 , then $x = (y - \mu)/\sigma$ follows $\varphi(x)$.

Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random variable that is a sum of a large number of small contributions follows it. This follows from the Central Limit Theorem:

For *n* independent r.v.s x_i with finite variances σ_i^2 , otherwise arbitrary pdfs, consider the sum

$$y = \sum_{i=1}^{n} x_i$$

In the limit $n \to \infty$, y is a Gaussian r.v. with

$$E[y] = \sum_{i=1}^{n} \mu_i$$
 $V[y] = \sum_{i=1}^{n} \sigma_i^2$

Measurement errors are often the sum of many contributions, so frequently measured values can be treated as Gaussian r.v.s.

Meaning of parameter estimate

- We are interested in some physical unknown parameters
- Experiments provide samplings of some PDF which has among its parameters the physical unknowns we are interested in
- Experiment's results are statistically "related" to the unknown PDF
 - PDF parameters can be determined from the sample within some approximation or uncertainty
- Knowing a parameter within some error may mean different things:
 - Frequentist: a large fraction (68% or 95%, usually) of the experiments will contain, in the limit of large number of experiments, the (fixed) unknown true value within the quoted confidence interval, usually [μ σ,μ + σ] ('coverage')
 - Bayesian: we determine a degree of belief that the unknown parameter is contained in a specified interval can be quantified as 68% or 95%
- We will see that there is still some more degree of arbitrariness in the definition of confidence intervals...

Statistical inference

Hypothesis tests

Which hypothesis is the most consistent with the experimental data?

Parameter estimators

- An estimator is a function of a given sample whose statistical properties are known and related to some PDF parameters
 - "Best fit"
- Simplest example:
 - Assume we have a Gaussian PDF with a known σ and an unknown μ
 - A single experiment will provide a measurement x
 - We estimate μ as $\mu^{\text{est}} = x$
 - The distribution of μ^{est} (repeating the experiment many times) is the original Gaussian
 - 68.27%, on average, of the experiments will provide an estimate within: $\mu \sigma < \mu^{est} < \mu + \sigma$
- We can determine: $\mu = \mu^{est} \pm \sigma$

Likelihood function

• Given a sample of N events each with variables $(x_1, ..., x_n)$, the likelihood function expresses the probability density of the sample, as a function of the unknown parameters:

$$L = \prod_{i=1}^{N} f(x_1^i, \dots, x_n^i; \theta_1, \dots, \theta_m)$$

• Sometimes the used notation for parameters is the same as for conditional probability:

$$f(x_1,\cdots,x_n|\theta_1,\cdots,\theta_m)$$

• If the size *N* of the sample is also a random variable, the extended likelihood function is also used:

$$L = p(N; \theta_1, \dots, \theta_m) \prod_{i=1}^{N} f(x_1^i, \dots, x_n^i; \theta_1, \dots, \theta_m)$$

- Where p is most of the times a Poisson distribution whose average is a function of the unknown parameters
- In many cases it is convenient to use $-\ln L$ or $-2\ln L$: $\prod_i \to \sum_i$

Maximum likelihood estimates

- ML is the widest used parameter estimator
- The "best fit" parameters are the set that maximizes the likelihood function
 - "Very good" statistical properties
- The maximization can be performed analytically, for the simplest cases, and numerically for most of the cases
- Minuit is historically the most used minimization engine in High Energy Physics
 - F. James, 1970's; rewritten in C++ recently

CL & CI

measurement $\hat{\mu} = 1.1 \pm 0.3$

$$L(\mu) = G(\mu; \hat{\mu}, \sigma_{\hat{\mu}})$$

$$\Rightarrow$$
 CI of $\mu = [0.8, 1.4]$ at 68% CL

- A confidence interval (CI) is a particular kind of interval estimate of a population parameter.
- Instead of estimating the parameter by a single value, an interval likely to include the parameter is given.
- How likely the interval is to contain the parameter is determined by the confidence level
- Increasing the desired confidence level will widen the confidence interval.

Confidence Interval & Coverage

- -Say you have a measurement μ_{meas} of μ with μ_{true} being the unknown true value of μ
- -Assume you know the probability distribution function $\rho(\mu_{meas}|\mu)$
- •based on your statistical method you deduce that there is a 95% Confidence interval $[\mu_1,\mu_2]$. (it is 95% likely that the μ_{true} is in the quoted interval)

The correct statement:

•In an ensemble of experiments 95% of the obtained confidence intervals will contain the true value of μ .

