
Have we really observed the final state 
X ? - I 
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�  We need a criterium to say ok, we have seen the signal or our 
data are compatible with the background. 

�  Which statistical uncertainty have we on NX ?  
� Assume a Poisson statistics to describe Ncand negligible 

uncertainty on ε. We call (using more “popular” symbols): 

� N = Ncand 

�  B =Nb  
�  S=N-B = Nx 

 Additional assumption: σ2(B)<< N 
σ(S)/S is the relative uncertainty on S, its inverse is “how many 
st.devs. away from 0” ! S/√B when low signals on top of large bck 
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Have we really observed the final state 
X ? - II 
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�  This quantity is the “significance” of the signal. The higher is 
S/σ(S) = S/√S+B , the larger is the number of std.dev. away 
from 0 of my measurement of S  (SCORE FUNCTION) 
�   S/√S+B < 3 probably I have not osserved any signal (my 

candidates can be simply a fluctuation of the background) 
�  3 <S/√S+B< 5  probably I have observed a signal (probability 

of a background fluctuation very small), however no definite 
conclusion, more data needed." evidence 

�  S/√S+B> 5 observation is accepted. " observation 
�  NB1: All this is “conventional” it can be discussed 
�  NB2: S/√S+B is an approximate figure, it relies on some 

assumptions (see previous slide).  



How to optimize a selection ? - I 
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�  The perfect selection is the one with  
�  ε = 1 
�  Nb = 0 

�  Intermediate situations ? Assume a given ε and a given Nb.  
 
 
�  By moving the cut we change each single ingredient. We want to 

see for which choice of the cut we get the lower statistical error 
on NX. 
�  Again: if we assume a Poisson statistics to describe Ncand , negligible 

uncertainty on ε and on Nb we have to minimize the uncertainty on 
S=Ncand-Nb  

�  S/sqrt(S+B) ≈ S/sqrt(B) is the good choice: the higher it is the 
higher is our sensitivity to the final state X. It is the “score function”. 

€ 

NX =
Ncand − Nb

ε



Example - I 
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B=10000 
σx (B) = 15 
S=3000 
σx(S) = 5 
 



Example - II 
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B=10000 
σx (B) = 15 
S=200 
σx(S) = 5 
 



Example - III 
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B=10000 
σx (B) = 15 
S=200 
σx(S) = 1 
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•  Cut based analysis 
•  Multivariate selection  e.g. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
•  Discriminant analysis e.g. 

(not only linear combinations -> non linear correlations among variables) 
•  Multivariate analysis 

e.g. neural network, Boosted decision tree etc..  
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x2 respectively the two variables, in the case of the figure a more e↵ective cut can be
applied on a linear combination of the two variables:

(53) ↵x1 + �x2 < �

with ↵, � and � three numbers optimized by looking at the 2-D plot.
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Figure 4. This canvas shows an example of 2-dimensional plot with
two populations we want to discriminate. In the upper left plot the
scatter-plot is shown with a diagonal cut. In the upper right ad lower
left plots, the X and Y projections are shown, illustrating how smaller
is the discrimination capability in case of a 1-dimensional cut. Finally
the lower right plot shows the e↵ect of the combination of 2 independent
cuts on the same 2-dimensional plot. This example shows the benefit of
the most simple multivariate selection.

By generalizing this concept, given N discriminating variables, a linear combination
of them t can be defined and a single overall cut can be applied on it.

(54) t =
NX

i=1

↵ixi < tcut

The coe�cients ↵i have to be defined by optimizing the separation between MC signal
and background samples. This is a simple form of what is in general calledDiscriminant
analysis.

The use of linear combinations of the discriminating variables can be in many cases a
limitation. In fact a non-linear correlation between the discriminating variables can be
present in some cases so that one can think of a way to introduce these correlations to get
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By generalizing this concept, given N discriminating variables, a linear combination
of them t can be defined and a single overall cut can be applied on it.

(54) t =
NX

i=1

↵ixi < tcut

The coe�cients ↵i have to be defined by optimizing the separation between MC signal
and background samples. This is a simple form of what is in general calledDiscriminant
analysis.

The use of linear combinations of the discriminating variables can be in many cases a
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present in some cases so that one can think of a way to introduce these correlations to get
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Figure 5. Comparison between MC signal (blue) and MC background
(red) distributions for the 6 chosen discriminating variables entering in
the multivariate analysis (taken from A.Calandri thesis, Sapienza Uni-
versity, A.A. 2011-2012).

signal events content in the candidate sample and the lower background content, but
which combination of S and B allows to get the optimum selection? We need a score
function to define the optimum cut.

Let’s call N the number of events we have at the end of our selection, that is the sum
of S and B, the number of signal and background events respectively, so that our best
estimate of S is:

(55) S = N �B

with uncertainty

(56) �2(S) = �2(N) + �2(B) = N + �2(B)

where we have assumed that N is characterized by a poissonian fluctuation. Notice that
here �(B) is the uncertainty on the estimated average value of B, so that, in case we
estimate it with a large MC statistics, this uncertainty can be low and hence negligible.
Let’s assume it is indeed negligible. In this case we have:

(57)
S

�(S)
=

Sp
N

=
Sp

S +B

This quantity gives us the number of std.deviations away from 0 of the signal, a
quantity that should be as large as possible, so that it is a good score function for our
purpose, a function that we can maximize. In case we are looking for small signals out
of large backgrounds (S << B) we can use an approximate form of the score function:

(58)
S

�(S)
⇠ Sp

B

Multivariate analysis: 
N discriminant variables 
Training phase on MC signal and MC background samples 
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Figure 6. Comparison between MC signal (blue) and MC back-
ground(red) BDT variable. The points are for the ”training” samples,
while the histograms correspond to the ”test” samples. In the insert the
results of compatibility tests between training and test results are given
(taken from A.Calandri thesis, Sapienza University, A.A. 2011-2012).

This is a good starting point to optimize a selection in case we wish to select a small
signal out of a large background. The score function as a function of the value of tcut is
shown in Fig.7 for the same case shown in Figs.5 and 6. The green curve here is called
significance and is the quantity given in eq.57. It is a non-dimensional number, whose
meaning is how well we can ”see” the signal in number of standard deviations. Values
of the significance below 3 mean that there is not enough statistical power to observe
the signal. Values between 3 and 5 mean that we are close to observe the signal, values
larger than 5 mean that if the signal is there we’ll observe it. In the case of Fig.7 the
maximum of the score function is close to 1. This means that with that statistics there
is no way to find a selection capable to allow an observation of the signal (for which
a score function of at least 3 should be needed). Moreover notice that all these score
functions are built in such a way that given a selection procedure, an increase in the
integrated luminosity L translates in an increase of the score function that goes as

p
L.

