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5. Analysis of event distributions: the fit

5.1. Introduction. In the previous section measurements based on event counting have
been described. In general we are also interested in analyzing specific distributions
of variables among the candidate events sample15: particle momenta, emission angles,
invariant masses and many others. These analyses are done essentially for two reasons:
(i) to compare the distributions with expectations from theories, and (ii) to extract from
them physical quantities of interest like masses, widths, couplings, spins and so on. We
call fit the method to do both these important things.

To make the fit, we go through the following ”logical” steps.

(1) First of all we have to define the hypothesis. It can be the theoretical function
y(x/✓), x being the variable or the set of variables, and ✓ a set of K parameters
. K could be even 0, in this case the theory makes an ”absolute prediction” and
there is no need to adjust parameters to compare it to theory.

(2) Then we have to define a test statistics t, that is a variable depending on the
data that, if the hypothesis is correct, has a known distribution function (in
the following we use pdf to indicate probability distribution functions). The
meaning of this pdf is the following: if we repeat the experiment many times
and if every time we evaluate t, if the hypothesis is correct the histogram of the
sample statistics will follow the pdf within the statistical errors of the sample.

(3) Finally we do the experiment. In case the theory depends on few parameters, we
adjust the parameters in such a way to get the best possible agreement between
data and theory. From this we obtain the estimates of the parameters with their
uncertainties. We evaluate then the actual value of t, let’s call it t⇤ from the data
after parameter adjustment, and see if in the t pdf this value corresponds to a
region of high or low probability. In case it is in a region of high probability,
it’s likely that the theory is correct, so that we conclude that the experiment
corroborates the theory. In case it corresponds to a region of low probability
it’s unlikely that the theory is correct, so that we say that the experiment falsifies
the theory, or, in other words, that we have not found any parameter region that
allows an acceptable agreement.

These steps have been described here in a qualitative way. Each step will be described
in detail in the following.

In this section we review first how the di↵erent approaches to the fit are founded by
defining how to build the test statistics. Then we’ll see how to proceed for hypothesis
testing (problem (i) above) and for parameter and interval estimation (problem (ii)
above). Finally the frequentist and bayesian approaches in interval estimation will be
presented and compared.

5.2. Choice of the test statistics. We consider separately the case of binned data
(histogram fitting), then the study of the functional dependence between two physical
quantities, the case of unbinned data and finally we consider the case of correlated data.

15Di↵erential cross-sections are examples of distributions on which we can apply our fit procedures.
However in many cases the overall normalization of the distribution is not important, so that non-
normalized distributions are fit.
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5.2.1. Binned data: fit of histograms. Let’s consider the distribution of the variable x
out of a sample of N events. We divide the range of variability of x in M bins, each
of dimension �x. The histogram of the variable x for the actual sample is given by a
sequence of numbers ni, i=1,...,M , each number giving the content of the bin i.

(90)
MX

i=1

ni = N

On the other hand we have a theory that predicts a x distribution depending on a list
of K parameters ✓i, i=1,...K, we call y(x/✓) this function16. In the bin i the theory
predicts a number of events yi that can be either the value of the function at the center
xi of the bin, multiplied by �x:

(91) yi = y(xi/✓)�x

or, more exactly the integral of the function in the bin17

(92) yi =

Z x
i

+�x/2

x
i

��x/2
y(x/✓)dx

In both cases the expected bin content yi depends on the parameters. The sum of the
yi on the bins, gives the predicted total number of events N0.

(93)
MX

i=1

yi = N0

Now let’s turn to the bin experimental contents ni. Each ni is a random variable,
since if we repeat the experiment and get another sample of events, we will get in general
di↵erent values of ni. So we ask which kind of random variable is ni. We distinguish
between two cases.

• We repeat the experiment holding the total number of events N fixed. In this
case ni has a multinomial distribution. The joint distribution of the ni, with
i=1,...,M is

(94) p(n1, ..nM ) = N !
MY

i=1

pni

i

ni!

where pi is the probability associated to the bin i. Notice that the joint distribu-
tion cannot be factorized in a product of single bin probability distributions, since
the fixed value of events N determines a correlation between the bin contents.

• We repeat the experiment holding fixed the integrated luminosity or the obser-
vation time of the experiment. In this case N is not fixed and fluctuates in

16The function y is dimensionally a number of events per units of x. To compare it with the actual
number of events n

i

it has to be multiplied by �x or integrated in x (see eqs.91 and 92).
17The two definitions of y

i

are equal in the limit of small bin size, with respect to the typical scale of
variation of the distribution.

Theory:  y=y(x/θ)     θi , i=1….K 
 
 
 
Prediction of the theory in bin i: 
 
1) Value of the function at the center       of the bin 
     multiplied by the bin width δx  (note: [y]=[dN/dx]) 
 
2) or more exactly integrating y over the bin i  

Histogram: 
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The two definitions are equivalent in the limit of small bin size wrt to the typical 
scale of variations in the distribution   
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Exponential pdf: 
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Which statistics for the ni data in the histogram?  
two possibilities: 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Correlation negligible  for events distributed over a large number of bins 
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ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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5.2.1. Binned data: fit of histograms. Let’s consider the distribution of the variable x
out of a sample of N events. We divide the range of variability of x in M bins, each
of dimension �x. The histogram of the variable x for the actual sample is given by a
sequence of numbers ni, i=1,...,M , each number giving the content of the bin i.

(90)
MX

i=1

ni = N

On the other hand we have a theory that predicts a x distribution depending on a list
of K parameters ✓i, i=1,...K, we call y(x/✓) this function16. In the bin i the theory
predicts a number of events yi that can be either the value of the function at the center
xi of the bin, multiplied by �x:

(91) yi = y(xi/✓)�x

or, more exactly the integral of the function in the bin17

(92) yi =

Z x
i

+�x/2

x
i

��x/2
y(x/✓)dx

In both cases the expected bin content yi depends on the parameters. The sum of the
yi on the bins, gives the predicted total number of events N0.

(93)
MX

i=1

yi = N0

Now let’s turn to the bin experimental contents ni. Each ni is a random variable,
since if we repeat the experiment and get another sample of events, we will get in general
di↵erent values of ni. So we ask which kind of random variable is ni. We distinguish
between two cases.

• We repeat the experiment holding the total number of events N fixed. In this
case ni has a multinomial distribution. The joint distribution of the ni, with
i=1,...,M is

(94) p(n1, ..nM ) = N !
MY

i=1

pni

i

ni!

where pi is the probability associated to the bin i. Notice that the joint distribu-
tion cannot be factorized in a product of single bin probability distributions, since
the fixed value of events N determines a correlation between the bin contents.

• We repeat the experiment holding fixed the integrated luminosity or the obser-
vation time of the experiment. In this case N is not fixed and fluctuates in

16The function y is dimensionally a number of events per units of x. To compare it with the actual
number of events n

i

it has to be multiplied by �x or integrated in x (see eqs.91 and 92).
17The two definitions of y

i

are equal in the limit of small bin size, with respect to the typical scale of
variation of the distribution.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY
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where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1
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where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Neiman χ2 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
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where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Pearson χ2 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
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where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Neiman χ2 
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Gaussian pdf and the Central Limit Theorem 
The Gaussian pdf is so useful because almost any random 
variable that is a sum of a large number of small contributions 
follows it.  This follows from the Central Limit Theorem: 

For n independent r.v.s xi with finite variances σi2, otherwise 
arbitrary pdfs, consider the sum 

Measurement errors are often the sum of many contributions, so 
frequently measured values can be treated as Gaussian r.v.s. 

In the limit n → ∞, y is a Gaussian r.v. with 
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Central Limit Theorem (2) 
The CLT can be proved using characteristic functions (Fourier 
transforms), see, e.g., SDA Chapter 10. 

Good example:  velocity component vx of air molecules. 

OK example:  total deflection due to multiple Coulomb scattering. 
(Rare large angle deflections give non-Gaussian tail.) 

Bad example:  energy loss of charged particle traversing thin 
gas layer.  (Rare collisions make up large fraction of energy loss, 
cf. Landau pdf.) 

For finite n, the theorem is approximately valid to the 
extent that the fluctuation of  the sum is not dominated by 
one (or few) terms.  

Beware of measurement errors with non-Gaussian tails. 
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Chi-square (χ2) distribution 
The chi-square pdf for the continuous r.v. z  (z ≥ 0) is defined by 

n = 1, 2, ... =  number of ‘degrees of 
                       freedom’ (dof) 

For independent Gaussian xi, i = 1, ..., n, means µi, variances σi2, 

follows χ2 pdf with n dof. 

