Proposed exercise

The values of the parameter $\mu=\sigma / \sigma_{\text {SM }}$ for the Higgs boson for the three main decay channels measured in 2014 by ATLAS were:

$$
\begin{gathered}
\mu_{\gamma \gamma}=1.55 \pm 0.30 \\
\mu_{Z Z}=1.43 \pm 0.37 \\
\mu_{W W}=0.99 \pm 0.29
\end{gathered}
$$

Evaluate the compatibility among the three independent ATLAS results and calculate the best overall estimate of μ from ATLAS. Then evaluate the compatibility with the SM expectation $(\mu=1)$.

Proposed exercise

Consider the Higgs production $\left(M_{H}=125 \mathrm{GeV}\right)$ at a pp collider at $\sqrt{s}=14 \mathrm{TeV}$. Evaluate the interval in rapidity y and the minimum value of x for direct Higgs production.

Bayesian vs frequentist intervals (revisited)

Bayesian intervals

posterior
prior

$$
\stackrel{\rightharpoonup}{p}\left(\theta_{\text {true }} / x_{0}\right)=\frac{L\left(x_{0} / \theta_{\text {true }}\right) \pi\left(\theta_{\text {true }}\right)}{\int d \theta_{\text {true }} L\left(x_{0} / \theta_{\text {true }}\right) \pi\left(\theta_{\text {true }}\right)}
$$

Bayesian interval $\quad \int_{\theta_{1}}^{\theta_{2}} p\left(\theta_{\text {true }} / x_{0}\right) d \theta_{\text {true }}=\beta$

The interval $\left[\theta_{1}, \theta_{2}\right]$ is called credible interval.

The edges θ_{1}, θ_{2} of the Bayesian intervals are not uniquely defined

$$
\int_{\theta_{1}}^{\theta_{2}} p\left(\theta_{\text {true }} / x_{0}\right) d \theta_{\text {true }}=\beta
$$

Central intervals: the pdf integral is the same above and below the interval:

$$
\begin{aligned}
\int_{-\infty}^{\theta_{1}} p\left(\theta_{\text {true }} / x_{0}\right) d \theta_{\text {true }} & =\frac{1-\beta}{2} \\
\int_{\theta_{2}}^{+\infty} p\left(\theta_{\text {true }} / x_{0}\right) d \theta_{\text {true }} & =\frac{1-\beta}{2}
\end{aligned}
$$

Upper limits: $\theta_{\text {true }}$ is below a certain value. In this case the interval is between 0 (if θ is a non-negative quantity) and $\theta_{u p}$:

$$
\int_{0}^{\theta_{u p}} p\left(\theta_{\text {true }} / x_{0}\right) d \theta_{\text {true }}=\beta
$$

Lower limits: $\theta_{\text {true }}$ is above a certain value $\theta_{\text {low }}$:

$$
\int_{\theta_{\text {low }}}^{+\infty} p\left(\theta_{\text {true }} / x_{0}\right) d \theta_{\text {true }}=\beta
$$

Frequentist intervals

Neynman construction of the confidence intervals

$$
\int_{x_{1}(\theta)}^{x_{2}(\theta)} L(x / \theta) d x=\beta
$$

Coverage: $\quad p\left(\theta_{1}\left(x_{0}\right)<\theta_{\text {true }}<\theta_{2}\left(x_{0}\right)\right)=\beta$

Comments:

Bayes:

- Non informative prior (does it exist?)
- Recursive Bayes estimation => Bayes filter

In this dynamic perspective we notice that at time n we only need to keep a representation of π_{n} and otherwise can ignore the past.
The current π_{n} contains all information needed to revise knowledge when confronted with new information $L_{n+1}(\theta)$.
We sometimes refer to this way of updating as recursive.

Comments:

Bayes:

- Non informative prior (does it exist?)
- Recursive Bayes estimation => Bayes filter

Applications

- Ballistics
- Robotics
- Robot localization
- Tracking hands/cars/...
- Econometrics
- Stock prediction
- Navigation
- Many more...

