Have we really observed the final state
X7?-1

® We need a criterium to say ok, we have seen the signal or our
data are compatible with the background.
® Which statistical uncertainty have we on N, ?

* Assume a Poisson statistics to describe N__, negligible

uncertainty on €. We call (using more “popular” symbols):

e N=N_, (O(NX))2_az(N)+02(B)_N+02(B)
- 2 - 2
e f :Nb Ny \) S
N, S s s
® S=SN-B=N, s

a(Ny) o(S) JN +0*(B) ~Js+B

Additional assumption: 0%(B)<< N
O(S)/S is the relative uncertainty on S, its inverse is “how many

st.devs. away from 0” =2 S/ \/B when low Signals on top of large bck
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Have we really observed the final state
X7?-1l

® This quantity is the “significance” of the signal. The higher is

S/0(S) =S/ VS+B , the larger is the number of std.dev. away
from O of my measurement of S (SCORE FUNCTION)

o S/VS+B <3 probably I have not osserved any signal (my

candidates can be simply a fluctuation of the background)

¢ 3 <S/\S+B< 5 probably I have observed a signal (probability
of a background fluctuation very small), however no definite
conclusion, more data needed.=® evidence

oS/ \/S+B> 5 observation is accepted. =» observation

e NB1: All this is “conventional” it can be discussed

e NB2: S/VS+B is an approximate figure, it relies on some
assumptions (see previous slide).
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How to optimize a selection ? - |

® The perfect selection is the one with

e £¢=1
® Nb — O
® Intermediate situations ? Assume a given €and a given Nb.
N _ Ncand — Nb
Y =

E
® By moving the cut we change each single ingredient. We want to
see for which choice of the cut we get the lower statistical error
on Ny.
® Again: if we assume a Poisson statistics to describe N, , negligible

uncertainty on € and on N, we have to minimize the uncertainty on
S:Ncand_ Nb

® 5/sqrt(S+B) = S/sqrt(B) is the good choice: the higher it is the

higher is our sensitivity to the final state X. It is the “score function”.

e Methods in Experimental Particle Physics 26/04/19



Example - |

B=10000
o_(B)=15
S=3000
0.(S) =5

Methods in Experimental Particle Physics
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Example - I

Background
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Example - llI

Background

20 £= Entries . 10000
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GX<S) =1 @ B
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Cut based analysis
Multivariate selection e.g. ari + Brg < v

test test
h2 2

Eniries 10000
Mean

RMS .8083

L v @ s 0 9 N @ ©
L RAAL LLLLY LLLL LR LR L L7 L L

. .. ) t = o <t

Discriminant analysis e.g. Z v eut

(not only linear combinations -> non linear correlations among variables)
Multivariate analysis

e.g. neural network, Boosted decision tree etc..

Methods in Experimental Particle Physics 26/04/19



Multivariate analysis:

N discriminant variables

Training phase on MC signal and MC background samples

Input variable: Acoplanarity

Signal
Background

(1/N) dN/0.0805 F

1 15 2 2!5 3
Acoplanarity [F]

0.45 T T T T T T

(1/N) dN/0.0802 F

25 3
deltafi [F]

U/0-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

Input variable: cosTheta

(1/N) dN/0.0512 F

U/O-flow (S,B): (0.0, 0.0)%/ (0.0, 0.0)%

-08-06-04-02 0 0204 06 08 1

cosTheta [F]
Input variable: invariant mass12

w 0.09 . T T T T T T T ™3

8 0.08 E
& I=
= 007 43
a s
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P4 ES)
= 004 q4:
is
0.03 4=
e
J£
]
E
380
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invariant mass12 [F]

Input variable: Higgs pT

T T T T T T T |

(1/N) dN/9.97e+03 F

Gio-flow (S,B): (0.0, 0.0)% / (0.1, 0.0)%

o

. ]
50 100 150 200 250 300 350
Higgs pT [F]

Input variable: invariant mass34
X10

(1/N) dN/1.36e+03 F

© 20000 30000 40000 50000 60000
invariant mass34 [F]

U/0-flow (S,B): (0.0, 0.0)%/ (0.0, 0.0)%

FIGURE 5. Comparison between MC signal (blue) and MC background
(red) distributions for the 6 chosen discriminating variables entering in
the multivariate analysis (taken from A.Calandri thesis, Sapienza Uni-

versity, A.A. 2011-2012).
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Training phase, evaluation of t discriminant variable (e.g. evaluations of coefficients O in linear case)
Test phase, on independent MC samples (t does not depend on specific features of the training sample

(overtraining) e.g. a statistical fluactuation)