Example:  goodness-of-fit test variable especially in conjunction 
with method of least squares. 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
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where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
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where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Pearson χ2 

yi=E[ni] 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY
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where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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general between an experiment and another. The ni are independent and have
poissonian distributions:
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where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Neiman χ2 
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general between an experiment and another. The ni are independent and have
poissonian distributions:
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where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):

(105) Lm(n/y) = N !
MY

i=1

pni

i

ni!
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yni

i

ni!N
n
i

0

while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:

(106) Lp(n/y) =
MY

i=1

e�y
iyni

i

ni!

It is interesting to look at the relation between the two likelihoods. We observe first that
the multinomial likelihood Lm can be written as:

(107) Lm(n/y) = N !
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i
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On the other hand

(108) Lp(n/y) = e�N0
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i
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e�N0NN
0

N !
Lm(n/y)

that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):

(105) Lm(n/y) = N !
MY

i=1

pni
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while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:

(106) Lp(n/y) =
MY

i=1

e�y
iyni

i

ni!

It is interesting to look at the relation between the two likelihoods. We observe first that
the multinomial likelihood Lm can be written as:

(107) Lm(n/y) = N !
MY
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On the other hand

(108) Lp(n/y) = e�N0

MY

i=1
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=

e�N0NN
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that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
P =

MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):

(105) Lm(n/y) = N !
MY
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pni

i

ni!
= N !

MY

i=1

yni

i
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while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:

(106) Lp(n/y) =
MY

i=1

e�y
iyni

i

ni!

It is interesting to look at the relation between the two likelihoods. We observe first that
the multinomial likelihood Lm can be written as:

(107) Lm(n/y) = N !
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On the other hand

(108) Lp(n/y) = e�N0
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that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):

(105) Lm(n/y) = N !
MY

i=1

pni

i

ni!
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MY
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yni

i
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while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:

(106) Lp(n/y) =
MY

i=1

e�y
iyni

i

ni!

It is interesting to look at the relation between the two likelihoods. We observe first that
the multinomial likelihood Lm can be written as:
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On the other hand

(108) Lp(n/y) = e�N0
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that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.
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(negligible bin correlation assumed) 
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1
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i e��
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ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
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MX

i=1

(ni � yi)
2

yi
(103)

�2
N =

MX

i=1

(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

N not fixed (Poisson case) 
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):
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while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:

(106) Lp(n/y) =
MY

i=1
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iyni

i
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It is interesting to look at the relation between the two likelihoods. We observe first that
the multinomial likelihood Lm can be written as:
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On the other hand

(108) Lp(n/y) = e�N0
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that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY
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i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.
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In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

N not fixed (poisson case) 
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):
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while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:

(106) Lp(n/y) =
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i
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It is interesting to look at the relation between the two likelihoods. We observe first that
the multinomial likelihood Lm can be written as:
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On the other hand
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that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.

yi=λi 
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):
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while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:
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It is interesting to look at the relation between the two likelihoods. We observe first that
the multinomial likelihood Lm can be written as:
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On the other hand
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that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.
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The Neyman �2 is less well defined. In fact a �2 variable requires the gaussian �
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman �2 has also a �2 distribution. A
specific problem of the Neyman �2 is present when ni = 0. But again, for low statistics
histogram a di↵erent approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):
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while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:
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It is interesting to look at the relation between the two likelihoods. We observe first that
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that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for di↵erent values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman �2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
MY

i=1

�n
i

i e��
i

ni!

where �i is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1� pi)(97)

cov[ni, nj ] = �Npipj(98)

while for the Poisson distribution:

E[ni] = �i(99)

V ar[ni] = �i(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman �2.

�2
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(ni � yi)
2

yi
(103)

�2
N =
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(ni � yi)
2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson �2 is a statistics
following a �2 distribution with a number of degrees of freedom equal to M �K. Infact
we know that a �2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for �2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of �2

P is not exactly a �2 so that care is
needed in the result interpretation.

Which test statistics for the Likelihood function? 
 
The pdf of a likelihood function in general depends on the 
specific problem, and can be evaluated by means of  
a MonteCarlo simulation of the situation we are 
considering (TOY MC), i.e. simulations done for different values of 
the parameters θi
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The Wilks theorem states the following. Let’s consider our histogram and define
the expectation values ⌫i = E[ni] of the contents of each bin. The quantity

(109) �2
� = �2 ln

L(n/y)

L(n/⌫)

has a �2 pdf with M �K degrees of freedom in the asymptotic limit (⌫i are su�ciently
high to be considered gaussian). This theorem is very important because it allows us
to use likelihood ratios as test statistics of known pdf. Again, like in the case of the
Pearson �2, the statement is rigorously valid only in the asymptotic limit, but it has
a more general utility than the Pearson �2, since it is valid whatever is the statistical
model we consider.

In the following we evaluate �2
� for the poissonian histogram.
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Notice that the first term includes the theory (through the yi), while the second requires
the knowledge of the expectation values of the data. If we make the identification ⌫i = ni,
we get:
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By imposing ⌫i = ni eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is �2

� the better is the agreement between data and theory. For
yi = ni (perfect agreement) �2

� = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0�N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties �i done
for di↵erent values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/✓) possibly depending
on a set of parameters ✓, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:

(112) Lg(z/✓) =
MY

i=1

1p
2⇡�i

e
� (z

i

�f(x
i

/✓))2

2�2
i

This likelihood is used in many circumstances (linear fit, polynomial fit,...).
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The Wilks theorem states the following. Let’s consider our histogram and define
the expectation values ⌫i = E[ni] of the contents of each bin. The quantity
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has a �2 pdf with M �K degrees of freedom in the asymptotic limit (⌫i are su�ciently
high to be considered gaussian). This theorem is very important because it allows us
to use likelihood ratios as test statistics of known pdf. Again, like in the case of the
Pearson �2, the statement is rigorously valid only in the asymptotic limit, but it has
a more general utility than the Pearson �2, since it is valid whatever is the statistical
model we consider.

In the following we evaluate �2
� for the poissonian histogram.
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Notice that the first term includes the theory (through the yi), while the second requires
the knowledge of the expectation values of the data. If we make the identification ⌫i = ni,
we get:
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By imposing ⌫i = ni eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is �2

� the better is the agreement between data and theory. For
yi = ni (perfect agreement) �2

� = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0�N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties �i done
for di↵erent values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/✓) possibly depending
on a set of parameters ✓, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:

(112) Lg(z/✓) =
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This likelihood is used in many circumstances (linear fit, polynomial fit,...).
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The Wilks theorem states the following. Let’s consider our histogram and define
the expectation values ⌫i = E[ni] of the contents of each bin. The quantity

(109) �2
� = �2 ln

L(n/y)

L(n/⌫)

has a �2 pdf with M �K degrees of freedom in the asymptotic limit (⌫i are su�ciently
high to be considered gaussian). This theorem is very important because it allows us
to use likelihood ratios as test statistics of known pdf. Again, like in the case of the
Pearson �2, the statement is rigorously valid only in the asymptotic limit, but it has
a more general utility than the Pearson �2, since it is valid whatever is the statistical
model we consider.

In the following we evaluate �2
� for the poissonian histogram.
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Notice that the first term includes the theory (through the yi), while the second requires
the knowledge of the expectation values of the data. If we make the identification ⌫i = ni,
we get:
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By imposing ⌫i = ni eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is �2

� the better is the agreement between data and theory. For
yi = ni (perfect agreement) �2

� = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0�N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties �i done
for di↵erent values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/✓) possibly depending
on a set of parameters ✓, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:

(112) Lg(z/✓) =
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This likelihood is used in many circumstances (linear fit, polynomial fit,...).