Confidence Interval \& Coverage

- You claim, $\mathrm{Cl}_{\mu}=\left[\mu_{1}, \mu_{2}\right]$ at the $95 \% \mathrm{CL}$ i.e. In an ensemble of experiments CL (95\%) of the obtained confidence intervals will contain the true v alue of μ.
- If your statement is accurate, you have full coverage
-If the true CL is $>95 \%$, your interval has an over coverage
-If the true CL is $<95 \%$, your interval has an undercoverage

(consider the simple example of counting experiment)

- Discovery: the Null Hypothesis H_{0}, based on the Standard Model is falsified by a goodness-of-fit test. This means that new physics should be included to account for the data. This is an important discovery.
- Exclusion: the Alternative Hypothesis H_{1}, based on an extension of the Standard Model (or on a new theory at all), doesn't pass the goodness-of-fit test. H_{1} is excluded by data.

Exclusion means that the search has given a negative result. However a negative result is not a complete failure of the experiment, but it gives important informations that have to be expressed in a quantitative way so that theorists or other experimentalists can use them for further searches. These quantitative statements about negative results of a search for new phenomena are normally the "upper limits" or the "lower limits".

By upper limit we mean a statement like the following: such a particle, if it exists, is produced with a rate (or cross-section) below this quantity, with a certain probability. On the other hand, by lower limit statements like: this decay, if exists, takes place with a lifetime larger than this quantity, with a certain probability. Both statements concern an exclusion.

Bayes limits

$$
L\left(n_{0} / s\right)=\frac{e^{-s} s^{n_{0}}}{n_{0}!}
$$

Assume background $b=0$
If we count $\mathrm{n}_{0}=0$

$$
L(0 / s)=e^{-s}
$$

Let's consider Bayes theorem and assume uniform prior ($\pi=\operatorname{cost}$ for $s>0$ and $\pi=0$ for $s<0$)

$$
p(s / 0)=\frac{L(0 / s) \pi(s)}{\int L(0 / s) \pi(s) d s}=L(0 / s)=e^{-s}
$$

Given a probability content α (e.g. $\alpha=95 \%$) the upper limit $s_{u p}$ will be such that:

$$
\begin{gathered}
\int_{s_{u p}}^{\infty} p(s / 0) d s=1-\alpha \\
\int_{s_{u p}}^{\infty} e^{-s} d s=e^{-s_{u p}}=1-\alpha
\end{gathered}
$$

We easily find $s_{u p}=2.3$ for $\alpha=90 \%$ and $s_{u p}=3$ for $\alpha=95 \%$.

Bayes limits

Assume background $b \neq 0$ with negligible uncertainty and same prior as before If we count $\mathrm{n}_{0} \geq 0$

$$
\begin{aligned}
& p\left(s / n_{0}\right)=\frac{e^{-(s+b)}(s+b)^{n_{0}}}{n_{0}!} \\
& \int_{s_{u p}}^{\infty} \frac{e^{-(s+b)}(s+b)^{n_{0}}}{n_{0}!} d s=1-\alpha
\end{aligned}
$$

Bayes limits

$$
\int_{s_{u p}}^{\infty} \frac{e^{-(s+b)}(s+b)^{n_{0}}}{n_{0}!} d s=1-\alpha
$$

Figure 18. 90% limit $s_{u p}$ (A in the figure) vs. b (B in the figure) for different values of n_{0}. These are the upper limits resulting from a bayesian treatment with uniform prior. (taken from O.Helene, Nucl.Instr. and Meth. 212 (1983) 319)

Poisson

Fig. 9.9 Upper limits $\nu_{3}^{\text {up }}$ at a confidence level of $1-\beta=0.95$ for different numbers of events observed $n_{\text {obs }}$ and as a function of the expected number of background events ν_{b}. (a) The classical limit. (b) The Bayesian limit based on a uniform prior density for ν_{s}.