Confidence intervals in practice

The recipe to find the interval [a, b] boils down to solving

$$\alpha = \int_{u_{\alpha}(\theta)}^{\infty} g(\widehat{\theta}; \theta) \, d\widehat{\theta} = \int_{\widehat{\theta}_{obs}}^{\infty} g(\widehat{\theta}; a) \, d\widehat{\theta},$$

$$\beta = \int_{-\infty}^{v_{\beta}(\theta)} g(\widehat{\theta}; \theta) \, d\widehat{\theta} = \int_{-\infty}^{\widehat{\theta}_{obs}} g(\widehat{\theta}; b) \, d\widehat{\theta} \, .$$

- $\rightarrow a$ is hypothetical value of θ such that $P(\hat{\theta} > \hat{\theta}_{obs}) = \alpha$.
- $\rightarrow b$ is hypothetical value of θ such that $P(\hat{\theta} < \hat{\theta}_{obs}) = \beta$.

Meaning of a confidence interval

N.B. the interval is random, the true θ is an unknown constant.

Often report interval
$$[a, b]$$
 as $\hat{\theta}_{-c}^{+d}$, i.e. $c = \hat{\theta} - a$, $d = b - \hat{\theta}$.

So what does $\hat{\theta} = 80.25^{+0.31}_{-0.25}$ mean? It does not mean:

$$P(80.00 < \theta < 80.56) = 1 - \alpha - \beta$$
, but rather:

repeat the experiment many times with same sample size, construct interval according to same prescription each time, in $1-\alpha-\beta$ of experiments, interval will cover θ .

Confidence Interval & Coverage

- •You claim, $Cl_{\mu}=[\mu_{1},\mu_{2}]$ at the 95% CL i.e. In an ensemble of experiments CL (95%) of the obtained confidence intervals will contain the true value of μ .
 - olf your statement is accurate, you have full coverage
 - off the true CL is>95%, your interval has an over coverage
 - off the true CL is <95%, your interval has an undercoverage

How to deduce a CI

• One can show that if the data is distributed normal around the average i.e. P(datalu)=normal

$$f(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• then one can construct a 68% Cl around the estimator of μ to be

Side Note: A Cl is an interval in the true parameters phasespace

$$\hat{\mathbf{X}} \pm \mathbf{O} \quad i.e. \, x_{true} \in \left[\hat{x} - \sigma_{\hat{x}}, \hat{x} + \sigma_{\hat{x}}\right] @ 68\% \, CL$$

- However, not all distributions are normal, many distributions are even unknown and coverage might be a real issue
- •One can guarantee a coverage with the Neyman Construction (1937)

The Frequentist Game a 'la Neyman

Or

How to ensure a Coverage with Neyman construction

Fig. 7.1 Graphical illustration of Neyman belt construction (*left*) and inversion (*right*)

$$1 - \alpha = \int_{x^{\log(\theta_0)}}^{x^{\log(\theta_0)}} f(x \mid \theta_0) dx$$

Neyman Construction Prob(s_m | s_t) is known

 S_{m}

Neyman Construction Prob(s_m | s_t) is known

Neyman Construction

 $Prob(s_m \mid s_t)$ is known

 s_{t1}

 $\int_{s_{w1}}^{w_{w2}} g(s_{w} | s_{rt}) ds_{w} = 68\%$ The INTERVAL contains 68% of the Acceptance Interval terms with the maximum likelihood

 s_{m}

Neyman Construction Prob(s_m | s_t) is known

 $\int_{s_{w1}}^{s_{w2}} g(s_w | s_{r1}) ds_w = 68\%$ The INTERVAL contains 68% of the Acceptance Interval terms with the maximum likelihood

Neyman Construction

 $Prob(s_m \mid s_t)$ is known

 S_{t1}

 $\int_{s_{u1}}^{u_2} g(s_w | s_{t1}) ds_w = 68\%$ The INTERVAL contains 68% of the Acceptance Interval terms with the maximum likelihood

 S_m

With Neyman Construction we guarantee a coverage via construction, i.e. for any value of the unknown true s, the Construction Confidence Interval will cover s with the correct rate.