( νi gaussians) 

⇒ We can use Likelihood ratios as test statistics with known pdf, more general 
than Pearson χ2, it holds in asymp. limit but whatever is the stat. model. 
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Connection with the 
Neyman-Pearson Lemma 

23

and type-II errors. We call ↵ and � respectively the probabilities associated to the two
kinds of errors:

(64) P (type� Ierrors) = 1� ✏ = ↵

(65) P (type� IIerrors) =
1

R
= �

Given the two hypotheses Hs and Hb and given a set of K discriminating variables x1,
x2,...xK , we can define the two ”likelihoods”

(66) L(x1, ..., xK/Hs) = P (x1, ...xK/Hs)

(67) L(x1, ..., xK/Hb) = P (x1, ...xK/Hb)

equal to the probabilities to have a given set of values xi given the two hypotheses, and
the likelihood ratio defined as

(68) �(x1, ...xK) =
L(x1, ..., xK/Hs)

L(x1, ..., xK/Hb)

that is also a discriminating variable. The Neyman-Pearson Lemma states that, once ↵
is fixed, a selection based on � is the one that allows to have the lowest � value. This
theorem, even if of somehow di�cult use in practice, shows that the ”likelihood ratio”
is the most powerful quantity to discriminate between hypotheses. In the following we’ll
see several examples of likelihood ratios.
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and type-II errors. We call ↵ and � respectively the probabilities associated to the two
kinds of errors:

(64) P (type� Ierrors) = 1� ✏ = ↵

(65) P (type� IIerrors) =
1

R
= �

Given the two hypotheses Hs and Hb and given a set of K discriminating variables x1,
x2,...xK , we can define the two ”likelihoods”

(66) L(x1, ..., xK/Hs) = P (x1, ...xK/Hs)

(67) L(x1, ..., xK/Hb) = P (x1, ...xK/Hb)

equal to the probabilities to have a given set of values xi given the two hypotheses, and
the likelihood ratio defined as

(68) �(x1, ...xK) =
L(x1, ..., xK/Hs)

L(x1, ..., xK/Hb)

that is also a discriminating variable. The Neyman-Pearson Lemma states that, once ↵
is fixed, a selection based on � is the one that allows to have the lowest � value. This
theorem, even if of somehow di�cult use in practice, shows that the ”likelihood ratio”
is the most powerful quantity to discriminate between hypotheses. In the following we’ll
see several examples of likelihood ratios.

Neyman-Pearson Lemma: 
For fixed α value, a selection based on the discriminant variable λ has the lowest β value. 
 
=> The “likelihood ratio” is the most powerful quantity to discriminate between hypotheses. 
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The Wilks theorem states the following. Let’s consider our histogram and define
the expectation values ⌫i = E[ni] of the contents of each bin. The quantity

(109) �2
� = �2 ln

L(n/y)

L(n/⌫)

has a �2 pdf with M �K degrees of freedom in the asymptotic limit (⌫i are su�ciently
high to be considered gaussian). This theorem is very important because it allows us
to use likelihood ratios as test statistics of known pdf. Again, like in the case of the
Pearson �2, the statement is rigorously valid only in the asymptotic limit, but it has
a more general utility than the Pearson �2, since it is valid whatever is the statistical
model we consider.

In the following we evaluate �2
� for the poissonian histogram.
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Notice that the first term includes the theory (through the yi), while the second requires
the knowledge of the expectation values of the data. If we make the identification ⌫i = ni,
we get:
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By imposing ⌫i = ni eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is �2

� the better is the agreement between data and theory. For
yi = ni (perfect agreement) �2

� = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0�N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties �i done
for di↵erent values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/✓) possibly depending
on a set of parameters ✓, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:

(112) Lg(z/✓) =
MY

i=1

1p
2⇡�i
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i
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i

/✓))2

2�2
i

This likelihood is used in many circumstances (linear fit, polynomial fit,...).
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The Wilks theorem states the following. Let’s consider our histogram and define
the expectation values ⌫i = E[ni] of the contents of each bin. The quantity

(109) �2
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has a �2 pdf with M �K degrees of freedom in the asymptotic limit (⌫i are su�ciently
high to be considered gaussian). This theorem is very important because it allows us
to use likelihood ratios as test statistics of known pdf. Again, like in the case of the
Pearson �2, the statement is rigorously valid only in the asymptotic limit, but it has
a more general utility than the Pearson �2, since it is valid whatever is the statistical
model we consider.

In the following we evaluate �2
� for the poissonian histogram.
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Notice that the first term includes the theory (through the yi), while the second requires
the knowledge of the expectation values of the data. If we make the identification ⌫i = ni,
we get:
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By imposing ⌫i = ni eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is �2

� the better is the agreement between data and theory. For
yi = ni (perfect agreement) �2

� = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0�N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties �i done
for di↵erent values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/✓) possibly depending
on a set of parameters ✓, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:
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This likelihood is used in many circumstances (linear fit, polynomial fit,...).
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The Wilks theorem states the following. Let’s consider our histogram and define
the expectation values ⌫i = E[ni] of the contents of each bin. The quantity
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� = �2 ln
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has a �2 pdf with M �K degrees of freedom in the asymptotic limit (⌫i are su�ciently
high to be considered gaussian). This theorem is very important because it allows us
to use likelihood ratios as test statistics of known pdf. Again, like in the case of the
Pearson �2, the statement is rigorously valid only in the asymptotic limit, but it has
a more general utility than the Pearson �2, since it is valid whatever is the statistical
model we consider.

In the following we evaluate �2
� for the poissonian histogram.
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Notice that the first term includes the theory (through the yi), while the second requires
the knowledge of the expectation values of the data. If we make the identification ⌫i = ni,
we get:
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By imposing ⌫i = ni eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is �2

� the better is the agreement between data and theory. For
yi = ni (perfect agreement) �2

� = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0�N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties �i done
for di↵erent values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/✓) possibly depending
on a set of parameters ✓, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:
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This likelihood is used in many circumstances (linear fit, polynomial fit,...).
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The Wilks theorem states the following. Let’s consider our histogram and define
the expectation values ⌫i = E[ni] of the contents of each bin. The quantity
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has a �2 pdf with M �K degrees of freedom in the asymptotic limit (⌫i are su�ciently
high to be considered gaussian). This theorem is very important because it allows us
to use likelihood ratios as test statistics of known pdf. Again, like in the case of the
Pearson �2, the statement is rigorously valid only in the asymptotic limit, but it has
a more general utility than the Pearson �2, since it is valid whatever is the statistical
model we consider.

In the following we evaluate �2
� for the poissonian histogram.
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Notice that the first term includes the theory (through the yi), while the second requires
the knowledge of the expectation values of the data. If we make the identification ⌫i = ni,
we get:
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By imposing ⌫i = ni eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is �2

� the better is the agreement between data and theory. For
yi = ni (perfect agreement) �2

� = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0�N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties �i done
for di↵erent values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/✓) possibly depending
on a set of parameters ✓, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:
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This likelihood is used in many circumstances (linear fit, polynomial fit,...).
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Let’s now apply the Wilks theorem to this case. For the gaussian measurements we
make the identification ⌫i = E[zi] = zi and we get:
(113)
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The test statistics obtained here is a �2, typically used in the context of the so called
least squares method. So we have proved essentially that the least square method
can be derived through the Wilks theorem by a gaussian likelihood ratio model.

5.2.3. Unbinned data. In case we have a limited number N of events so that any binning
will bring us to small values of bin contents, a di↵erent approach can be used, equally
relying on the likelihood method: we can fit the unbinned data. In other words we
build our likelihood function directly considering the probability of each single event. If
we call H our hypothesis (eventually depending on a set of K parameters ✓), xi with
i=1, ...N the values of the variable x for the N events and f(x/✓) the pdf of x given the
hypothesis H, the likelihood can be written as:

(114) L(x/H) =
NY

i=1

f(xi/✓)

valid in case the events are not correlated. Notice that in this case the product runs
on the events, not on the bins as in the previous case. If N is not fixed but fluctuates
we can include ”by hand” in the likelihood, the poissonian fluctuation of N around an
expectation value that we call N0 (eventually an additional parameter to be fit)20:

(115) L(x/H) =
e�N0NN

0

N !