Bayes limits

Assume background $b \neq 0$ with uncertainty described by a pdf $f(b)$ within interval bmin, bmax

$$
p\left(s / n_{0}\right)=\frac{e^{-(s+b)}(s+b)^{n_{0}}}{n_{0}!}
$$

Convolution with the resolution $f(b)$

$$
p\left(s / n_{0}\right)=\int_{b_{\min }}^{b_{\max }} \frac{e^{-\left(s+b^{\prime}\right)}\left(s+b^{\prime}\right)^{n_{0}}}{n_{0}!} f\left(b-b^{\prime}\right) d b^{\prime}
$$

In general the width of $f(b)$ affects the limit, large uncertainty on $b=>$ increase of $S_{u p}$ The result in general depends on the prior ($\pi(\mathrm{s})=\operatorname{cost}, 1 / \mathrm{s}, 1 / \mathrm{vs}$) (not in the case $\mathrm{n}_{0}=\mathrm{b}=0$)

The General result for any n_{0}, is the pdf

$$
p\left(s / n_{0}\right)
$$

If n 0 significantly larger than $\mathrm{b}=>$ observation of the signal => transition from upper limit to central interval:

$$
\hat{s}=n_{0}-b \pm \sqrt{n_{0}+\sigma^{2}(b)}
$$

Depending on the observed value and somewhat arbitrary => flip-flop problem (see next)

Frequentist approach
Neyman's construction

By construction the probability to measure $x_{0}{ }^{\prime}<x_{0}$ if the true value $\mu=\mu_{1}\left(x_{0}\right)$ is $(1-\alpha) / 2$ $x_{0}{ }^{\prime}>x_{0}$ if the true value $\mu=\mu_{2}\left(x_{0}\right)$ is $(1-\alpha) / 2$

Coverage: suppose μ^{*} the true value

$$
P\left(x_{1}\left(\mu^{*}\right)<x_{0}<x_{2}\left(\mu^{*}\right)\right)=\alpha
$$

Frequentist approach
Neyman's construction

By construction the probability to measure $x_{0}{ }^{\prime}<x_{0}$ if the true value $\mu=\mu_{1}\left(x_{0}\right)$ is $(1-\alpha) / 2$ $x_{0}{ }^{\prime}>x_{0}$ if the true value $\mu=\mu_{2}\left(x_{0}\right)$ is $(1-\alpha) / 2$

Coverage: suppose μ^{*} the true value

$$
P\left(x_{1}\left(\mu^{*}\right)<x_{0}<x_{2}\left(\mu^{*}\right)\right)=\alpha
$$

frequentist limits

The belt is limited on one side only, and for any result of a measurement n_{0} we identify $s_{u p}$ in such a way that if $s_{\text {true }}=s_{\text {up }}$, the probability to get a counting smaller than n_{0} is $1-\beta^{31}$. By considering the Poisson statistics without background $(b=0)$ we get:

$$
\sum_{n=0}^{n_{0}} \frac{e^{-s_{u p}} s_{u p}^{n}}{n!}=1-\beta
$$

If $n_{0}=0$ we have

$$
\begin{aligned}
& e^{-s_{u p}}=1-\beta \\
& s_{u p}=\ln \frac{1}{1-\beta}
\end{aligned}
$$

from which we get the same numbers for $s_{u p}$ obtained in the bayesian case.

frequentist limits

By construction the probability to measure $n_{0}{ }^{\prime}<n_{0}$ if the true value $s=s_{\text {up }}\left(n_{0}\right)$ is (1- β) (only one limit) or the probability to measure $\mathrm{n}_{0}{ }^{\prime}>\mathrm{n}_{0}$ if the true value $\mathrm{s}=\mathrm{s}_{\text {up }}\left(\mathrm{n}_{0}\right)$ is β

Figure 19. Neyman construction for the case of an upper limit. In this case a segment between $n_{1}(\theta)$ and ∞ is drawn for each value of the parameter θ. The segments define the confidence region. Once a value of n, n_{0} is obtained, the upper limit $s_{u p}$ is found. (For simplicity the discrete variable n is considered as a real number here).

frequentist limits

If b is not equal to 0 but is known,

$$
\begin{equation*}
\sum_{n=0}^{n_{0}} \frac{e^{-\left(s_{u p}+b\right)}\left(s_{u p}+b\right)^{n}}{n!}=1-\beta \tag{201}
\end{equation*}
$$

and from this equation upper limits can be evaluated for the different situations.