Training phase, evaluation of t discriminant variable (e.g. evaluations of coefficients α in linear case) 
Test phase, on independent MC samples  (t does not depend on specific features of the training sample 
(overtraining) e.g. a statistical fluactuation) 

t 



26/04/19 Methods in Experimental Particle Physics 10 

21

We anticipate here that another score function is used in several applications based
on the likelihood ratio test (see sect.7 and discussion of eq.209):

(59)

s

2(S +B) ln

✓
1 +

S

B

◆
� 2S

The same considerations done for the other score functions apply to the resulting nu-
merical value of this quantity that also depend on S and B.
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Figure 7. Several quantities are shown as a function of the possible
value of tcut, the cut on the BDT variable. Blue and red curves show
respectively the signal and background e�ciency while the green curve is
the score function that, in this case, has a maximum around tcut = 0.25
although with a very low significance (below 1). (taken from A.Calandri
thesis, Sapienza University, A.A. 2011-2012)

3.5. Sample purity and contamination. Once the selection has been defined we are
left with a sample of N candidate events. If we take one of these events randomly,
how big is the probability that it is a ”signal event”? We have to understand well this
question. In fact all the candidate events are equal from the point of view of the selection.
If they had some di↵erences we could have used the di↵erence to select the events, but
at the end of the selection all of them are equal. So that we cannot distinguish signal
and background events on an event-by-event basis, but only in a ”statistical” sense,
by evaluating the probability that a given event is a signal event.

Optimization of the cut on t   => significance as score function  
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3.5. Sample purity and contamination. Once the selection has been defined we are
left with a sample of N candidate events. If we take one of these events randomly,
how big is the probability that it is a ”signal event”? We have to understand well this
question. In fact all the candidate events are equal from the point of view of the selection.
If they had some di↵erences we could have used the di↵erence to select the events, but
at the end of the selection all of them are equal. So that we cannot distinguish signal
and background events on an event-by-event basis, but only in a ”statistical” sense,
by evaluating the probability that a given event is a signal event.

Optimization of the cut on t   => significance as score function  

Signal observed? 
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Optimization of the cut on t   => significance as score function  

A. Selce - Kaon Meeting - 26/02/2018 20

 Kse3 MVA_VARIABLE
               : Ranking input variables
                         : -------------------------------------------
                         : Rank : Variable  : Variable Importance
                         : -------------------------------------------
                         :    1 : ksrt      : 2.566e-01
                         :    2 : dp        : 1.799e-01
                         :    3 : dm        : 1.770e-01

    4 : KSKLangle : 1.561e-01
    5 : alpha     : 1.230e-01
    6 : p1        : 1.073e-01

--------------------------------------------------------------------------------------

-
-
-
-

Another example 
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Optimization of the cut on t   => significance as score function  

Another example 

A. Selce - Kaon Meeting - 26/02/2018 22

 Kse3 MVA_TRAINING&TESTING
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Optimization of the cut on t   => significance as score function  

Another example 

A. Selce - Kaon Meeting - 26/02/2018 23

 Kse3 BDTG_CUTS EFFICIENCY 
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G. Cowan  Statistical Data Analysis / Stat 2 page 92 

Summary on multivariate methods 
Particle physics has used several multivariate methods for many years: 

 linear (Fisher) discriminant 
 neural networks 
 naive Bayes   

and has in recent years started to use a few more: 

 boosted decision trees 
 support vector machines 
 kernel density estimation 
 k-nearest neighbour 

The emphasis is often on controlling systematic uncertainties between 
the modeled training data and Nature to avoid false discovery. 

Although many classifier outputs are "black boxes", a discovery 
at 5σ significance with a sophisticated (opaque) method will win the 
competition if backed up by, say, 4σ evidence from a cut-based method. 

Comments on multivariate methods: 

(see also topical seminar later in the course) 
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Another score function based on the likelihood ratio test (see later in the course) 

21

We anticipate here that another score function is used in several applications based
on the likelihood ratio test (see sect.7 and discussion of eq.209):
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3.5. Sample purity and contamination. Once the selection has been defined we are
left with a sample of N candidate events. If we take one of these events randomly,
how big is the probability that it is a ”signal event”? We have to understand well this
question. In fact all the candidate events are equal from the point of view of the selection.
If they had some di↵erences we could have used the di↵erence to select the events, but
at the end of the selection all of them are equal. So that we cannot distinguish signal
and background events on an event-by-event basis, but only in a ”statistical” sense,
by evaluating the probability that a given event is a signal event.
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and type-II errors. We call ↵ and � respectively the probabilities associated to the two
kinds of errors:

(64) P (type� Ierrors) = 1� ✏ = ↵

(65) P (type� IIerrors) =
1

R
= �

Given the two hypotheses Hs and Hb and given a set of K discriminating variables x1,
x2,...xK , we can define the two ”likelihoods”

(66) L(x1, ..., xK/Hs) = P (x1, ...xK/Hs)

(67) L(x1, ..., xK/Hb) = P (x1, ...xK/Hb)

equal to the probabilities to have a given set of values xi given the two hypotheses, and
the likelihood ratio defined as

(68) �(x1, ...xK) =
L(x1, ..., xK/Hs)

L(x1, ..., xK/Hb)

that is also a discriminating variable. The Neyman-Pearson Lemma states that, once ↵
is fixed, a selection based on � is the one that allows to have the lowest � value. This
theorem, even if of somehow di�cult use in practice, shows that the ”likelihood ratio”
is the most powerful quantity to discriminate between hypotheses. In the following we’ll
see several examples of likelihood ratios.
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3. Event selection

3.1. Introduction. Let us assume that in our experiment we have collected a certain
number of triggers1, corresponding to the sample of events stored in our tapes2. Each
event is essentially a sequence of numbers, related to the responses of the detector cells.
The reconstruction program will transform these informations in higher level quantities,
like energies, momenta, multiplicities and so on. From the point of view of the data
analysis, an event is a sequence of physics objects, organized in data structures containing
the informations we have to rely on in order to analyze and identify the event itself.