TMVA overtraining check for classifier: BDTG

TMVA
3 6 EIT Signal (test sample) ' ' | | o Sighal (training sample) | = —
> 1] Background (test sample) o Background (training sample) ]
© L =
g 5 Kolmogorov-Smirnov test: signal (background) probability = 0.0104 (0.0341) —
A ? E
4 —

7 12

% 1S
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7 1=
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BDTG response t

FIGURE 6. Comparison between MC signal (blue) and MC back-
ground(red) BDT variable. The points are for the ”training” samples,
while the histograms correspond to the ”test” samples. In the insert the
results of compatibility tests between training and test results are given
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Optimization of the cutont => significance as score function

Cut efficiencies and optimal cut value

Signal efficiency ——— Signal purity
Back d efficiency | " Signal efficiency*purity
ackground efficiency S/(S+B
_ H H H H H Q
> - : 41 8
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=)
3 — o~ N A ¢
= N NS s
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t o ~ .............. ......... e . .............. . .............. . 44444444444444 . ............ AN ........... =
TR ,
: f ............... '. 444444444444 = ::._":',..e.‘. -r.t:.'f.a-.m.‘_. e N 10.4
0.2 —-~~For§2<signé-l-and~6}<back Ul"ld .................. 44444444444444 ............ .............. ......... 0.2
[ events the maximum S/|S+Biis : ' :
| 0.9405 wheén cuttihg at 0.2949

0
-1 -08 -06 -04 -0.2 0 02 04 06 0.8
Cut value applied on BDTG output

FIGURE 7. Several quantities are shown as a function of the possible
value of t.,, the cut on the BDT variable. Blue and red curves show
respectively the signal and background efficiency while the green curve is
the score function that, in this case, has a maximum around t.,; = 0.25
although with a very low significance (below 1). (taken from A.Calandri
thesis, Sapienza University, A.A. 2011-2012)
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Optimization of the cutont => significance as score function

Cut efficiencies and optimal cut value

Signal efficiency ——— Signal purity

Back d efficiency | " Signal efficiency*purity
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FIGURE 7. Several quantities are shown as a function of the possible
value of t.,, the cut on the BDT variable. Blue and red curves show
respectively the signal and background efficiency while the green curve is
the score function that, in this case, has a maximum around t.,; = 0.25
although with a very low significance (below 1). (taken from A.Calandri
thesis, Sapienza University, A.A. 2011-2012)

Signal observed?
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Optimization of the cutont => significance as score function

Another example

Input variable: p1 Input variable: ksrt Input variable: alpha

i) ar LI B | R BN AL L w L L 3 2] 025 T LR N
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Optimization of the cutont => significance as score function

Another example

TMVA overtraining check for classifier: BDTG
3 20 Signal (test salple) | | | « 'Sighal (tralning sample) '
= o Background (test sample) | | * Background (training sample) -
3 Kolmogorov-Smimov test: signal (background) probability = 0.281 { 0.33) —~
& 1 -
z " :
14
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u 2

-08 06 04 02 0 02 04 06 08

BDTG response
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Optimization of the cutont => significance as score function

Another example

Cut efficiencies and optimal cut value

| === Signal purity
------ - Signal efficiency”purit
Background efficiency | ——— 5/{S+B

[— Signal efficiency

-—h

T
w
L=

Efficiency (Purity)
Significance

‘70000 algnal 1|1d 1oﬂunuuuu background
nits the rnu!nmm EHJB+B Is i

0.8 —06 —04 —02 0 02 04 ﬂﬁ 0.8
Cut value applied on BDTG output
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Comments on multivariate methods:

The emphasis 1s often on controlling systematic uncertainties between
the modeled training data and Nature to avoid false discovery.

Although many classifier outputs are "black boxes", a discovery
at 50 significance with a sophisticated (opaque) method will win the
competition if backed up by, say, 40 evidence from a cut-based method.

(see also topical seminar later in the course)
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Another score function based on the likelihood ratio test (see later in the course)

2(S + B)In 1—|—% — 25
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St

€= Sq Probability that a signal event is identified as signal =€

Efficiency:

Rejection: R _— 2
) B;

Probability that a background event is identified as signal =1/R

Type —[ errors:

Efficiency losses, i.e. some signal events discarded

Type-II errors:

Background events contaminate the Signal sample

P(type — Ierrors) =1 — ¢

1
P(type — I1errors) = I3

Once the selection is performed, CANDIDATE events cannot be distinguished as
signal or background on event-by-event basis, only statistically

=> probability that a given eventis a signal event
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In order to evaluate this probability we use the Bayes theorem’. As usual the Bayes
theorem needs two ingredients.

e The so called likelihood (we will make use of this word several times in the
following). In this context we need essentially on one side the probability that
a signal event is identified as signal, and on the other side, the probability that
a background event is identified as signal. These two quantities are respectively
the efficiency € and the inverse of the rejection power 5 = 1/R defined above.

e The so called prior probabilities. In our case they are the expected ”cross-
sections” of signal and background events respectively.