It has been pointed out that the use of eq. 201 gives rise to some problems. In particular negative values of $s_{u p}$ can be obtained using directly the formula ${ }^{32}$. This doesn't happen in the bayesian context where the condition $s>0$ is put directly by using the proper prior.
${ }^{32} \mathrm{~A}$ rate is a positive-definite quantity. However, if a rate is 0 or very small with respect to the experimental sensitivity, the probability that n_{0} is larger than b is exactly equal to the probability that n_{0} is lower than b. This implies that a negative rate naturally comes out from an experimental analysis based on a difference between two counts. The acceptance of such results is a sort of "philosophical" question and is controversial.

Poisson

Fig. 9.9 Upper limits $\nu_{3}^{\text {up }}$ at a confidence level of $1-\beta=0.95$ for different numbers of events observed $n_{\text {obs }}$ and as a function of the expected number of background events ν_{b}. (a) The classical limit. (b) The Bayesian limit based on a uniform prior density for ν_{s}.

Flip-flop problem

Another general problem affecting both bayesian and frequentist approach is the so called flip-flop problem. When n_{0} is larger than b, at a given point the experimentalist decides to present the result as a number \pm an uncertainty rather than an upper limit. Such a decision is somehow arbitrary. A method to avoid this problem is the so called unified approach due to Feldman and Cousins, developed in the frequentist context.
(see next)

Example of discrepancy between frequentist and Bayesian approaches. (data available in '90s)
Results from fits;
$\begin{aligned} & \text { Results from fits; } \\ & \text { PDG weighted average: }\end{aligned} \bar{m}^{2}=-54 \pm 30 \mathrm{eV}^{2}$

How can this result be converted into an upper limit for the neutrino mass?

Example of discrepancy between frequentist and Bayesian approaches. (data available in '90s)
Results from fits;
$\begin{aligned} & \text { Results from fits; } \\ & \text { PDG weighted average: }\end{aligned} \bar{m}^{2}=-54 \pm 30 \mathrm{eV}^{2}$

How can this result be converted into an upper limit for the neutrino mass?

In the frequentist approach, Neyman's construction
At $95 \% \mathrm{CL}=>\quad m^{2}<4.6 \mathrm{eV}^{2}$
Neutrino mass square - Frequentist

Example of discrepancy between frequentist and Bayesian approaches. (data available in '90s)
Results from fits;
PDG weighted average: $\quad \bar{m}^{2}=-54 \pm 30 \mathrm{eV}^{2}$

How can this result be converted into an upper limit for the neutrino mass?

In the frequentist approach, Neyman's construction
At $95 \% \mathrm{CL}=>\quad m^{2}<4.6 \mathrm{eV}^{2}$
At $90 \% \mathrm{CL}=>\quad m^{2}<-16 \mathrm{eV}^{2}$
???

Neutrino mass square - Frequentist

Example of discrepancy between frequentist and Bayesian approaches. (data available in '90s)
Results from fits;
PDG weighted average: $\quad \bar{m}^{2}=-54 \pm 30 \mathrm{eV}^{2}$

How can this result be converted into an upper limit for the neutrino mass?

In the Bayesian approach, using a prior forcing $\mathrm{m}_{\mathrm{t}}{ }^{2}$ to be positive ($\pi=$ cost for $m_{t}^{2}>0$ and $\pi=0$ for $m_{t}^{2}<0$)

$$
p\left(m_{t}^{2} / \bar{m}^{2}\right)=\frac{L\left(\bar{m}^{2} / m_{t}^{2}\right) \pi\left(m_{t}^{2}\right)}{\int d m_{t}^{2} L\left(\bar{m}^{2} / m_{t}^{2}\right)}
$$

At $95 \% \mathrm{CL}=>\quad m_{t}^{2}<34 \mathrm{eV}^{2}$
At $90 \% \mathrm{CL}=>\quad m_{t}^{2}<27 \mathrm{eV}^{2}$

Example of discrepancy between frequentist and Bayesian approaches. (data available in '90s)

Figure 21. Example of the square neutrino mass. Construction of the upper limit in the frequentist approach (left plot) and in the bayesian approach (right plot). (left) The red gaussian is the experimental likelihood, the blue gaussian corresponds to the $95 \% C L$ upper limit that leaves 5% of possible the experiment outcomes below the present experimental average. (right) The blue curve is the result of the Bayes theorem when a prior forcing to positive values is applied (eq.202).