Then suppose that we are interested in studying a certain reaction, so that we want
to select only events corresponding to the final state of that reaction. We have to define
a procedure, called selection that loops on all events and decides whether to accept
or to discard each of them. At the end of the selection we’ll be left with a sample of
candidates.

In order to define this procedure, it is very useful to have samples of simulated events
(Montecarlo events, MC in the following). In particular, we need two categories of
simulated events: the signal events (namely the complete simulation of the final states
corresponding to the reaction we want to study) and the background events (namely
all those categories of events that are not due to the reaction we want to study but
that have similar characteristics of those we are looking for). These two categories
correspond to the two hypotheses we want to discriminate: the ”signal hypothesis” Hs

and the ”background hypothesis” Hb. The selection procedure is an hypothesis test
applied to each single trigger collected by the experiment.

In order to test and optimize the selection procedure, we apply it to the two MC sam-
ples. If we call S0 and B0 respectively the number of simulated events in the two samples
and Sf and Bf the numbers of simulated events selected by the defined procedure, we
define:

(51) ✏ =
Sf

S0

(52) R =
B0

Bf

selection e�ciency (✏) and rejection (R) respectively. These two quantities define the
quality of the selection procedure. A perfect selection procedure is one for which ✏=1
and 1/R=0. Unfortunately the two defined quantities are in general anti-correlated:
higher e�ciencies correspond to lower rejection power and vice-versa. The analyst has
to find a compromise. In the following we’ll see how one can define a good compromise.

In any case e�ciency losses correspond to the so-called ”Type-I errors”: signal events
are discarded. On the other side, rejection power losses correspond to the so-called
”Type-II errors”: background events contaminate the candidate sample.

1The extremely important concept of ”trigger” is assumed to be known to the student. A trigger is
an event that for some reason the ”logic” of the experiment decides to retain for o✏ine analysis.

2The Data Acquisition System (DAQ) of any experiment writes in the form of a sequence of bits each
trigger in a data storage (the term tape is a jargon related to the way in the past the data were stored).
The sequence of bits include all the informations from the detector on the event itself.

Efficiency:     Probability that a signal event is identified as signal = ε
 
Rejection:    Probability that a background event is identified as signal = 1/R 

Type –I errors: 
Efficiency losses, i.e. some signal  events discarded 
 
Type-II errors: 
Background events contaminate the signal sample 

Once the selection is performed, CANDIDATE events cannot be distinguished as 
signal or background on event-by-event basis, only statistically 
=> probability that a given event is a signal event 
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In order to evaluate this probability we use the Bayes theorem7. As usual the Bayes
theorem needs two ingredients.

• The so called likelihood (we will make use of this word several times in the
following). In this context we need essentially on one side the probability that
a signal event is identified as signal, and on the other side, the probability that
a background event is identified as signal. These two quantities are respectively
the e�ciency ✏ and the inverse of the rejection power � = 1/R defined above.

• The so called prior probabilities. In our case they are the expected ”cross-
sections” of signal and background events respectively.

We call P (t > tcut/S) and P (t > tcut/B) the two likelihood functions we need8, and ⇡S
and ⇡B the two prior functions. The Bayes theorem gives:

(60) P (S/t > tcut) =
P (t > tcut/S)⇡S

P (t > tcut/S)⇡S + P (t > tcut/B)⇡B

This probability can be regarded as a purity of the sample. It is interesting to write it
as follows:

(61) purity = P (S/t > tcut) =
1

1 + P (t>t
cut

/B)⇡
B

P (t>t
cut

/S)⇡
S

=
1

1 + ⇡
B

R✏⇡
S

showing that a high purity can be reached only if

(62) R✏ >>
⇡B
⇡S

that imposes a condition on the goodness of the selection procedure based on the ex-
pected signal and background cross-sections. This is something that one needs to eval-
uate in the design phase of an experiment. If we apply this formula to the MC data of
Table 1, where we use the !⇡0 sample as the only background of the analysis, R✏ = 6284
and since ⇡B/⇡S ⇠ 102 we have a purity of ⇠ 98.4%.

The purity defined above can also be used to evaluate the fake rate that is an
important quantity, especially when the rate is an important issue, as in trigger design9.
If we call r the rate of selected events, the fake rate f is:

(63) f = r(1� purity)

3.6. The Neyman-Pearson Lemma. We complete this section on event selection by
quoting an interesting theorem, called Neyman-Pearson Lemma. We have already seen
that whatever is the selection procedure defined, we encounter two types of errors: type-I

7The Bayes theorem is a crucial ingredient in the EPP data analysis. In several points of these lectures
it will be used. We assume that the students are familiar with it.

8Here and in the following we will make use of the standard notation for the conditional probability,
namely p(A/H) the probability of the event A given the hypothesis H. The same notation is extended
to pdf’s like f(x/✓).

9In modern experiments the trigger design is conceptually similar to the o✏ine event selection. So
that a trigger e�ciency and a trigger rejection power can be defined, together with a fake rate. A large
trigger rate can give rise to dead time and hence to e�ciency losses, so that fake trigger rates have to
be kept very low.
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that imposes a condition on the goodness of the selection procedure based on the ex-
pected signal and background cross-sections. This is something that one needs to eval-
uate in the design phase of an experiment. If we apply this formula to the MC data of
Table 1, where we use the !⇡0 sample as the only background of the analysis, R✏ = 6284
and since ⇡B/⇡S ⇠ 102 we have a purity of ⇠ 98.4%.

The purity defined above can also be used to evaluate the fake rate that is an
important quantity, especially when the rate is an important issue, as in trigger design9.
If we call r the rate of selected events, the fake rate f is:

(63) f = r(1� purity)

3.6. The Neyman-Pearson Lemma. We complete this section on event selection by
quoting an interesting theorem, called Neyman-Pearson Lemma. We have already seen
that whatever is the selection procedure defined, we encounter two types of errors: type-I

7The Bayes theorem is a crucial ingredient in the EPP data analysis. In several points of these lectures
it will be used. We assume that the students are familiar with it.

8Here and in the following we will make use of the standard notation for the conditional probability,
namely p(A/H) the probability of the event A given the hypothesis H. The same notation is extended
to pdf’s like f(x/✓).