We call P(t > tey:/S) and P(t > t.:/B) the two likelihood functions we need®, and g
and mp the two prior functions. The Bayes theorem gives:

P(t > tcut/S)ﬂ-S

60 P(S/t > tew) =
(60) (5]t > teut) P(t > teyt/S)ms + P(t > teut/B)mp
This probability can be regarded as a purity of the sample. It is interesting to write it
as follows:
(61) ty = P(S/t > teut) ! !
purity = cut) — P(t>tcut/B)m - TR
Lt Pt sms | Tems

showing that a high purity can be reached only if

- Maximize the purity for a given efficiency
(62) Re >> —

TS
If we call r the rate of selected events, the fake rate f is:

@ (63) f=r(— purity) 26/04/19
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theorem needs two ingredients.

e The so called likelihood (we will make use of this word several times in the
following). In this context we need essentially on one side the probability that
a signal event is identified as signal, and on the other side, the probability that
a background event is identified as signal. These two quantities are respectively
the efficiency € and the inverse of the rejection power 5 = 1/R defined above.

e The so called prior probabilities. In our case they are the expected ”cross-
sections” of signal and background events respectively.

We call P(t > tey:/S) and P(t > t.:/B) the two likelihood functions we need®, and g

and mp the two prior functions. The Bayes theorem y €

(60) P(S/t > tew) = s

P(t > tcut/S)WS“‘P(t % 1/R

This probability can be regarded as a purity of the sample. It is interesting to write it

as follows:
(61) ty = P(S/t > to) ! !
purity = cut) — P(t>tcut/B)m - B
Lt Pt sms | Tems

showing that a high purity can be reached only if

- Maximize the purity for a given efficiency
(62) Re >> —

TS
If we call r the rate of selected events, the fake rate f is:

@ (63) f=r(— purity) 26/04/19



CUT-BASED SELECTION

The most natural way to proceed is to apply cuts. We find among the physical quantities of each

event those that are more ”discriminant” and we apply cuts on these variables or on combinations

of these variables. The selection procedure is a sequence of cuts, and is typically well described
by tables or plots that are called "Cut-Flows”.

TABLE 1. Example of cut-flow. The selection of nn¥y final state with
n — nta 70 from eTe™ collisions at the ¢ peak (v/s = 1019 MeV,
is based on the list of cuts given in the first column. The number of
surviving events after each cut is shown in the different columns for the
MC signal (column 2) and for the main MC backgrounds (other columns).
(taken from D. Leone, thesis , Sapienza University A.A. 2000-2001).

0

Cut nmVy | wr ny | Ks — neutrals | Kg — charged
Generated Events | 11763 | 33000 | 95000 96921 112335
Event Classification | 6482 | 17602 | 55813 18815 14711
2 tracks + 5 photons | 3112 | 724 110 371 3100
Eot — || Pro 2076 | 539 | 39 118 1171
Kinematic fit I 2714 | 236 ) 24 66
Combinations 2649 129 1 19 0
Kinematic fit IT 2247 2 0 1 0
E,qq > 20 MeV 2240 1 0 0 0

e=2240/11763 = (19.04+0.36) % (binomial statistics)
R=33000 for wn! background.

Re = 6284 ; since 7,/ ~ 100

e Methods in Experimental Particle Physics
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Neyman—Pearson Lemma

P(type — Ierrors) =1 —€ =«

1
P(type — Ilerrors) = == B

Given the two hypotheses Hs and Hp and given a set of K discriminating variables x,
x9,...x K, we can define the two ”likelihoods”

(66) L(azl,...,a:K/Hs) :P(afl,...LIjK/HS)
(67) L(a:l,...,acK/Hb) IP(wl,...ZBK/Hb)

equal to the probabilities to have a given set of values x; given the two hypotheses, and
the likelihood ratio defined as

(68) ey, ag) = 2L TR/ Hy)

L(CIJl, ...,a:K/Hb)

Neyman-Pearson Lemma:

For fixed a value, a selection based on the discriminant variable A has the lowest 3 value.

=> The “likelihood ratio” is the most powerful quantity to discriminate between hypotheses.
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Normalization

® In order to get quantities that can be compared with theory, once
we have found a given final state and estimated N, with its
uncertainty we need to normalize to “how many collisions” took

place.
® Measurement of:
® Luminosity (in case of colliding beam experiments);
® Number of decaying particles (in case I want to study a decay);

® Projectile rate and target densities (in case of a fixed target
experiements).

® Several techniques to do that, all introducing additional
uncertainties (discussed later in the course).