The frequentist unified approach (Feldman and Cousins PRD 573873 (1998))

- Scan an unknown parameter θ over its range
- Given θ, compute the interval $\left[x_{1}, x_{2}\right]$ that contain x with a probability $\mathrm{CL}=1-\alpha$
- Ordering rule is needed!
- Central interval? Asymmetric? Other?
- Invert the confidence belt, and find the interval $\left[\theta_{1}, \theta_{2}\right]$ for a given experimental outcome of x
- A fraction $1-\alpha$ of the experiments will produce x such that the corresponding interval
[θ_{1}, θ_{2}] contains the true value of μ (coverage probability)
- Note that the random variables are $\left[\theta_{1}, \theta_{2}\right]$, not θ

Possible experimental values X

From PDG statistics review
RooStats: : NeymanConstruction

The frequentist unified approach (Feldman and Cousins PRD 573873 (1998))

FIG. 1. A generic confidence belt construction and its use. For each value of μ, one draws a horizontal acceptance interval $\left[x_{1}, x_{2}\right]$ such that $P\left(x \in\left[x_{1}, x_{2}\right] \mid \mu\right)=\alpha$. Upon performing an experiment to measure x and obtaining the value x_{0}, one draws the dashed vertical line through x_{0}. The confidence interval [μ_{1}, μ_{2}] is the union of all values of μ for which the corresponding acceptance interval is intercepted by the vertical line.

$P\left(x \in\left[x_{1}, x_{2}\right] \mid \mu\right)=\alpha$.

$$
\begin{equation*}
P\left(x \in\left[x_{1}, x_{2}\right] \mid \mu\right)=\alpha . \tag{2.4}
\end{equation*}
$$

Such intervals are drawn as horizontal line segments in Fig. 1 , at representative values of μ. We refer to the interval [x_{1}, x_{2}] as the "acceptance region" or the "acceptance interval" for that μ. In order to specify uniquely the acceptance region, one must choose auxiliary criteria. One has total freedom to make this choice, if the choice is not influenced by the data x_{0}. The most common choices are

$$
\begin{equation*}
P\left(x<x_{1} \mid \mu\right)=1-\alpha, \tag{2.5}
\end{equation*}
$$

which leads to "upper confidence limits" (which satisfy $\left.P\left(\mu>\mu_{2}\right)=1-\alpha\right)$, and

$$
\begin{equation*}
P\left(x<x_{1} \mid \mu\right)=P\left(x>x_{2} \mid \mu\right)=(1-\alpha) / 2, \tag{2.6}
\end{equation*}
$$

which leads to "central confidence intervals"' [which satisfy $\left.P\left(\mu<\mu_{1}\right)=P\left(\mu>\mu_{2}\right)=(1-\alpha) / 2\right]$. For these choices, the

The frequentist unified approach
(Feldman and Cousins PRD 573873 (1998))

Ordering rule

- For a fixed $\theta=\theta_{0}$ we can have different possible choices of intervals giving the same probability $1-\alpha$ are possible

The frequentist unified approach (Feldman and Cousins PRD 573873 (1998))

FIG. 2. Standard confidence belt for 90% C.L. upper limits for the mean of a Gaussian, in units of the rms deviation. The second line in the belt is at $x=+\infty$.

FIG. 3. Standard confidence belt for 90% C.L. central confidence intervals for the mean of a Gaussian, in units of the rms deviation.