9In modern experiments the trigger design is conceptually similar to the o✏ine event selection. So
that a trigger e�ciency and a trigger rejection power can be defined, together with a fake rate. A large
trigger rate can give rise to dead time and hence to e�ciency losses, so that fake trigger rates have to
be kept very low.

Maximize the purity for a given efficiency 
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In order to evaluate this probability we use the Bayes theorem7. As usual the Bayes
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following). In this context we need essentially on one side the probability that
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We call P (t > tcut/S) and P (t > tcut/B) the two likelihood functions we need8, and ⇡S
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that imposes a condition on the goodness of the selection procedure based on the ex-
pected signal and background cross-sections. This is something that one needs to eval-
uate in the design phase of an experiment. If we apply this formula to the MC data of
Table 1, where we use the !⇡0 sample as the only background of the analysis, R✏ = 6284
and since ⇡B/⇡S ⇠ 102 we have a purity of ⇠ 98.4%.

The purity defined above can also be used to evaluate the fake rate that is an
important quantity, especially when the rate is an important issue, as in trigger design9.
If we call r the rate of selected events, the fake rate f is:

(63) f = r(1� purity)

3.6. The Neyman-Pearson Lemma. We complete this section on event selection by
quoting an interesting theorem, called Neyman-Pearson Lemma. We have already seen
that whatever is the selection procedure defined, we encounter two types of errors: type-I

7The Bayes theorem is a crucial ingredient in the EPP data analysis. In several points of these lectures
it will be used. We assume that the students are familiar with it.

8Here and in the following we will make use of the standard notation for the conditional probability,
namely p(A/H) the probability of the event A given the hypothesis H. The same notation is extended
to pdf’s like f(x/✓).

9In modern experiments the trigger design is conceptually similar to the o✏ine event selection. So
that a trigger e�ciency and a trigger rejection power can be defined, together with a fake rate. A large
trigger rate can give rise to dead time and hence to e�ciency losses, so that fake trigger rates have to
be kept very low.

Maximize the purity for a given efficiency 
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pected signal and background cross-sections. This is something that one needs to eval-
uate in the design phase of an experiment. If we apply this formula to the MC data of
Table 1, where we use the !⇡0 sample as the only background of the analysis, R✏ = 6284
and since ⇡B/⇡S ⇠ 102 we have a purity of ⇠ 98.4%.

The purity defined above can also be used to evaluate the fake rate that is an
important quantity, especially when the rate is an important issue, as in trigger design9.
If we call r the rate of selected events, the fake rate f is:
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3.6. The Neyman-Pearson Lemma. We complete this section on event selection by
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Maximize the purity for a given efficiency 



27/04/19 Methods in Experimental Particle Physics 21 

16

In this context the e�ciency includes also the so called acceptance. Acceptance is
defined as the ratio of signal events whose final states are geometrically included in the
detector. Any detector is limited geometrically (for example a collider detector cannot
detect particles produced within the beam pipe). In many cases it is useful to factorize
the e�ciency as the product of the acceptance times the detection e�ciency that is the
probability that an event in acceptance is detected. In the following by e�ciency we
mean the overall e�ciency including the acceptance.

3.2. Cut-based selection. The most natural way to proceed is to apply cuts. We
find among the physical quantities of each event those that are more ”discriminant” and
we apply cuts on these variables or on combinations of these variables. The selection
procedure is a sequence of cuts, and is typically well described by tables or plots that
are called ”Cut-Flows”. An example of cut-flow is shown in Table 1. The choice of each
single cut is motivated by the shape of the MC signal and background distributions in
the di↵erent variables. From the cut-flow shown in Table 1 we get: ✏ = 2240/11763 =

Table 1. Example of cut-flow. The selection of ⌘⇡0� final state with
⌘ ! ⇡+⇡�⇡0 from e+e� collisions at the � peak (

p
s = 1019 MeV,

is based on the list of cuts given in the first column. The number of
surviving events after each cut is shown in the di↵erent columns for the
MC signal (column 2) and for the main MC backgrounds (other columns).
(taken from D. Leone, thesis , Sapienza University A.A. 2000-2001).

Cut ⌘⇡0� !⇡0 ⌘� KS ! neutrals KS ! charged
Generated Events 11763 33000 95000 96921 112335
Event Classification 6482 17602 55813 18815 14711
2 tracks + 5 photons 3112 724 110 371 3100

Etot � k~Ptotk 2976 539 39 118 1171
Kinematic fit I 2714 236 5 24 66
Combinations 2649 129 1 19 0
Kinematic fit II 2247 2 0 1 0
Erad > 20 MeV 2240 1 0 0 0

(19.04 ± 0.36)%3 and R = 33000 for !⇡0. For the other background channels only a
lower limit on R can be given, since in the end no events pass the selection.

3.3. Multivariate selection. In many cases a cut-based selection is not the best option.
Let’s consider for example the case described in Fig.4. If we have two variables and we
plot the 2-dimensional histogram (also named ”scatter-plot” for historical reasons), we
can discover that, due to the correlation between the two variables4, cutting on each
variable has not the same power than cutting on the scatter plot. If we call x1 and

3The uncertainty on the e�ciency is evaluated assuming a binomial statistics, see eq.79 below
4The degree of correlation between two variables is normally well defined by the sample correlation

coe�cient, that is a non-dimensional quantity defined between -1 and 1.

ε= 2240/11763 = (19.04±0.36) % (binomial statistics) 
R=33000 for ωπ0 background. 
 
 

Rε = 6284 ; since πB/πS ~ 100    => purity ~ 98.4%

CUT-BASED SELECTION 
The most natural way to proceed is to apply cuts. We find among the physical quantities of each  
event those that are more ”discriminant” and we apply cuts on these variables or on combinations 
of these variables. The selection procedure is a sequence of cuts, and is typically well described  
by tables or plots that are called ”Cut-Flows”.  
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Neyman-Pearson Lemma 
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and type-II errors. We call ↵ and � respectively the probabilities associated to the two
kinds of errors:

(64) P (type� Ierrors) = 1� ✏ = ↵

(65) P (type� IIerrors) =
1

R
= �

Given the two hypotheses Hs and Hb and given a set of K discriminating variables x1,
x2,...xK , we can define the two ”likelihoods”

(66) L(x1, ..., xK/Hs) = P (x1, ...xK/Hs)

(67) L(x1, ..., xK/Hb) = P (x1, ...xK/Hb)

equal to the probabilities to have a given set of values xi given the two hypotheses, and
the likelihood ratio defined as

(68) �(x1, ...xK) =
L(x1, ..., xK/Hs)

L(x1, ..., xK/Hb)

that is also a discriminating variable. The Neyman-Pearson Lemma states that, once ↵
is fixed, a selection based on � is the one that allows to have the lowest � value. This
theorem, even if of somehow di�cult use in practice, shows that the ”likelihood ratio”
is the most powerful quantity to discriminate between hypotheses. In the following we’ll
see several examples of likelihood ratios.
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L(x1, ..., xK/Hb)

that is also a discriminating variable. The Neyman-Pearson Lemma states that, once ↵
is fixed, a selection based on � is the one that allows to have the lowest � value. This
theorem, even if of somehow di�cult use in practice, shows that the ”likelihood ratio”
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Neyman-Pearson Lemma: 
For fixed α value, a selection based on the discriminant variable λ has the lowest β value. 
 