® Absolute vs. Relative measurements.
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The simplest case: rate measurement

® Rate: r = counts /unit time (normally given in Hz). We
count N in a time At (neglect any possible background) and

assume a Poisson process with mean A
_A_N N
At At At
® NB: the higher is N, the larger is the absolute uncertainty on

r

r but the lower the relative uncertainty.

O'(r)= |
r N

® Only for large N (N>20) it is a 68% probability interval.
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Cosmic ray “absolute” flux

® Rate in events/unit surface and time

® My detector has a surface S, I take data for a time Ar with a
detector that has an efficiency £ and I count N events (again with
no background). The absolute rate r is:

_ N
eALS

* Uncertainty: I combine “in quadrature” all the potential

r

uncertainties.

0 () (200 2
r N £ At S

e Distinction between “statistical”’ and “Systematic” uncertainty
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Combination of uncertainties

* Back to the previous formula.
o(r) =\/i+(@)2+(a(m))z +(@)2
r N £ At S

1. Suppose we have a certain “unreducible” uncertainty on S

and/or on € (the uncertainty on At we assume is anyhow
negligible..). Is it usetul to go on to take data ? Or there is a

limit above which it is no more useful to go on ?

2. Suppose that we have a limited amount of time to take data

N is fixed: is it useful to improve our knowledge on €7
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Not only event counting

® Once the candidate sample is obtained many quantities can
be measured (particle properties, e.g. particle mass).

® BUT in most cases they are obtained from a FIT to a data
distribution. So, you divide events in bins and extract the
quantity as a fit parameter =» the event counting is still one
major source of uncertainty "® the uncertainty on the
parameter depends on the statistics ~ \/Ni.

* Example:
® Measure the mass of a “imaginary” particle of M=5 GeV.
® Mass spectrum, gaussian peak over a uniform background

® FIT in three different cases: 10, 10* and 10° events selected

Methods in Experimental Particle Physics 27/04/19



Mass uncertainty
due to statistics

Observations:

—2 Poissonian uncertainty on each bin

— Reduce bin size for higher statistics
=> Fit function = A+B*Gauss(M)

= Free parameters: A,B,M (fixed width)
-2 The fit is good for each statistics

Results

N=10° events:

Mass = 5.22%0.22 GeV, x* = 28 / 18 dof
N=10" events:

Mass = 5.0120.06 GeV, x* = 38 / 48 dof
N=10" events:

Mass = 5.0210.02 GeV, x* = 83 / 98 dof

@ Methods in Experimental Particle Physics
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Where could be a systematic
uncertainty here ?

e Absolute mass scale: this can be measured using a candle of

known mass. Not always it is available. e. g.7Z for the Higgs
mass at the LHC.

® Mass resolution: in most cases the width of the peak is given
by the experimental resolution that sometimes is not
pertfectly gaussian, giving rise to possible distortion to the

curve.

® Physics effects: knowledge of the line-shape, interference
with the background. ..

e |In general: M = central value T stat.uncert. T syst.uncert.
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An example:
a recent study of the Dalitz plot of the
n—ntn '’ decay
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n—=ntn n’ decay

The light quark masses: study of N—m mw w’decay
n—nnn decay = Isospin violation

e.m. strongly suppressed, induced dominantly by the
strong interaction associated with the u-d quark mass

difference

T _
x =3 —Tnm
@y
3To 1
Y = Q’Z - Qn=T7r++Tﬂ.—+Tﬂ.o=mn—2mﬁ+—mwo

Fit to the Dalitz Plot
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n—=ntn n’ decay

The light quark masses: study of N—m mw w’decay

n—anw decay = Isospin violation

e.m. strongly suppressed, induced dominantly by the
strong interaction associated with the u-d quark mass
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n—=ntn n’ decay o B

The light quark masses: study of N—m mw w’decay 2}
n—anw decay = Isospin violation :
e.m. strongly suppressed, induced dominantly by the !

strong interaction associated

difference x—vgTe =T
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Fit to the Dalitz Plot
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Uncertainty combination

central value T stat.uncert. = syst.uncert.
Can we combine stat. and syst. 7 If yes how ?

The two uncertainties might have different probability
meaning: typically one is a gaussian 68% C.L., the other is a

“maximum” uncertainty, so in general it is better to hold them
separate.

If needed better to add in quadrature rather than linearly.
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Summarizing

® Steps of an PP experiment (assuming the accelerator and the
detector are there):

® Design of a trigger
® Definition of an offline selection

* Event counting and normalization (including efficiency
and background evaluation)

e Fit of “candidate” distributions
® [Uncertainties
e Statistical due to Poisson fluctuations of the event counting

e Statistical due to binomial fluctuations in the efficiency
measurement

® Systematic due to non perfect knowledge of detector effects.
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