The frequentist unified approach (Feldman and Cousins PRD 573873 (1998))

$$
\mu=x \pm 1.645
$$

Fig. 7.6 Illustration of the flip-flopping problem. The plot shows the quoted central value of μ as a function of the measured x (dashed line), and the 90% confidence interval corresponding to the choice of quoting a central interval for $x / \sigma \geq 3$ and an upper limit for $x / \sigma<3$. The coverage decreases from 90 to 85% for a value of μ corresponding to the horizontal lines with arrows

The frequentist unified approach
(Feldman and Cousins PRD 573873 (1998))

In order to avoid the flip-flopping problem and to ensure the correct coverage, the ordering rule proposed by Feldman and Cousins [3] provides a Neyman confidence belt, following the procedure described in Sect. 7.2, that smoothly changes from a central or quasi-central interval to an upper limit, in the case of low observed signal yield.

The proposed ordering rule is based on a likelihood ratio whose properties will be further discussed in Sect. 9.5. Given a value θ_{0} of the unknown parameter θ, the chosen interval of the variable x used for the Neyman belt construction is defined by the ratio of two PDFs of x, one under the hypothesis that θ is equal to the considered fixed value θ_{0}, the other under the hypothesis that θ is equal to the maximum likelihood estimate value $\hat{\theta}(x)$, corresponding to the given measurement

The frequentist unified approach
(Feldman and Cousins PRD 573873 (1998))

The likelihood ratio must be greater than a constant k_{α} whose value depends on the chosen confidence level $1-\alpha$. In a formula:

$$
\begin{equation*}
\lambda\left(x \mid \theta_{0}\right)=\frac{f\left(x \mid \theta_{0}\right)}{f(x \mid \hat{\theta}(x))}>k_{\alpha} \tag{7.11}
\end{equation*}
$$

The constant k_{α} should be taken such that the integral of the PDF in the confidence interval R_{α} is equal to $1-\alpha$:

$$
\begin{equation*}
\int_{R_{\alpha}} f\left(x \mid \theta_{0}\right) \mathrm{d} x=1-\alpha \tag{7.12}
\end{equation*}
$$

The confidence interval R_{α} for a given value $\theta=\theta_{0}$ is defined by Eq. (7.11):

$$
\begin{equation*}
R_{\alpha}\left(\theta_{0}\right)=\left\{x: \lambda\left(x \mid \theta_{0}\right)>k_{\alpha}\right\} \tag{7.13}
\end{equation*}
$$

The frequentist unified approach
(Feldman and Cousins PRD 573873 (1998))

Fig. 7.7 Ordering rule in the
Feldman-Cousins approach, based on the likelihood ratio $\lambda\left(x \mid \theta_{0}\right)=f\left(x \mid \theta_{0}\right) / f(x \mid \hat{\theta}(x))$

The frequentist unified approach (Feldman and Cousins PRD 573873 (1998))

Two examples

1) Gaussian errors with a bounded physical region
2) Poisson processes with background

In contrast with the usual classical construction for upper limits, the unified construction "naturally" avoids the flip-flop problem and unphysical confidence intervals

The frequentist unified approach
(Feldman and Cousins PRD 573873 (1998))
$P\left(x \in\left[x_{1}, x_{2}\right] \mid \mu\right)=\alpha$.
Rank x in the acceptance interval $\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]$ by the ratio

$$
R(x)=\frac{P(x \mid \mu)}{P\left(x \mid \mu_{\text {best }}\right)}
$$

where $\mu_{\text {best }}$ is the physically allowed value of μ for which $P(x \mid \mu)$ is maximum.

Fig. 7.8 Neyman confidence belt constructed using the Feldman-Cousins ordering

Flip-flop problem: the frequentist unified approach (Feldman and Cousins PRD 573873 (1998))

FIG. 10. Plot of our 90% confidence intervals for the mean of Gaussian, constrained to be non-negative, described in the text.

TABLE X. Our confidence intervals for the mean μ of a Gaussian, constrained to be non-negative, as a function of the measured mean x_{0}, for commonly used confidence levels. Italicized intervals correspond to cases where the goodness-of-fit probability (Sec. IV C) is less than 1%. All numbers are in units of σ