=> The “likelihood ratio” is the most powerful quantity to discriminate between hypotheses. 



Normalization 

26/04/19 Methods in Experimental Particle Physics 23 

�  In order to get quantities that can be compared with theory, once 
we have found a given final state and estimated NX with its 
uncertainty we need to normalize to “how many collisions” took 
place. 

�  Measurement of: 
�  Luminosity (in case of colliding beam experiments); 
�  Number of decaying particles (in case I want to study a decay); 
�  Projectile rate and target densities (in case of a fixed target 

experiements). 
�  Several techniques to do that, all introducing additional 

uncertainties (discussed later in the course). 
�  Absolute vs. Relative measurements. 



The simplest case: rate measurement 
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�  Rate: r = counts /unit time (normally given in Hz). We 
count N in a time Δt (neglect any possible background) and 
assume a Poisson process with mean λ  

�  NB: the higher is N, the larger is the absolute uncertainty on 
r but the lower the relative uncertainty. 

 
�  Only for large N (N>20) it is a 68% probability interval. 

r = λ
Δt

=
N
Δt
±

N
Δt

σ (r)
r

=
1
N



Cosmic ray “absolute” flux 
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�  Rate in events/unit surface and time 
�  My detector has a surface S, I take data for a time Δt with a 

detector that has an efficiency ε  and I count N events (again with 
no background). The absolute rate r is: 

�  Uncertainty: I combine “in quadrature” all the potential 
uncertainties.  

�  Distinction between “statistical” and “systematic” uncertainty 
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Combination of uncertainties 
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�  Back to the previous formula. 

1.  Suppose we have a certain “unreducible” uncertainty on S 
and/or on ε (the uncertainty on Δt we assume is anyhow 
negligible..). Is it useful to go on to take data ? Or there is a 
limit above which it is no more useful to go on ? 

2.  Suppose that we have a limited amount of time to take data 
N is fixed: is it useful to improve our knowledge on ε ? 
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Not only event counting 
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�  Once the candidate sample is obtained many quantities can 
be measured (particle properties, e.g. particle mass). 

�  BUT in most cases they are obtained from a FIT to a data 
distribution. So, you divide events in bins and extract the 
quantity as a fit parameter " the event counting is still one 
major source of uncertainty " the uncertainty on the 
parameter depends on the statistics ≈ √Ni. 

�  Example: 
� Measure the mass of a “imaginary” particle of M=5 GeV. 
� Mass spectrum, gaussian peak over a uniform background 
�  FIT in three different cases: 103, 104 and 105 events selected 



Mass uncertainty  
due to statistics 
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Observations: 
 ! Poissonian uncertainty on each bin 
 ! Reduce bin size for higher statistics 
 ! Fit function = A+B*Gauss(M) 
 ! Free parameters: A,B,M (fixed width) 
 ! The fit is good for each statistics 

Results 
    N=103 events:  
 Mass = 5.22±0.22 GeV,  χ2 =  28 / 18 dof 
    N=104 events:  
 Mass = 5.01±0.06 GeV,  χ2 =  38 / 48 dof 
    N=105 events:  
 Mass = 5.02±0.02 GeV,  χ2 =  83 / 98 dof 

Ev
en

ts
 

Mass (GeV) 

20 bins 

50 bins 

100 bins 



Where could be a systematic 
uncertainty here ? 
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�  Absolute mass scale: this can be measured using a candle of 
known mass. Not always it is available. e.g. Z for the Higgs 
mass at the LHC. 

�  Mass resolution: in most cases the width of the peak is given 
by the experimental resolution that sometimes is not 
perfectly gaussian, giving rise to possible distortion to the 
curve. 

�  Physics effects: knowledge of the line-shape, interference 
with the background… 

�  In general: M = central value ± stat.uncert. ± syst.uncert. 



An example: 
a recent study of the Dalitz plot of the  
η→π+π-π0 decay  
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The light quark masses: study of η→π+π-π0decay 
η→πππ decay ⇒ Isospin violation  
e.m. strongly suppressed, induced dominantly by the 
strong interaction associated with the u-d quark mass 
difference  
     

•  Odd powers of X are C-violating ⇒ c and e are expected to be zero 

•  First large statistics measurement of η→π+π─π0 by KLOE group with 0.45 fb-1 

e+e−→φ(1020)→ηγ (�1.34 × 106 events)  [JHEP 05(2008)006, KLOE08] 
 
•  Update with Lint = 1.6 fb-1   
     � 4.7 × 106 events  [JHEP1605(2016)019] 

•  Dalitz plot density parameterized as: 

14/09/18 6 

Dalitz plot analysis of η π+π−π0  

Fit to the Dalitz Plot 

•  Odd powers of X are C-violating ⇒ c and e are expected to be zero 

•  First large statistics measurement of η→π+π─π0 by KLOE group with 0.45 fb-1 

e+e−→φ(1020)→ηγ (�1.34 × 106 events)  [JHEP 05(2008)006, KLOE08] 
 
•  Update with Lint = 1.6 fb-1   
     � 4.7 × 106 events  [JHEP1605(2016)019] 

•  Dalitz plot density parameterized as: 

14/09/18 6 

Dalitz plot analysis of η π+π−π0  

J
H
E
P
0
5
(
2
0
1
6
)
0
1
9

syst. error (×104) ∆a ∆b ∆d ∆f ∆g

EGmin ±6 ±12 ±10 ±5 ±16

BkgSub ±8 ±7 ±11 ±6 ±38

BIN ±17 ±13 ±9 ±36 ±44

θ+γ , θ−γ cut +0
−1

+0
−2

+2
−2

+3
−0

+3
−2

∆te cut + 6
−11

+12
− 1

+18
− 1

+3
−8

+26
−54

∆te −∆tπ cut ±0 +0
−1

+3
−1 ±0 +2

−1

θ∗γγ cut +14
− 5

+2
−1

+21
−12

+ 5
−25

+26
−38

MM + 8
−10

+46
−43

+49
−45

+57
−62

+100
− 92

ECL ±0 ±8 ±6 ±9 ±12

TOTAL +26
−25

+52
−48

+59
−50

+69
−77

+123
−129
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Table 5. Summary of the systematic errors for a, b, d, f parameters (fit #3).