NY

i=1

f(xi/✓)

This is called extended likelihood.
The - logarithm of the likelihood is used in most cases21:

(116) � lnL(x/H) = �
NX

i=1

ln f(xi/✓)

5.2.4. Fit of correlated data. By using the product of the probability functions to write
down the likelihood, we are assuming no correlation between bins (in case of histograms)
or between events (in case of unbinned fits). In general it is possible to take into account
properly the correlation between measurements in the definition of a likelihood function.
We see how this happens in a simple case. Assume that our gaussian measurements of
zi (see above) are not independent. In this case the likelihood cannot be decomposed in
the product of single likelihoods, but a ”joint likelihood” L(z, /✓) is defined, including
the covariance matrix Vij between the measurements. The covariance matrix has the

20Notice the similarity with the considerations done for eq.108.
21The use of the logarithm of the likelihood that we have seen here and also in previous examples,

is motivated by the logarithm properties. In particular the fact that a product becomes a sum, and the
exponential becomes linear. On the other hand taking the logarithm of a function doesn’t change the
positions of its maxima and minima.
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Let’s now apply the Wilks theorem to this case. For the gaussian measurements we
make the identification ⌫i = E[zi] = zi and we get:
(113)

�2
� = �2 ln

MY

i=1

1p
2⇡�i

e
� (z

i

�f(x
i

/✓))2

2�2
i + 2 ln

MY

i=1

1p
2⇡�i

e
� (z

i

�z

i

)2

2�2
i =

MX

i=1

(zi � f(xi/✓))
2

�2
i

The test statistics obtained here is a �2, typically used in the context of the so called
least squares method. So we have proved essentially that the least square method
can be derived through the Wilks theorem by a gaussian likelihood ratio model.

5.2.3. Unbinned data. In case we have a limited number N of events so that any binning
will bring us to small values of bin contents, a di↵erent approach can be used, equally
relying on the likelihood method: we can fit the unbinned data. In other words we
build our likelihood function directly considering the probability of each single event. If
we call H our hypothesis (eventually depending on a set of K parameters ✓), xi with
i=1, ...N the values of the variable x for the N events and f(x/✓) the pdf of x given the
hypothesis H, the likelihood can be written as:

(114) L(x/H) =
NY

i=1

f(xi/✓)

valid in case the events are not correlated. Notice that in this case the product runs
on the events, not on the bins as in the previous case. If N is not fixed but fluctuates
we can include ”by hand” in the likelihood, the poissonian fluctuation of N around an
expectation value that we call N0 (eventually an additional parameter to be fit)20:

(115) L(x/H) =
e�N0NN

0

N !

NY

i=1

f(xi/✓)

This is called extended likelihood.
The - logarithm of the likelihood is used in most cases21:

(116) � lnL(x/H) = �
NX

i=1

ln f(xi/✓)

5.2.4. Fit of correlated data. By using the product of the probability functions to write
down the likelihood, we are assuming no correlation between bins (in case of histograms)
or between events (in case of unbinned fits). In general it is possible to take into account
properly the correlation between measurements in the definition of a likelihood function.
We see how this happens in a simple case. Assume that our gaussian measurements of
zi (see above) are not independent. In this case the likelihood cannot be decomposed in
the product of single likelihoods, but a ”joint likelihood” L(z, /✓) is defined, including
the covariance matrix Vij between the measurements. The covariance matrix has the

20Notice the similarity with the considerations done for eq.108.
21The use of the logarithm of the likelihood that we have seen here and also in previous examples,

is motivated by the logarithm properties. In particular the fact that a product becomes a sum, and the
exponential becomes linear. On the other hand taking the logarithm of a function doesn’t change the
positions of its maxima and minima.
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Let’s now apply the Wilks theorem to this case. For the gaussian measurements we
make the identification ⌫i = E[zi] = zi and we get:
(113)
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The test statistics obtained here is a �2, typically used in the context of the so called
least squares method. So we have proved essentially that the least square method
can be derived through the Wilks theorem by a gaussian likelihood ratio model.

5.2.3. Unbinned data. In case we have a limited number N of events so that any binning
will bring us to small values of bin contents, a di↵erent approach can be used, equally
relying on the likelihood method: we can fit the unbinned data. In other words we
build our likelihood function directly considering the probability of each single event. If
we call H our hypothesis (eventually depending on a set of K parameters ✓), xi with
i=1, ...N the values of the variable x for the N events and f(x/✓) the pdf of x given the
hypothesis H, the likelihood can be written as:

(114) L(x/H) =
NY

i=1

f(xi/✓)

valid in case the events are not correlated. Notice that in this case the product runs
on the events, not on the bins as in the previous case. If N is not fixed but fluctuates
we can include ”by hand” in the likelihood, the poissonian fluctuation of N around an
expectation value that we call N0 (eventually an additional parameter to be fit)20:

(115) L(x/H) =
e�N0NN

0

N !

NY

i=1

f(xi/✓)

This is called extended likelihood.
The - logarithm of the likelihood is used in most cases21:

(116) � lnL(x/H) = �
NX

i=1

ln f(xi/✓)

5.2.4. Fit of correlated data. By using the product of the probability functions to write
down the likelihood, we are assuming no correlation between bins (in case of histograms)
or between events (in case of unbinned fits). In general it is possible to take into account
properly the correlation between measurements in the definition of a likelihood function.
We see how this happens in a simple case. Assume that our gaussian measurements of
zi (see above) are not independent. In this case the likelihood cannot be decomposed in
the product of single likelihoods, but a ”joint likelihood” L(z, /✓) is defined, including
the covariance matrix Vij between the measurements. The covariance matrix has the

20Notice the similarity with the considerations done for eq.108.
21The use of the logarithm of the likelihood that we have seen here and also in previous examples,

is motivated by the logarithm properties. In particular the fact that a product becomes a sum, and the
exponential becomes linear. On the other hand taking the logarithm of a function doesn’t change the
positions of its maxima and minima.
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parameters variances in the diagonal elements and the covariances in the o↵-diagonal
elements. Starting from the joint likelihood of the measurement, we build the likelihood
ratio and in the end we are left with the final �2:

(117) �2 =
MX

j,k=1

(zj � f(xj/✓))V
�1
jk (zk � f(xk/✓))

that is still a �2 variable with M �K degrees of freedom.

5.2.5. Summary. We have seen how to build a test statistics to describe the agreement
between the data and a theory. We have seen that under general hypotheses it is possible
to build a test statistics of known pdf (typically a �2). In case this is not possible, we can
always relay on a Montecarlo simulation including the model and all detector e↵ects, to
get the sample statistics pdf when the hypothesis is verified. In general the Montecarlo
allows to have large statistics, typically much larger than those that can be obtained
using data, so that in the end only systematic errors will be significant for Montecarlo-
based calculations.

Now we have to see how to use this test statistics in a fit. We’ll see first how to use it
to test the hypothesis of our theory, then we’ll see how to use it to get the best estimate
of the parameters ✓.

5.3. Goodness-of-fit tests. Suppose we have an hypothesis we want to test, we call
it H0 and we name it null hypothesis. The fit has been done and we have obtained a
value t⇤ for the test statistics. In the fit procedure we might have obtained values of the
parameters as will be discussed below. But now we concentrate on the output value of
the test statistics. We want to extract from this value an assessment on the goodness-
of-fit. As discussed in the previous section, in order to make such an assessment, we
have to know the distribution of the test statistics t for the given hypothesis. Suppose we
have it, f(t/H0). Fig.9 shows an example of t distribution, namely a �2 with 5 degrees
of freedom. For any given value of t = t⇤ we can evaluate the so-called ”p-value” p0:

(118) p0 =

Z 1

t⇤
f (t/H0) dt

that gives the probability that, if H0 is true, the result of the experiment will fluctuate
as much or more than t⇤. Let’s concentrate now on the meaning of this p-value. If H0 is
true and we repeat the experiment, p0 corresponds to the fraction of times we will get
t > t⇤. If this number is low, either the hypothesis is wrong or there was an anomalous
large fluctuation. In other words we are on the right tail of the distribution. So we can
put a limit on the acceptable values of p0: if p0 is less than, say 5% or 1% we will reject
the null hypothesis, if it is larger than the same limit we will say on the contrary that
the null hypothesis is corroborated. The choice of the limit (5, 1 or 0.1%) depends on
the nature of the problem, and on the degree we decide to be severe with the results we
are considering.

Notice that the p-value, being a function of the data, is a random variable itself. It
is easy to demonstrate that, if H0 is true, p0 has a uniform pdf between 0 and 1. Infact
if we call f(t) a generic pdf of a random variable t, F (t) its integral (normally called
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Figure 9. �2 distribution for 5 degrees of freedom. The case of t⇤ = 8.2
is illustrated. The blue hatched area correspond to the p0 value.

”primitive function” corresponding to the p-value we are talking about) and g(F ) the
pdf of the primitive, we have:

(119) g(F )dF = f(t)dt

so that

(120) g(F ) =
f(t)

dF/dt
=

f(t)

f(t)
= 1

since by definition dF/dt = f(t).
So that by repeating many times the same experiment, all p-values are obtained with

the same probability. From this point of view, very small p-values are as probable as
p-values close to 122.