x_{0}	68.27\% C.L.	90\% C.L.	95\% C.L.	99\% C.L.	x_{0}	68.27\% C.L.	90\% C.L.	95\% C.L.	99\% C.L.
-3.0	0.00, 0.04	0.00, 0.26	0.00, 0.42	0.00, 0.80	0.1	0.00, 1.10	0.00, 1.74	0.00, 2.06	0.00, 2.68
-2.9	0.00, 0.04	0.00, 0.27	0.00, 0.44	0.00, 0.82	0.2	0.00, 1.20	0.00, 1.84	0.00, 2.16	0.00, 2.78
-2.8	0.00, 0.04	0.00, 0.28	0.00, 0.45	0.00, 0.84	0.3	0.00, 1.30	0.00, 1.94	0.00, 2.26	0.00, 2.88
-2.7	0.00, 0.04	0.00, 0.29	0.00, 0.47	0.00, 0.87	0.4	0.00, 1.40	0.00, 2.04	0.00, 2.36	0.00, 2.98
-2.6	0.00, 0.05	0.00, 0.30	0.00, 0.48	0.00, 0.89	0.5	0.02, 1.50	0.00, 2.14	0.00, 2.46	0.00, 3.08
-2.5	0.00, 0.05	0.00, 0.32	0.00, 0.50	0.00, 0.92	0.6	0.07, 1.60	0.00, 2.24	0.00, 2.56	0.00, 3.18
-2.4	0.00, 0.05	0.00, 0.33	0.00, 0.52	0.00, 0.95	0.7	0.11, 1.70	0.00, 2.34	0.00, 2.66	0.00, 3.28
-2.3	0.00, 0.05	0.00, 0.34	0.00, 0.54	0.00, 0.99	0.8	$0.15,1.80$	0.00, 2.44	0.00, 2.76	0.00, 3.38
-2.2	0.00, 0.06	0.00, 0.36	0.00, 0.56	0.00, 1.02	0.9	0.19, 1.90	0.00, 2.54	0.00, 2.86	0.00, 3.48
-2.1	0.00, 0.06	0.00, 0.38	0.00, 0.59	0.00, 1.06	1.0	0.24, 2.00	0.00, 2.64	0.00, 2.96	0.00, 3.58
-2.0	0.00, 0.07	0.00, 0.40	0.00, 0.62	0.00, 1.10	1.1	0.30, 2.10	0.00, 2.74	0.00, 3.06	0.00, 3.68
-1.9	0.00, 0.08	0.00, 0.43	0.00, 0.65	0.00, 1.14	1.2	0.35, 2.20	0.00, 2.84	0.00, 3.16	0.00, 3.78
-1.8	0.00, 0.09	0.00, 0.45	0.00, 0.68	0.00, 1.19	1.3	0.42, 2.30	0.02, 2.94	0.00, 3.26	0.00, 3.88
-1.7	0.00, 0.10	0.00, 0.48	0.00, 0.72	0.00, 1.24	1.4	0.49, 2.40	0.12, 3.04	0.00, 3.36	0.00, 3.98
-1.6	0.00, 0.11	0.00, 0.52	0.00, 0.76	0.00, 1.29	1.5	0.56, 2.50	0.22, 3.14	0.00, 3.46	0.00, 4.08
-1.5	0.00, 0.13	0.00, 0.56	0.00, 0.81	0.00, 1.35	1.6	0.64, 2.60	0.31, 3.24	0.00, 3.56	0.00, 4.18
-1.4	0.00, 0.15	0.00, 0.60	0.00, 0.86	0.00, 1.41	1.7	0.72, 2.70	0.38, 3.34	0.06, 3.66	0.00, 4.28
-1.3	0.00, 0.17	0.00, 0.64	0.00, 0.91	0.00, 1.47	1.8	0.81, 2.80	0.45, 3.44	0.16, 3.76	0.00, 4.38
-1.2	0.00, 0.20	0.00, 0.70	0.00, 0.97	0.00, 1.54	1.9	0.90, 2.90	0.51, 3.54	0.26, 3.86	0.00, 4.48
-1.1	0.00, 0.23	0.00, 0.75	0.00, 1.04	0.00, 1.61	2.0	1.00, 3.00	0.58, 3.64	0.35, 3.96	0.00, 4.58
-1.0	0.00, 0.27	0.00, 0.81	0.00, 1.10	0.00, 1.68	2.1	1.10, 3.10	0.65, 3.74	0.45, 4.06	0.00, 4.68
-0.9	0.00, 0.32	0.00, 0.88	0.00, 1.17	0.00, 1.76	2.2	1.20, 3.20	0.72, 3.84	0.53, 4.16	0.00, 4.78
-0.8	0.00, 0.37	0.00, 0.95	0.00, 1.25	0.00, 1.84	2.3	1.30, 3.30	0.79, 3.94	0.61, 4.26	0.00, 4.88
-0.7	0.00, 0.43	0.00, 1.02	0.00, 1.33	0.00, 1.93	2.4	1.40, 3.40	0.87, 4.04	0.69, 4.36	0.07, 4.98
-0.6	0.00, 0.49	0.00, 1.10	0.00, 1.41	0.00, 2.01	2.5	1.50, 3.50	0.95, 4.14	0.76, 4.46	0.17, 5.08
-0.5	0.00, 0.56	0.00, 1.18	0.00, 1.49	0.00, 2.10	2.6	1.60, 3.60	1.02, 4.24	0.84, 4.56	0.27, 5.18
-0.4	0.00, 0.64	0.00, 1.27	0.00, 1.58	0.00, 2.19	2.7	1.70, 3.70	1.11, 4.34	0.91, 4.66	0.37, 5.28
-0.3	0.00, 0.72	0.00, 1.36	0.00, 1.67	0.00, 2.28	2.8	1.80, 3.80	1.19, 4.44	0.99, 4.76	0.47, 5.38
-0.2	0.00, 0.81	0.00, 1.45	0.00, 1.77	0.00, 2.38	2.9	1.90, 3.90	1.28, 4.54	1.06, 4.86	0.57, 5.48
-0.1	0.00, 0.90	0.00, 1.55	0.00, 1.86	0.00, 2.48	3.0	2.00, 4.00	1.37, 4.64	1.14, 4.96	0.67, 5.58
0.0	0.00, 1.00	0.00, 1.64	0.00, 1.96	0.00, 2.58	3.1	2.10, 4.10	1.46, 4.74	1.22, 5.06	0.77, 5.68