7 Discussion

The final results for the Dalitz plot parameters, including systematic effects, are therefore:

a = −1.095± 0.003+0.003
−0.002

b = +0.145± 0.003± 0.005

d = +0.081± 0.003+0.006
−0.005

f = +0.141± 0.007+0.007
−0.008

g = −0.044± 0.009+0.012
−0.013
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Figure 7. (Color online) Top: θ∗γγ angle distribution with the MC contributions scaled; the
selected region is at the right of the vertical line. Bottom: missing mass squared,P 2

π0 , with the MC
contributions scaled. The selected region is between the vertical lines. Left/right: bin of the Dalitz
plot with the largest/smallest number of entries, corresponding to (X,Y ) = (0.000,−0.850) and
(X,Y ) = (−0.065, 0.750), respectively.
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Figure 8. (Color online) Resolution of the Dalitz plot variables X (left) and Y (right) from the
signal Monte Carlo simulations. The full line approximates the simulated distribution by a sum of
two Gaussian functions; the dashed line represent the contribution of the broader Gaussian. The
standard deviation of the narrower Gaussian is used in the discussion of the Dalitz plot bin width.
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NNLO result depends on the values of a large number of the coupling constants of the

chiral lagrangian which are not known precisely. On the other hand it is known that the

ππ rescattering plays an important role in the decay, giving about half of the correction

from the LO to the NLO result [8]. The rescattering can be accounted for to all orders using

dispersive integrals and precisely known ππ phase shifts. In the dispersive calculations two

approaches are possible. The first is to improve ChPT predictions starting from the NLO

ChPT calculations. In the second approach one can determine the proportionality factor

for the Q−2 in the η → π+π−π0 decay amplitude from fits to the experimental Dalitz

plot data and by matching the results to the LO amplitude in the region where it could be

considered accurate. Both approaches are pursued by three theory groups: refs. [13–15]. In

the first approach the reliability of the calculations could be verified by a comparison with

the experimental Dalitz plot data. Conversely, in the second approach precise experimental

Dalitz plot distributions could be used to determine the quark ratio Q without relying on

the higher order ChPT calculations.

Two other recent theoretical descriptions of the η → 3π decay amplitude include

unitarized ChPT (UChPT) [11] and non-relativistic effective field theory (NRFT) [12].

UChPT is a model dependent approach which uses relativistic coupled channels and allows

for simultaneous treatment of all hadronic η and η′ decays. The NRFT framework is used

to study higher order isospin breaking effects in the final state interactions.

For the η → π+π−π0 Dalitz plot distribution, the normalized variables X and Y are

commonly used:

X =
√
3
Tπ+ − Tπ−

Qη
(1.2)

Y =
3Tπ0

Qη
− 1 (1.3)

with

Qη = Tπ+ + Tπ− + Tπ0 = mη − 2mπ+ −mπ0 . (1.4)

Ti are kinetic energies of the pions in the η rest frame. The squared amplitude of the decay

is parametrized by a polynomial expansion around (X,Y ) = (0, 0):

|A(X,Y )|2 ≃ N(1+aY +bY 2+cX+dX2+eXY +fY 3+gX2Y +hXY 2+lX3+. . .). (1.5)

The Dalitz plot distribution can then be fit using this formula to extract the parameters

a, b, . . ., usually called the Dalitz plot parameters. Note that coefficients multiplying odd

powers of X (c, e, h and l) must be zero assuming charge conjugation invariance.

The experimental values of the Dalitz plot parameters are shown in table 1 together

with the parametrization of theoretical calculations. The last three most precise measure-

ments include the 2008 analysis from KLOE which was based on 1.34 · 106 events [19].

There is some disagreement among the experiments, specially for the b but also for the

a parameter. Both b and the f parameters from theory deviate from the experimental

values. The new high statistics measurement presented in this paper can help to clarify

the tension among the experimental results, and can be used as a more precise input for

the dispersive calculations.
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Figure 7. (Color online) Top: θ∗γγ angle distribution with the MC contributions scaled; the
selected region is at the right of the vertical line. Bottom: missing mass squared,P 2

π0 , with the MC
contributions scaled. The selected region is between the vertical lines. Left/right: bin of the Dalitz
plot with the largest/smallest number of entries, corresponding to (X,Y ) = (0.000,−0.850) and
(X,Y ) = (−0.065, 0.750), respectively.
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Figure 8. (Color online) Resolution of the Dalitz plot variables X (left) and Y (right) from the
signal Monte Carlo simulations. The full line approximates the simulated distribution by a sum of
two Gaussian functions; the dashed line represent the contribution of the broader Gaussian. The
standard deviation of the narrower Gaussian is used in the discussion of the Dalitz plot bin width.
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from the LO to the NLO result [8]. The rescattering can be accounted for to all orders using

dispersive integrals and precisely known ππ phase shifts. In the dispersive calculations two

approaches are possible. The first is to improve ChPT predictions starting from the NLO

ChPT calculations. In the second approach one can determine the proportionality factor

for the Q−2 in the η → π+π−π0 decay amplitude from fits to the experimental Dalitz

plot data and by matching the results to the LO amplitude in the region where it could be

considered accurate. Both approaches are pursued by three theory groups: refs. [13–15]. In

the first approach the reliability of the calculations could be verified by a comparison with

the experimental Dalitz plot data. Conversely, in the second approach precise experimental

Dalitz plot distributions could be used to determine the quark ratio Q without relying on

the higher order ChPT calculations.

Two other recent theoretical descriptions of the η → 3π decay amplitude include

unitarized ChPT (UChPT) [11] and non-relativistic effective field theory (NRFT) [12].