Neyman Construction $\theta \equiv s_{true} \quad x \equiv s_{measured} \quad pdf \ f(x \mid \theta) \ is \ known$

for each prospective θ generate x

 $f(x|\theta)$ construct an interval in DATA phase – space

$$Interval = \int_{x_l}^{x_h} f(x \mid \theta) dx = 68\%$$

Figure from K Cranmer

 x_0

in θ phase – space

 $CI = [\theta_1, \theta_2]$ (for a given x_{obs})

Confidence intervals in practice

The recipe to find the interval [a, b] boils down to solving

$$\alpha = \int_{u_{\alpha}(\theta)}^{\infty} g(\widehat{\theta}; \theta) \, d\widehat{\theta} = \int_{\widehat{\theta}_{obs}}^{\infty} g(\widehat{\theta}; a) \, d\widehat{\theta},$$

$$\beta = \int_{-\infty}^{v_{\beta}(\theta)} g(\widehat{\theta}; \theta) \, d\widehat{\theta} = \int_{-\infty}^{\widehat{\theta}_{obs}} g(\widehat{\theta}; b) \, d\widehat{\theta} \, .$$

- $\rightarrow a$ is hypothetical value of θ such that $P(\hat{\theta} > \hat{\theta}_{obs}) = \alpha$.
- $\rightarrow b$ is hypothetical value of θ such that $P(\hat{\theta} < \hat{\theta}_{obs}) = \beta$.

Meaning of a confidence interval

N.B. the interval is random, the true θ is an unknown constant.

Often report interval
$$[a, b]$$
 as $\hat{\theta}_{-c}^{+d}$, i.e. $c = \hat{\theta} - a$, $d = b - \hat{\theta}$.

So what does $\hat{\theta} = 80.25^{+0.31}_{-0.25}$ mean? It does not mean:

$$P(80.00 < \theta < 80.56) = 1 - \alpha - \beta$$
, but rather:

repeat the experiment many times with same sample size, construct interval according to same prescription each time, in $1-\alpha-\beta$ of experiments, interval will cover θ .

Neyman's construction

By construction the probability to measure x_0 ' $< x_0$ if the true value $\mu = \mu_1(x_0)$ is $(1-\alpha)/2$ x_0 ' $> x_0$ if the true value $\mu = \mu_2(x_0)$ is $(1-\alpha)/2$

Coverage: suppose μ * the true value

$$P(x_1(\mu^*) < x_0 < x_2(\mu^*)) = \alpha$$

By construction the probability to measure x_0 ' $< x_0$ if the true value $\mu = \mu_1(x_0)$ is $(1-\alpha)/2$ x_0 ' $> x_0$ if the true value $\mu = \mu_2(x_0)$ is $(1-\alpha)/2$

Coverage: suppose μ * the true value

$$P(x_1(\mu^*) < x_0 < x_2(\mu^*)) = \alpha$$

Fig. 7.1 Graphical illustration of Neyman belt construction (*left*) and inversion (*right*)

Fig. 7.3 Neyman belt for the parameter μ of a Gaussian with $\sigma=1$ at the 68.27% confidence level

Suppose Poisson variable and n=0 is measured (no background) Upper limit (lower limit =0) => 0 ± 0 (freq) or 1 ± 1 (Bayes)?

By construction the probability to measure x_0 '< x_0 if the true value $\mu = \mu_1(x_0)$ is $(1-\alpha)$ (only one limit) or the probability to measure x_0 '> x_0 if the true value $\mu = \mu_1(x_0)$ is α

$$P(n > 0/\lambda) = \sum_{n=1}^{\infty} \frac{\lambda^n e^{-\lambda}}{n!} = 1 - e^{-\lambda} = \alpha$$
 frequentist
$$\overline{\lambda} = -\ln(1 - \alpha)$$

$$g(\lambda/n = 0) = \frac{p(n = 0/\lambda)f_0(\lambda)}{\int_{0}^{\infty} p(n = 0/\lambda)f_0(\lambda)d\lambda} = \frac{e^{-\lambda}}{\int_{0}^{\infty} e^{-\lambda}d\lambda} = e^{-\lambda}$$
Bayesian (uniform prior)

 $p(\lambda < \overline{\lambda}) = \int_{0}^{\overline{\lambda}} e^{-\lambda} d\lambda = 1 - e^{-\overline{\lambda}} = \alpha$

	90%	95%	99%
$\overline{\lambda}$	2.3	3.0	4.6

Fig. 9.9 Upper limits $\nu_s^{\rm up}$ at a confidence level of $1-\beta=0.95$ for different numbers of events observed $n_{\rm obs}$ and as a function of the expected number of background events $\nu_{\rm b}$. (a) The classical limit. (b) The Bayesian limit based on a uniform prior density for ν_s .