What can we say if p0 is close to 1? In some situations we can prefer to reject also p0
values close to 1. In this case we have indeed a 2-tails test, where our test statistics is
defined in such a way that only values within a certain range are allowed. For example
we will accept the hypothesis if the p-value is between, say 5% and 95% or any other
interval we define. The choice of making a 2-tails or 1-tail hypothesis test depends

22This statement could be considered paradoxical. One could say that given this fact the p-value is not
useful to discriminate between hypotheses. However we have always to remind that while for the good
hypothesis all p-values are equally probable, for the ”wrong” hypothesis most of them are concentrated
very close to 0, so that low values of p0 correspond to situations that could be easily described by the
alternative hypothesis.
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parameters variances in the diagonal elements and the covariances in the o↵-diagonal
elements. Starting from the joint likelihood of the measurement, we build the likelihood
ratio and in the end we are left with the final �2:

(117) �2 =
MX

j,k=1

(zj � f(xj/✓))V
�1
jk (zk � f(xk/✓))

that is still a �2 variable with M �K degrees of freedom.

5.2.5. Summary. We have seen how to build a test statistics to describe the agreement
between the data and a theory. We have seen that under general hypotheses it is possible
to build a test statistics of known pdf (typically a �2). In case this is not possible, we can
always relay on a Montecarlo simulation including the model and all detector e↵ects, to
get the sample statistics pdf when the hypothesis is verified. In general the Montecarlo
allows to have large statistics, typically much larger than those that can be obtained
using data, so that in the end only systematic errors will be significant for Montecarlo-
based calculations.

Now we have to see how to use this test statistics in a fit. We’ll see first how to use it
to test the hypothesis of our theory, then we’ll see how to use it to get the best estimate
of the parameters ✓.

5.3. Goodness-of-fit tests. Suppose we have an hypothesis we want to test, we call
it H0 and we name it null hypothesis. The fit has been done and we have obtained a
value t⇤ for the test statistics. In the fit procedure we might have obtained values of the
parameters as will be discussed below. But now we concentrate on the output value of
the test statistics. We want to extract from this value an assessment on the goodness-
of-fit. As discussed in the previous section, in order to make such an assessment, we
have to know the distribution of the test statistics t for the given hypothesis. Suppose we
have it, f(t/H0). Fig.9 shows an example of t distribution, namely a �2 with 5 degrees
of freedom. For any given value of t = t⇤ we can evaluate the so-called ”p-value” p0:

(118) p0 =

Z 1

t⇤
f (t/H0) dt

that gives the probability that, if H0 is true, the result of the experiment will fluctuate
as much or more than t⇤. Let’s concentrate now on the meaning of this p-value. If H0 is
true and we repeat the experiment, p0 corresponds to the fraction of times we will get
t > t⇤. If this number is low, either the hypothesis is wrong or there was an anomalous
large fluctuation. In other words we are on the right tail of the distribution. So we can
put a limit on the acceptable values of p0: if p0 is less than, say 5% or 1% we will reject
the null hypothesis, if it is larger than the same limit we will say on the contrary that
the null hypothesis is corroborated. The choice of the limit (5, 1 or 0.1%) depends on
the nature of the problem, and on the degree we decide to be severe with the results we
are considering.

Notice that the p-value, being a function of the data, is a random variable itself. It
is easy to demonstrate that, if H0 is true, p0 has a uniform pdf between 0 and 1. Infact
if we call f(t) a generic pdf of a random variable t, F (t) its integral (normally called

P-value 
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parameters variances in the diagonal elements and the covariances in the o↵-diagonal
elements. Starting from the joint likelihood of the measurement, we build the likelihood
ratio and in the end we are left with the final �2:

(117) �2 =
MX

j,k=1

(zj � f(xj/✓))V
�1
jk (zk � f(xk/✓))

that is still a �2 variable with M �K degrees of freedom.

5.2.5. Summary. We have seen how to build a test statistics to describe the agreement
between the data and a theory. We have seen that under general hypotheses it is possible
to build a test statistics of known pdf (typically a �2). In case this is not possible, we can
always relay on a Montecarlo simulation including the model and all detector e↵ects, to
get the sample statistics pdf when the hypothesis is verified. In general the Montecarlo
allows to have large statistics, typically much larger than those that can be obtained
using data, so that in the end only systematic errors will be significant for Montecarlo-
based calculations.

Now we have to see how to use this test statistics in a fit. We’ll see first how to use it
to test the hypothesis of our theory, then we’ll see how to use it to get the best estimate
of the parameters ✓.

5.3. Goodness-of-fit tests. Suppose we have an hypothesis we want to test, we call
it H0 and we name it null hypothesis. The fit has been done and we have obtained a
value t⇤ for the test statistics. In the fit procedure we might have obtained values of the
parameters as will be discussed below. But now we concentrate on the output value of
the test statistics. We want to extract from this value an assessment on the goodness-
of-fit. As discussed in the previous section, in order to make such an assessment, we
have to know the distribution of the test statistics t for the given hypothesis. Suppose we
have it, f(t/H0). Fig.9 shows an example of t distribution, namely a �2 with 5 degrees
of freedom. For any given value of t = t⇤ we can evaluate the so-called ”p-value” p0:

(118) p0 =

Z 1

t⇤
f (t/H0) dt

that gives the probability that, if H0 is true, the result of the experiment will fluctuate
as much or more than t⇤. Let’s concentrate now on the meaning of this p-value. If H0 is
true and we repeat the experiment, p0 corresponds to the fraction of times we will get
t > t⇤. If this number is low, either the hypothesis is wrong or there was an anomalous
large fluctuation. In other words we are on the right tail of the distribution. So we can
put a limit on the acceptable values of p0: if p0 is less than, say 5% or 1% we will reject
the null hypothesis, if it is larger than the same limit we will say on the contrary that
the null hypothesis is corroborated. The choice of the limit (5, 1 or 0.1%) depends on
the nature of the problem, and on the degree we decide to be severe with the results we
are considering.

Notice that the p-value, being a function of the data, is a random variable itself. It
is easy to demonstrate that, if H0 is true, p0 has a uniform pdf between 0 and 1. Infact
if we call f(t) a generic pdf of a random variable t, F (t) its integral (normally called
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parameters variances in the diagonal elements and the covariances in the o↵-diagonal
elements. Starting from the joint likelihood of the measurement, we build the likelihood
ratio and in the end we are left with the final �2:

(117) �2 =
MX

j,k=1

(zj � f(xj/✓))V
�1
jk (zk � f(xk/✓))

that is still a �2 variable with M �K degrees of freedom.

5.2.5. Summary. We have seen how to build a test statistics to describe the agreement
between the data and a theory. We have seen that under general hypotheses it is possible
to build a test statistics of known pdf (typically a �2). In case this is not possible, we can
always relay on a Montecarlo simulation including the model and all detector e↵ects, to
get the sample statistics pdf when the hypothesis is verified. In general the Montecarlo
allows to have large statistics, typically much larger than those that can be obtained
using data, so that in the end only systematic errors will be significant for Montecarlo-
based calculations.

Now we have to see how to use this test statistics in a fit. We’ll see first how to use it
to test the hypothesis of our theory, then we’ll see how to use it to get the best estimate
of the parameters ✓.

5.3. Goodness-of-fit tests. Suppose we have an hypothesis we want to test, we call
it H0 and we name it null hypothesis. The fit has been done and we have obtained a
value t⇤ for the test statistics. In the fit procedure we might have obtained values of the
parameters as will be discussed below. But now we concentrate on the output value of
the test statistics. We want to extract from this value an assessment on the goodness-
of-fit. As discussed in the previous section, in order to make such an assessment, we
have to know the distribution of the test statistics t for the given hypothesis. Suppose we
have it, f(t/H0). Fig.9 shows an example of t distribution, namely a �2 with 5 degrees
of freedom. For any given value of t = t⇤ we can evaluate the so-called ”p-value” p0:

(118) p0 =

Z 1

t⇤
f (t/H0) dt

that gives the probability that, if H0 is true, the result of the experiment will fluctuate
as much or more than t⇤. Let’s concentrate now on the meaning of this p-value. If H0 is
true and we repeat the experiment, p0 corresponds to the fraction of times we will get
t > t⇤. If this number is low, either the hypothesis is wrong or there was an anomalous
large fluctuation. In other words we are on the right tail of the distribution. So we can
put a limit on the acceptable values of p0: if p0 is less than, say 5% or 1% we will reject
the null hypothesis, if it is larger than the same limit we will say on the contrary that
the null hypothesis is corroborated. The choice of the limit (5, 1 or 0.1%) depends on
the nature of the problem, and on the degree we decide to be severe with the results we
are considering.