UChPT is a model dependent approach which uses relativistic coupled channels and allows

for simultaneous treatment of all hadronic η and η′ decays. The NRFT framework is used

to study higher order isospin breaking effects in the final state interactions.

For the η → π+π−π0 Dalitz plot distribution, the normalized variables X and Y are

commonly used:

X =
√
3
Tπ+ − Tπ−

Qη
(1.2)

Y =
3Tπ0

Qη
− 1 (1.3)

with

Qη = Tπ+ + Tπ− + Tπ0 = mη − 2mπ+ −mπ0 . (1.4)

Ti are kinetic energies of the pions in the η rest frame. The squared amplitude of the decay

is parametrized by a polynomial expansion around (X,Y ) = (0, 0):

|A(X,Y )|2 ≃ N(1+aY +bY 2+cX+dX2+eXY +fY 3+gX2Y +hXY 2+lX3+. . .). (1.5)

The Dalitz plot distribution can then be fit using this formula to extract the parameters

a, b, . . ., usually called the Dalitz plot parameters. Note that coefficients multiplying odd

powers of X (c, e, h and l) must be zero assuming charge conjugation invariance.

The experimental values of the Dalitz plot parameters are shown in table 1 together

with the parametrization of theoretical calculations. The last three most precise measure-

ments include the 2008 analysis from KLOE which was based on 1.34 · 106 events [19].

There is some disagreement among the experiments, specially for the b but also for the

a parameter. Both b and the f parameters from theory deviate from the experimental

values. The new high statistics measurement presented in this paper can help to clarify

the tension among the experimental results, and can be used as a more precise input for

the dispersive calculations.
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Figure 10. (Color online) The experimental background subtracted Dalitz plot data, Ni, (points
with errors), compared to set #5 fit results (red lines connecting bins with the same Y value). The
row with lowest Ni values corresponds to the highest Y value (Y = +0.75).

g = 0, since it enables a more direct comparison to the previous experiments (KLOE(08),

WASA(14) and BESIII(15)). The correlation matrices for fits #3 and #5 are:

b d f

a −0.269 −0.365 −0.832

b +0.333 −0.139

d +0.089

b d f g

a −0.120 +0.044 −0.859 −0.534

b +0.389 −0.201 −0.225

d −0.160 −0.557

f +0.408.

The fit #5 is compared to the background subtracted Dalitz plot data, Ni, in figure 10.

The red lines represent the fit result and correspond to separate slices in the Y variable.

Figure 11 shows the distribution of the normalized residuals for the fit #5: ri = (Ni −
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η→π+π-π0 decay

KLOE-2 JHEP 05(2016)019  

The light quark masses: study of η→π+π-π0decay 
η→πππ decay ⇒ Isospin violation  
e.m. strongly suppressed, induced dominantly by the 
strong interaction associated with the u-d quark mass 
difference  
     

Fit to the Dalitz Plot 

•  Odd powers of X are C-violating ⇒ c and e are expected to be zero 

•  First large statistics measurement of η→π+π─π0 by KLOE group with 0.45 fb-1 

e+e−→φ(1020)→ηγ (�1.34 × 106 events)  [JHEP 05(2008)006, KLOE08] 
 
•  Update with Lint = 1.6 fb-1   
     � 4.7 × 106 events  [JHEP1605(2016)019] 

•  Dalitz plot density parameterized as: 

14/09/18 6 

Dalitz plot analysis of η π+π−π0  
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syst. error (×104) ∆a ∆b ∆d ∆f ∆g

EGmin ±6 ±12 ±10 ±5 ±16

BkgSub ±8 ±7 ±11 ±6 ±38

BIN ±17 ±13 ±9 ±36 ±44

θ+γ , θ−γ cut +0
−1

+0
−2

+2
−2

+3
−0

+3
−2

∆te cut + 6
−11

+12
− 1

+18
− 1

+3
−8

+26
−54

∆te −∆tπ cut ±0 +0
−1

+3
−1 ±0 +2

−1

θ∗γγ cut +14
− 5

+2
−1

+21
−12

+ 5
−25

+26
−38

MM + 8
−10

+46
−43

+49
−45

+57
−62

+100
− 92

ECL ±0 ±8 ±6 ±9 ±12

TOTAL +26
−25

+52
−48

+59
−50

+69
−77

+123
−129

Table 4. Summary of the systematic errors for a, b, d, f, g parameters (fit #5 ).

syst. error (×104) ∆a ∆b ∆d ∆f

EGmin ±9 ±10 ±6 ±0

BkgSub ±1 ±5 ±6 ±8

BIN ±9 ±14 ±9 ±26

θ+γ , θ−γ cut +0
−1

+0
−2

+1
−1

+4
−0

∆te cut +0
−6

+14
− 6

+7
−0

+19
−15

∆te −∆tπ cut ±0 +0
−1

+3
−0 ±0

θ∗γγ cut +6
−0

+1
−1

+14
− 8

+ 0
−13

MM +10
−10

+39
−36

+31
−26

+28
−35

ECL ±2 ±9 ±9 ±13

TOTAL +18
−18

+46
−41

+38
−31

+45
−51

Table 5. Summary of the systematic errors for a, b, d, f parameters (fit #3).

7 Discussion

The final results for the Dalitz plot parameters, including systematic effects, are therefore:

a = −1.095± 0.003+0.003
−0.002

b = +0.145± 0.003± 0.005

d = +0.081± 0.003+0.006
−0.005

f = +0.141± 0.007+0.007
−0.008

g = −0.044± 0.009+0.012
−0.013
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Figure 7. (Color online) Top: θ∗γγ angle distribution with the MC contributions scaled; the
selected region is at the right of the vertical line. Bottom: missing mass squared,P 2

π0 , with the MC
contributions scaled. The selected region is between the vertical lines. Left/right: bin of the Dalitz
plot with the largest/smallest number of entries, corresponding to (X,Y ) = (0.000,−0.850) and
(X,Y ) = (−0.065, 0.750), respectively.
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Figure 8. (Color online) Resolution of the Dalitz plot variables X (left) and Y (right) from the
signal Monte Carlo simulations. The full line approximates the simulated distribution by a sum of
two Gaussian functions; the dashed line represent the contribution of the broader Gaussian. The
standard deviation of the narrower Gaussian is used in the discussion of the Dalitz plot bin width.
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NNLO result depends on the values of a large number of the coupling constants of the

chiral lagrangian which are not known precisely. On the other hand it is known that the

ππ rescattering plays an important role in the decay, giving about half of the correction

from the LO to the NLO result [8]. The rescattering can be accounted for to all orders using

dispersive integrals and precisely known ππ phase shifts. In the dispersive calculations two

approaches are possible. The first is to improve ChPT predictions starting from the NLO

ChPT calculations. In the second approach one can determine the proportionality factor

for the Q−2 in the η → π+π−π0 decay amplitude from fits to the experimental Dalitz

plot data and by matching the results to the LO amplitude in the region where it could be

considered accurate. Both approaches are pursued by three theory groups: refs. [13–15]. In

the first approach the reliability of the calculations could be verified by a comparison with

the experimental Dalitz plot data. Conversely, in the second approach precise experimental

Dalitz plot distributions could be used to determine the quark ratio Q without relying on

the higher order ChPT calculations.

