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What it is:  a numerical technique for calculating probabilities 
and related quantities using sequences of random numbers. 

The usual steps: 

(1)  Generate sequence r1, r2, ..., rm uniform in [0, 1]. 

(2)  Use this to produce another sequence x1, x2, ..., xn 
       distributed according to some pdf  f (x)  in which 
       we’re interested (x can be a vector). 

(3)   Use the x values to estimate some property of  f (x), e.g., 
       fraction of x values with a < x < b gives 

 →  MC calculation = integration (at least formally) 

MC generated values = ‘simulated data’ 
 →  use for testing statistical procedures 

The Monte Carlo method 
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Random number generators 
Goal:  generate uniformly distributed values in [0, 1]. 

 Toss coin for e.g. 32 bit number... (too tiring). 
 →  ‘random number generator’  

        = computer algorithm to generate r1, r2, ..., rn. 

Example:  multiplicative linear congruential generator (MLCG) 
 ni+1 = (a ni) mod m ,    where 
 ni = integer 
 a = multiplier 
 m = modulus 
 n0 = seed (initial value) 

N.B.  mod = modulus (remainder), e.g. 27 mod 5 = 2. 
This rule produces a sequence of numbers n0, n1, ... 
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Random number generators  (2) 
The sequence is (unfortunately) periodic! 

 Example (see Brandt Ch 4):  a = 3, m = 7, n0 = 1 

←  sequence repeats 

Choose a, m to obtain long period (maximum = m � 1); m usually  
close to the largest integer that can represented in the computer. 

 Only use a subset of a single period of the sequence. 
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Random number generators  (3) 
are in [0, 1] but are they ‘random’? 

Choose a, m so that the ri pass various tests of randomness: 
 uniform distribution in [0, 1], 
 all values independent (no correlations between pairs), 

e.g. L’Ecuyer, Commun. ACM 31 (1988) 742 suggests 
 
    a = 40692 
    m = 2147483399 

Far better generators available, e.g. TRandom3, based on Mersenne 
twister algorithm, period = 219937 � 1 (a “Mersenne prime”). 
See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4 
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The transformation method 
Given r1, r2,..., rn uniform in [0, 1], find x1, x2,..., xn 
that follow  f (x) by finding a suitable transformation  x (r). 

Require: 

i.e. 

That is,       set and solve for  x (r). 
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Example of the transformation method 

Exponential pdf: 

Set and solve for  x (r). 

→ works too.) 
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1.  Generation of random, 
Pseudo-random numbers 

2.  Random variable r uniformly distributed between 0 and 1 
3.  Sampling of a discrete random variable 

Example:  
A discrete random variable x with 3 values, x1, x2, x3 with probabilities P1, P2 and P3 
respectively  (Σ Pi=1). 
Extract y=r   
if 0<y<P1  => x=x1 
if P1<y<(P1+P2)  => x=x2 
if (P2+P3)<y<1  => x=x3 

4.  Sampling of a continuous random variable x with arbitrary pdf f(x) 
Extract y=r 
x=F-1(y)   with  y=F(x)= ∫0x  f(x’)dx’ 
Examples: 
f(x)=1/(b-a)   =>  x=a+(b-a)r 
f(θ)=sinθ/2      =>  cosθ = 1-2r   =>   θ=acos(1-2r) 
f(x)=µexp(-µx)  =>  x=-ln(1-r)/µ  =>  x=-ln(r)/µ
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The acceptance-rejection method 

Enclose the pdf in a box: 

(1)  Generate a random number x, uniform in [xmin, xmax], i.e. 
r1 is uniform in [0,1]. 

(2)  Generate a 2nd independent random number u uniformly 
       distributed between 0 and  fmax, i.e. 

(3)  If u <  f (x), then accept x.  If not, reject x and repeat. 
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Example with acceptance-rejection method 

If dot below curve, use  
x value in histogram. 
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Improving efficiency of the  
acceptance-rejection method 

The fraction of accepted points is equal to the fraction of 
the box’s area under the curve. 

 For very peaked distributions, this may be very low and 
 thus the algorithm may be slow. 

Improve by enclosing the pdf f(x) in a curve C h(x) that conforms  
to f(x) more closely, where h(x) is a pdf from which we can  
generate random values and C is a constant. 

Generate points uniformly  
over C h(x). 

If point is below f(x),  
accept x. 
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Monte Carlo event generators 

Simple example:  e+e� → µ+µ�

Generate cosθ and φ: 

Less simple:  ‘event generators’ for a variety of reactions:  
  e+e- → µ+µ�, hadrons, ... 
  pp → hadrons, D-Y, SUSY,... 

e.g. PYTHIA, HERWIG, ISAJET... 

Output = ‘events’, i.e., for each event we get a list of 
generated particles and their momentum vectors, types, etc. 
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A simulated event 

PYTHIA Monte Carlo 
pp → gluino-gluino 
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Monte Carlo detector simulation 
Takes as input the particle list and momenta from generator. 

Simulates detector response: 
 multiple Coulomb scattering (generate scattering angle), 
 particle decays (generate lifetime), 
 ionization energy loss (generate Δ), 
 electromagnetic, hadronic showers, 
 production of signals, electronics response, ... 

Output = simulated raw data →  input to reconstruction software: 
 track finding, fitting, etc.  

Predict what you should see at ‘detector level’ given a certain  
hypothesis for ‘generator level’.  Compare with the real data. 

Estimate ‘efficiencies’ = #events found / # events generated. 

Programming package:  GEANT 



Monte Carlo integration method 
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�  x uniform random variable in [a,b]: 
 
 
 
 

�  Hit or miss method, x,y u.r.v.,  x in [a.b], y in [0,c]: 
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Differential pair production cross section from circularly polarized photons 
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