Notice that the p-value, being a function of the data, is a random variable itself. It
is easy to demonstrate that, if H0 is true, p0 has a uniform pdf between 0 and 1. Infact
if we call f(t) a generic pdf of a random variable t, F (t) its integral (normally called

p0 ≈0  => rejection of null H0 hypothesis,  
i.e. scarce agreement data-theory 
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Figure 9. �2 distribution for 5 degrees of freedom. The case of t⇤ = 8.2
is illustrated. The blue hatched area correspond to the p0 value.

”primitive function” corresponding to the p-value we are talking about) and g(F ) the
pdf of the primitive, we have:

(119) g(F )dF = f(t)dt

so that

(120) g(F ) =
f(t)

dF/dt
=

f(t)

f(t)
= 1

since by definition dF/dt = f(t).
So that by repeating many times the same experiment, all p-values are obtained with

the same probability. From this point of view, very small p-values are as probable as
p-values close to 122.

What can we say if p0 is close to 1? In some situations we can prefer to reject also p0
values close to 1. In this case we have indeed a 2-tails test, where our test statistics is
defined in such a way that only values within a certain range are allowed. For example
we will accept the hypothesis if the p-value is between, say 5% and 95% or any other
interval we define. The choice of making a 2-tails or 1-tail hypothesis test depends

22This statement could be considered paradoxical. One could say that given this fact the p-value is not
useful to discriminate between hypotheses. However we have always to remind that while for the good
hypothesis all p-values are equally probable, for the ”wrong” hypothesis most of them are concentrated
very close to 0, so that low values of p0 correspond to situations that could be easily described by the
alternative hypothesis.
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parameters variances in the diagonal elements and the covariances in the o↵-diagonal
elements. Starting from the joint likelihood of the measurement, we build the likelihood
ratio and in the end we are left with the final �2:

(117) �2 =
MX

j,k=1

(zj � f(xj/✓))V
�1
jk (zk � f(xk/✓))

that is still a �2 variable with M �K degrees of freedom.

5.2.5. Summary. We have seen how to build a test statistics to describe the agreement
between the data and a theory. We have seen that under general hypotheses it is possible
to build a test statistics of known pdf (typically a �2). In case this is not possible, we can
always relay on a Montecarlo simulation including the model and all detector e↵ects, to
get the sample statistics pdf when the hypothesis is verified. In general the Montecarlo
allows to have large statistics, typically much larger than those that can be obtained
using data, so that in the end only systematic errors will be significant for Montecarlo-
based calculations.

Now we have to see how to use this test statistics in a fit. We’ll see first how to use it
to test the hypothesis of our theory, then we’ll see how to use it to get the best estimate
of the parameters ✓.

5.3. Goodness-of-fit tests. Suppose we have an hypothesis we want to test, we call
it H0 and we name it null hypothesis. The fit has been done and we have obtained a
value t⇤ for the test statistics. In the fit procedure we might have obtained values of the
parameters as will be discussed below. But now we concentrate on the output value of
the test statistics. We want to extract from this value an assessment on the goodness-
of-fit. As discussed in the previous section, in order to make such an assessment, we
have to know the distribution of the test statistics t for the given hypothesis. Suppose we
have it, f(t/H0). Fig.9 shows an example of t distribution, namely a �2 with 5 degrees
of freedom. For any given value of t = t⇤ we can evaluate the so-called ”p-value” p0:

(118) p0 =

Z 1

t⇤
f (t/H0) dt

that gives the probability that, if H0 is true, the result of the experiment will fluctuate
as much or more than t⇤. Let’s concentrate now on the meaning of this p-value. If H0 is
true and we repeat the experiment, p0 corresponds to the fraction of times we will get
t > t⇤. If this number is low, either the hypothesis is wrong or there was an anomalous
large fluctuation. In other words we are on the right tail of the distribution. So we can
put a limit on the acceptable values of p0: if p0 is less than, say 5% or 1% we will reject
the null hypothesis, if it is larger than the same limit we will say on the contrary that
the null hypothesis is corroborated. The choice of the limit (5, 1 or 0.1%) depends on
the nature of the problem, and on the degree we decide to be severe with the results we
are considering.

Notice that the p-value, being a function of the data, is a random variable itself. It
is easy to demonstrate that, if H0 is true, p0 has a uniform pdf between 0 and 1. Infact
if we call f(t) a generic pdf of a random variable t, F (t) its integral (normally called
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Figure 9. �2 distribution for 5 degrees of freedom. The case of t⇤ = 8.2
is illustrated. The blue hatched area correspond to the p0 value.

”primitive function” corresponding to the p-value we are talking about) and g(F ) the
pdf of the primitive, we have:

(119) g(F )dF = f(t)dt

so that

(120) g(F ) =
f(t)

dF/dt
=

f(t)

f(t)
= 1

since by definition dF/dt = f(t).
So that by repeating many times the same experiment, all p-values are obtained with

the same probability. From this point of view, very small p-values are as probable as
p-values close to 122.

What can we say if p0 is close to 1? In some situations we can prefer to reject also p0
values close to 1. In this case we have indeed a 2-tails test, where our test statistics is
defined in such a way that only values within a certain range are allowed. For example
we will accept the hypothesis if the p-value is between, say 5% and 95% or any other
interval we define. The choice of making a 2-tails or 1-tail hypothesis test depends

22This statement could be considered paradoxical. One could say that given this fact the p-value is not
useful to discriminate between hypotheses. However we have always to remind that while for the good
hypothesis all p-values are equally probable, for the ”wrong” hypothesis most of them are concentrated
very close to 0, so that low values of p0 correspond to situations that could be easily described by the
alternative hypothesis.
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parameters variances in the diagonal elements and the covariances in the o↵-diagonal
elements. Starting from the joint likelihood of the measurement, we build the likelihood
ratio and in the end we are left with the final �2:

(117) �2 =
MX

j,k=1

(zj � f(xj/✓))V
�1
jk (zk � f(xk/✓))

that is still a �2 variable with M �K degrees of freedom.

5.2.5. Summary. We have seen how to build a test statistics to describe the agreement
between the data and a theory. We have seen that under general hypotheses it is possible
to build a test statistics of known pdf (typically a �2). In case this is not possible, we can
always relay on a Montecarlo simulation including the model and all detector e↵ects, to
get the sample statistics pdf when the hypothesis is verified. In general the Montecarlo
allows to have large statistics, typically much larger than those that can be obtained
using data, so that in the end only systematic errors will be significant for Montecarlo-
based calculations.

Now we have to see how to use this test statistics in a fit. We’ll see first how to use it
to test the hypothesis of our theory, then we’ll see how to use it to get the best estimate
of the parameters ✓.

5.3. Goodness-of-fit tests. Suppose we have an hypothesis we want to test, we call
it H0 and we name it null hypothesis. The fit has been done and we have obtained a
value t⇤ for the test statistics. In the fit procedure we might have obtained values of the
parameters as will be discussed below. But now we concentrate on the output value of
the test statistics. We want to extract from this value an assessment on the goodness-
of-fit. As discussed in the previous section, in order to make such an assessment, we
have to know the distribution of the test statistics t for the given hypothesis. Suppose we
have it, f(t/H0). Fig.9 shows an example of t distribution, namely a �2 with 5 degrees
of freedom. For any given value of t = t⇤ we can evaluate the so-called ”p-value” p0:

(118) p0 =

Z 1

t⇤
f (t/H0) dt

that gives the probability that, if H0 is true, the result of the experiment will fluctuate
as much or more than t⇤. Let’s concentrate now on the meaning of this p-value. If H0 is
true and we repeat the experiment, p0 corresponds to the fraction of times we will get
t > t⇤. If this number is low, either the hypothesis is wrong or there was an anomalous
large fluctuation. In other words we are on the right tail of the distribution. So we can
put a limit on the acceptable values of p0: if p0 is less than, say 5% or 1% we will reject
the null hypothesis, if it is larger than the same limit we will say on the contrary that
the null hypothesis is corroborated. The choice of the limit (5, 1 or 0.1%) depends on
the nature of the problem, and on the degree we decide to be severe with the results we
are considering.