Two other recent theoretical descriptions of the η → 3π decay amplitude include

unitarized ChPT (UChPT) [11] and non-relativistic effective field theory (NRFT) [12].

UChPT is a model dependent approach which uses relativistic coupled channels and allows

for simultaneous treatment of all hadronic η and η′ decays. The NRFT framework is used

to study higher order isospin breaking effects in the final state interactions.

For the η → π+π−π0 Dalitz plot distribution, the normalized variables X and Y are

commonly used:

X =
√
3
Tπ+ − Tπ−

Qη
(1.2)

Y =
3Tπ0

Qη
− 1 (1.3)

with

Qη = Tπ+ + Tπ− + Tπ0 = mη − 2mπ+ −mπ0 . (1.4)

Ti are kinetic energies of the pions in the η rest frame. The squared amplitude of the decay

is parametrized by a polynomial expansion around (X,Y ) = (0, 0):

|A(X,Y )|2 ≃ N(1+aY +bY 2+cX+dX2+eXY +fY 3+gX2Y +hXY 2+lX3+. . .). (1.5)

The Dalitz plot distribution can then be fit using this formula to extract the parameters

a, b, . . ., usually called the Dalitz plot parameters. Note that coefficients multiplying odd

powers of X (c, e, h and l) must be zero assuming charge conjugation invariance.

The experimental values of the Dalitz plot parameters are shown in table 1 together

with the parametrization of theoretical calculations. The last three most precise measure-

ments include the 2008 analysis from KLOE which was based on 1.34 · 106 events [19].

There is some disagreement among the experiments, specially for the b but also for the

a parameter. Both b and the f parameters from theory deviate from the experimental

values. The new high statistics measurement presented in this paper can help to clarify

the tension among the experimental results, and can be used as a more precise input for

the dispersive calculations.
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Figure 10. (Color online) The experimental background subtracted Dalitz plot data, Ni, (points
with errors), compared to set #5 fit results (red lines connecting bins with the same Y value). The
row with lowest Ni values corresponds to the highest Y value (Y = +0.75).

g = 0, since it enables a more direct comparison to the previous experiments (KLOE(08),

WASA(14) and BESIII(15)). The correlation matrices for fits #3 and #5 are:

b d f

a −0.269 −0.365 −0.832

b +0.333 −0.139

d +0.089

b d f g

a −0.120 +0.044 −0.859 −0.534

b +0.389 −0.201 −0.225

d −0.160 −0.557

f +0.408.

The fit #5 is compared to the background subtracted Dalitz plot data, Ni, in figure 10.

The red lines represent the fit result and correspond to separate slices in the Y variable.

Figure 11 shows the distribution of the normalized residuals for the fit #5: ri = (Ni −
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Figure 11. (Color online) Distribution of the normalized residuals, ri, for fit #5.

Experiment ALR × 10−2 AQ × 10−2 AS × 10−2

Gormley(68) [27] +1.5± 0.5 − 0.5± 0.5

Layter(72) [28] −0.05± 0.22 −0.07± 0.22 0.10± 0.22

Jane(74) [29] +0.28± 0.26 −0.30± 0.25 0.20± 0.25

KLOE(08) [19] +0.09± 0.10+0.09
−0.14 −0.05± 0.010+0.03

−0.05 0.08± 0.10+0.08
−0.13

KLOE(this work) −0.050± 0.045+0.050
−0.11 0.020± 0.045+0.048

−0.023 0.004± 0.045+0.033
−0.035

Table 3. Results on the asymmetry parameters.

∑n
j=1 SijNT,j)/σi. The location of the residuals ri > 1 and ri < −1 on the Dalitz plot is

uniform. The fits #6 and #7 use the acceptance corrected data (see appendix A).

5 Asymmetries

While the extracted Dalitz plot parameters are consistent with charge conjugation sym-

metry, the unbinned integrated charge asymmetries provide a more sensitive test. The

left-right (ALR), quadrant (AQ) and sextant (AS) asymmetries are defined in ref. [28]. The

same background subtraction is applied as for the Dalitz plot parameter analysis. For

each region in the Dalitz plot used in the calculation of the asymmetries, the acceptance is

calculated from the signal MC as the ratio between the number of the reconstructed and

the generated events. The yields are then corrected for the corresponding efficiency. The

procedure was tested using signal MC generated with the same statistics as the experi-

mental data. The results for the asymmetries are presented in the table 3 and compared

to other experiments. The statistical accuracy for all asymmetries in the present analysis

is 4.5 · 10−4. The discussion of the systematical uncertainties is given in section 6.

6 Systematic checks

To quantify and account for systematic effects in the results, several checks have been made.

– 13 –



Uncertainty combination 
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 central value ± stat.uncert. ± syst.uncert. 
Can we combine stat. and syst. ? If yes how ? 
The two uncertainties might have different probability 
meaning: typically one is a gaussian 68% C.L., the other is a 
“maximum” uncertainty, so in general it is better to hold them 
separate. 
If needed better to add in quadrature rather than linearly. 



Summarizing 
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�  Steps of an PP experiment (assuming the accelerator and the 
detector are there): 
� Design of a trigger  
� Definition of an offline selection 
�  Event counting and normalization (including efficiency 

and background evaluation) 
�  Fit of “candidate” distributions 

�  Uncertainties 
�  Statistical due to Poisson fluctuations of the event counting 
�  Statistical due to binomial fluctuations in the efficiency 

measurement 
�  Systematic due to non perfect knowledge of detector effects. 