Notice that the p-value, being a function of the data, is a random variable itself. It
is easy to demonstrate that, if H0 is true, p0 has a uniform pdf between 0 and 1. Infact
if we call f(t) a generic pdf of a random variable t, F (t) its integral (normally called

f(t) pdf of t  
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Figure 9. �2 distribution for 5 degrees of freedom. The case of t⇤ = 8.2
is illustrated. The blue hatched area correspond to the p0 value.
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so that
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dF/dt
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f(t)
= 1

since by definition dF/dt = f(t).
So that by repeating many times the same experiment, all p-values are obtained with

the same probability. From this point of view, very small p-values are as probable as
p-values close to 122.

What can we say if p0 is close to 1? In some situations we can prefer to reject also p0
values close to 1. In this case we have indeed a 2-tails test, where our test statistics is
defined in such a way that only values within a certain range are allowed. For example
we will accept the hypothesis if the p-value is between, say 5% and 95% or any other
interval we define. The choice of making a 2-tails or 1-tail hypothesis test depends

22This statement could be considered paradoxical. One could say that given this fact the p-value is not
useful to discriminate between hypotheses. However we have always to remind that while for the good
hypothesis all p-values are equally probable, for the ”wrong” hypothesis most of them are concentrated
very close to 0, so that low values of p0 correspond to situations that could be easily described by the
alternative hypothesis.
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22This statement could be considered paradoxical. One could say that given this fact the p-value is not
useful to discriminate between hypotheses. However we have always to remind that while for the good
hypothesis all p-values are equally probable, for the ”wrong” hypothesis most of them are concentrated
very close to 0, so that low values of p0 correspond to situations that could be easily described by the
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parameters variances in the diagonal elements and the covariances in the o↵-diagonal
elements. Starting from the joint likelihood of the measurement, we build the likelihood
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5.2.5. Summary. We have seen how to build a test statistics to describe the agreement
between the data and a theory. We have seen that under general hypotheses it is possible
to build a test statistics of known pdf (typically a �2). In case this is not possible, we can
always relay on a Montecarlo simulation including the model and all detector e↵ects, to
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allows to have large statistics, typically much larger than those that can be obtained
using data, so that in the end only systematic errors will be significant for Montecarlo-
based calculations.

Now we have to see how to use this test statistics in a fit. We’ll see first how to use it
to test the hypothesis of our theory, then we’ll see how to use it to get the best estimate
of the parameters ✓.

5.3. Goodness-of-fit tests. Suppose we have an hypothesis we want to test, we call
it H0 and we name it null hypothesis. The fit has been done and we have obtained a
value t⇤ for the test statistics. In the fit procedure we might have obtained values of the
parameters as will be discussed below. But now we concentrate on the output value of
the test statistics. We want to extract from this value an assessment on the goodness-
of-fit. As discussed in the previous section, in order to make such an assessment, we
have to know the distribution of the test statistics t for the given hypothesis. Suppose we
have it, f(t/H0). Fig.9 shows an example of t distribution, namely a �2 with 5 degrees
of freedom. For any given value of t = t⇤ we can evaluate the so-called ”p-value” p0:
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that gives the probability that, if H0 is true, the result of the experiment will fluctuate
as much or more than t⇤. Let’s concentrate now on the meaning of this p-value. If H0 is
true and we repeat the experiment, p0 corresponds to the fraction of times we will get
t > t⇤. If this number is low, either the hypothesis is wrong or there was an anomalous
large fluctuation. In other words we are on the right tail of the distribution. So we can
put a limit on the acceptable values of p0: if p0 is less than, say 5% or 1% we will reject
the null hypothesis, if it is larger than the same limit we will say on the contrary that
the null hypothesis is corroborated. The choice of the limit (5, 1 or 0.1%) depends on
the nature of the problem, and on the degree we decide to be severe with the results we
are considering.

Notice that the p-value, being a function of the data, is a random variable itself. It
is easy to demonstrate that, if H0 is true, p0 has a uniform pdf between 0 and 1. Infact
if we call f(t) a generic pdf of a random variable t, F (t) its integral (normally called

The P-value is a random variable itself uniformly distributed between 0 and 1: 

All p-values are equally probable!  e.g. p0 ≈0 or p0 ≈1 
If H0 is true, if H0 is false usually p0 ≈0. 
 
What if p0 ≈1 ? 
 
 p0 ≈1  => underfluctuations of experimental points or overestimate 

  of the uncertainties , i.e. scarce self-consistency of data 
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since by definition dF/dt = f(t).
So that by repeating many times the same experiment, all p-values are obtained with

the same probability. From this point of view, very small p-values are as probable as
p-values close to 122.

What can we say if p0 is close to 1? In some situations we can prefer to reject also p0
values close to 1. In this case we have indeed a 2-tails test, where our test statistics is
defined in such a way that only values within a certain range are allowed. For example
we will accept the hypothesis if the p-value is between, say 5% and 95% or any other
interval we define. The choice of making a 2-tails or 1-tail hypothesis test depends

22This statement could be considered paradoxical. One could say that given this fact the p-value is not
useful to discriminate between hypotheses. However we have always to remind that while for the good
hypothesis all p-values are equally probable, for the ”wrong” hypothesis most of them are concentrated
very close to 0, so that low values of p0 correspond to situations that could be easily described by the
alternative hypothesis.



alternative one. The compatibility between these two numbers is studied using pseudo-experiments; the

difference in signal yield is found to correspond to 1.1 standard deviations.

The result of the fit to the spin-0 hypothesis in the nominal analysis is illustrated in Fig. 1. The

distribution of | cos θ∗| from the data (in the signal region only) is overlaid with the projection of the

signal and background components of the pdf.
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Figure 1: Observed numbers of events (dots) in the signal region as a function of | cos θ∗|, overlaid with

the projection of the signal (blue/dark band) and background (yellow/light band) components of the pdf

obtained from the inclusive fit of the data in the nominal analysis under the spin-0 hypothesis.

The | cos θ∗| distributions for the two analyses are shown after background subtraction in Fig. 2. Two

sets of points are obtained in each analysis, corresponding to the conditional fits assuming the spin-

0 or spin-2 shape of | cos θ∗| for signal events, with the background pdf and normalisation determined

independently in each fit. The expected distributions of spin-0 and spin-2 signals are also overlaid. The

cyan bands represent the (pre-fit) systematic uncertainties on the background modelling.

The expected distributions of the test statistics q defined in Eq. 2 for the spin-0 and spin-2 hypotheses

are shown in Fig. 3. Both are calculated from pseudo-experiments. The observed values in data are

indicated by the vertical black lines. The p-values are summarised in Table 3. In both analyses, the data

are compatible with the spin-0 hypothesis, whereas the spin-2 p-value is 0.3% (8.4%) for the nominal

(alternative) analysis leading to an exclusion limit of the spin-2 hypothesis of 99.3% confidence level

(89.4% CL). From pseudo-experiments studies, the probability to observe spin-2 p-values for the two

analyses as different as those observed in the data is computed to be about 10%.

As a cross-check, the de-correlation between mγγ and | cos θ∗| can also be enforced in the alternative

analysis by sharing the parameters of the background pdf amongst all bins of | cos θ∗|. In this case, the

invariant mass model of background events is the same one as in the nominal analysis (a fifth degree

polynomial) and the uncertainty on the background model is updated accordingly. The results obtained

in this check are similar to the ones of the nominal analysis.

By performing a series of checks such as repeating the alternative analysis using different functions

for the background model or enlarging the systematic uncertainties related to residual correlations in the

nominal analysis, one concludes that the de-correlation assumption between mγγ and | cos θ∗| is strongly

supported by the behaviour of the invariant mass sidebands in data. No bias at the level of, or beyond the

8

Example of two alternate hypotheses  H0 and H1 

In the two-body decay H → γγ, the spin information is extracted from the distribution of the polar angle θ∗ of the 
photons with respect to the z-axis of the Collins-Soper frame.  
 
 
 
 
With this choice, the impact of initial state radiation is expected to be minimized and a better discrimination power 
compared to other choices of axis, such as the beam axis or the boost axis of the particle, is achieved. A spin-0 particle 
decays isotropically in its rest frame; before any acceptance cuts, the distribution dN/d cos θ∗ is thus uniform. The 
corresponding distribution for a spin-2 particle follows a combination of Wigner functions for the production and decay 
whose probabilities are specified in particular models. 

Two photon candidates are selected in each event. Both are required to be in the fiducial region of the

electromagnetic calorimeter (|η| < 2.37), excluding the transition region between the barrel and endcap

calorimeters (1.37 < |η| < 1.56). Each photon is required to pass tight identification criteria based on

calorimeter shower shapes and to satisfy isolation cuts based on the scalar sum of the transverse energy

(momentum) around each photon measured in the calorimeters (inner detector) [14]. The leading and

sub-leading photons of each event are retained, and must satisfy ET > 35 GeV and 25 GeV, respectively.

The cuts on the transverse energies are lowered compared to the previous result [18] in order to maximize

the signal selection efficiency, as discussed below.

The diphoton invariant mass is calculated using the energies measured in the calorimeter and the

opening angle between the two photons, where the photon direction is reconstructed taking into account

the position of the diphoton vertex. The diphoton vertex in each event is selected from the reconstructed

vertices with at least three tracks with pT > 0.4 GeV each, using an artificial-neural-network algo-

rithm [14] that combines information provided by the electromagnetic calorimeter and the inner detector.

The efficiency for selecting vertices within 0.3 mm (15 mm) of the true production point is expected to

be around 82% (94%). The contribution of the vertex position resolution to the invariant mass resolution

is negligible. Candidates with diphoton invariant masses (mγγ) in the range 105–160 GeV are retained 2.

Within this range, a signal region is defined between 122–130 GeV and the sideband regions are defined

as 105 GeV < mγγ < 122 GeV and 130 GeV < mγγ < 160 GeV.

In addition to the selection outlined above, the leading and sub-leading photons are required to sat-

isfy p
γ1

T
/mγγ > 0.35 and p

γ2

T
/mγγ > 0.25, respectively, where p

γ
T

is the transverse energy of each photon

calculated using the vertex position. These cuts are introduced in order to minimize the correlation be-

tween mγγ and cos θ∗ induced by fixed cuts on the transverse momenta. The near absence of correlations

when using relative pT cuts is a consequence of the cos θ∗ definition in the Collins-Soper frame:

cos θ∗ =
sinh(ηγ1 − ηγ2)
√

1 +
(

p
γγ
T
/mγγ
)2
·

2p
γ1

T
p
γ2

T

m2
γγ

, (1)

where p
γγ
T

is the transverse momentum of the diphoton system. The residual correlation between | cos θ∗|
and mγγ is mainly due to the

(

p
γγ
T
/mγγ
)

term, which is negligible except at large values of | cos θ∗| where

only very high pT photon pairs pass the selection cuts.

The residual correlations are studied in detail using both the mass sidebands in data, and high statis-

tics background MC samples. The number of observed events in bins of mγγ × | cos θ∗| is compared

with the expected numbers from the product of the marginal distributions, obtained by projecting the

two-dimensional distributions (mγγ × | cos θ∗|) in either dimension (mγγ or | cos θ∗|). In background MC

samples, the residual correlations do not exceed the percent level in the range | cos θ∗| < 0.8. For higher

values of | cos θ∗|, remaining correlations of about 3–4% are observed in few mass bins. In the data mass

sidebands, no sign of residual correlation is visible within the available statistics (corresponding to an

uncertainty between 1 and 2–3%), except in the large | cos θ∗| region (at a similar level as in the MC).

This de-correlation simplifies the modelling of the | cos θ∗| distribution, as discussed below.

2The range of mγγ is reduced compared to the one used in previous result (100–160 GeV) due to the adoption of photon pT

cuts just above the trigger threshold in the present analysis.
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Figure 2: Distributions of background-subtracted data as a function of | cos θ∗| for the nominal analysis

(in (a), for the signal region only) and the alternative analysis (b). The two sets of points correspond to

the subtraction of the different profiled background shapes in the case of the conditional spin-0 and spin-2

fits (assuming the spin-0/spin-2 | cos θ∗| shapes). The spin-0 and spin-2 (produced by gluon fusion) pdfs

(normalized to the fitted number of signal events) are overlaid. The cyan bands around the horizontal

line at zero show the systematic uncertainties on the background modelling before the fits which, for the

nominal analysis, includes the statistical uncertainty on the data sidebands. The error bars on the points

reflect only the data statistics.
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Figure 3: Expected distributions of the test statistics q for the spin-0 and spin-2 (produced by gluon

fusion) hypotheses for the nominal (a) and alternative (b) analyses. The observed value is indicated by a

vertical line. The coloured areas correspond to the integrals of the expected distributions used to compute

the p-values for the rejection of each hypothesis.
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on the nature of the problem. If the test statistics is a �2 like in most of the fits, p-
values close to 1 in general correspond to underfluctuations of the experimental points,
or overestimate of the uncertainties on the single measurements. So, while the rejection
of a null hypotheses with small p0 is motivated by the scarce agreement between data
and theory pointing to an alternative hypothesis, the rejection of a large p0 is related to
scarce self-consistency in the data.

Figure 10. One of the results of the ATLAS experiment for the study
of the spin of the Higgs boson. The pdf’s of the test statistics q (defined
as the logarithm of the likelihood ratio) are shown for two alternative
hypotheses: spin 0 and spin 2. The black vertical line corresponds to the
experimental value of the test statistics. The blue hatched area is the
1-p-value. (taken from ATLAS Collaboration, ATLAS-CONF-2013-029).

Let’s consider now the comparison between two alternative hypotheses. Fig.10 shows
an example of the pdf’s of two alternative hypothesesH0 andH1, the null and alternative
hypotheses respectively. Clearly the lower is the overlap between the two pdf’s the
better will be the capability to discriminate between the two alternative theories. Here
the problem becomes very similar to the one outlined in Sect.3, with the di↵erence that
here the two alternative hypotheses are not on a single event, but on a distribution of
events. So we define a cut at a value tcut. If t⇤ < tcut we accept the null hypothesis
H0, if t⇤ > tcut we accept the alternative hypothesis H1. By applying this cut we accept
two possible errors: the type-I errors when we reject H0 even if it is true; the type-II
errors when we accept H0 even if H1 is true and H0 is wrong. The probabilities ↵ and



Two alternate hypotheses  H0 and H1 
 
Define tcut 
If t* < tcut  => accept the null hypothesis 
 
If t* > tcut => accept the alternate hypothesis 
 
By applying a cut we accept  type-I  and type-II errors (similarly to single events…) 
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� associated at the two kinds of errors are:

↵ =

Z 1

t
cut

f(t/H0)dt(121)

� =

Z t
cut

�1
f(t/H1)dt(122)

The Neyman-Pearson lemma also applies here, and can be used for the definition of
the test statistics.

We finally remark that the p-value is not the probability of the hypothesis. It is rather
a probabilistic statement on the repetition of the experiment, namely the probability that
by repeating the experiment and if the hypothesis is correct, we obtain a disagreement
larger than the one found. It is possible to evaluate the probability of the hypothesis H,
but for doing that, the Bayes theorem, including priors, has to be used.

5.4. Parameter estimation. If the theory depends on one or more parameters ✓, we
have to determine the best values of the parameters ✓̂23. The value of the sample
statistics t⇤ will depend in this case on the estimated values of the parameters t⇤(✓̂).

The most important method for parameter estimation is the maximum likelihood
(ML) method. Suppose we have the likelihood of our data L(x/✓). Once the experimen-
tal data have been taken and are fixed, L can be considered a function of the parameters,
L(✓). It is reasonable to think that the best values of the parameters are those corre-
sponding to the maximum value of the function L(✓). With this method the problem
of finding parameter estimators becomes essentially a problem of finding the maxima
of a K-dimensional function, K being the number of parameters. This problem can be
approached in two ways.

• Analytically, by doing the derivatives of the function (of the logarithm of the
function to simplify the calculations) with respect to the parameters and putting
them equal to 0.

(123)
@ lnL

@✓k
= 0

This is possible in several cases, like the linear fits or other situations that will be
described in the following. It results in a system of M equations in M unknowns.

• Numerically, in all cases. The ”hystorical” programMINUIT developed at CERN
in the ’70s is still now the most used package for this kind of problems.

The Maximum Likelihood method is not the unique method used, but is a robust
method widely used. Another popular method, the Least Squares method, can be derived
under general hypotheses from the maximum likelihood method. Other methods are not
discussed in these notes.

An estimator ✓̂ is a random variable with its own pdf, a mean E[✓̂] and a variance
V ar[✓̂]. It is required to have some properties. We quote here the most important of
them that typical ML estimators have.

23Here and in the following when we put the ”hat” on a parameter, it means it is the estimator of
the parameter.

Apply Neyman-Pearson lemma, i.e. construct a Likelihood ratio variable  
as best test statistics 