FIG. 8. Upper end μ_{2} of our 90% C.L. confidence intervals [μ_{1}, μ_{2}], for unknown Poisson signal mean μ in the presence of an expected Poisson background with known mean b. The curves for the cases n_{0} from 0 through 10 are plotted. Dotted portions on the upper left indicate regions where μ_{1} is non-zero (and shown in the following figure). Dashed portions in the lower right indicate regions where the probability of obtaining the number of events observed or fewer is less than 1%, even if $\mu=0$.

In case of a Poisson variable n_{0} in presence of background

The frequentist unified approach (Feldman and Cousins PRD 573873 (1998))

TABLE IV. 90% C.L. intervals for the Poisson signal mean μ, for total events observed n_{0}, for known mean background b ranging from 0 to 5 .

| $n_{0} \backslash b$ | 0.0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 5.0 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $0.00,2.44$ | $0.00,1.94$ | $0.00,1.61$ | $0.00,1.33$ | $0.00,1.26$ | $0.00,1.18$ | $0.00,1.08$ | $0.00,1.06$ | $0.00,1.01$ | $0.00,0.98$ |
| 1 | $0.11,4.36$ | $0.00,3.86$ | $0.00,3.36$ | $0.00,2.91$ | $0.00,2.53$ | $0.00,2.19$ | $0.00,1.88$ | $0.00,1.59$ | $0.00,1.39$ | $0.00,1.22$ |
| 2 | $0.53,5.91$ | $0.03,5.41$ | $0.00,4.91$ | $0.00,4.41$ | $0.00,3.91$ | $0.00,3.45$ | $0.00,3.04$ | $0.00,2.67$ | $0.00,2.33$ | $0.00,1.73$ |
| 3 | $1.10,7.42$ | $0.60,6.92$ | $0.10,6.42$ | $0.00,5.92$ | $0.00,5.42$ | $0.00,4.92$ | $0.00,4.42$ | $0.00,3.95$ | $0.00,3.53$ | $0.00,2.78$ |
| 4 | $1.47,8.60$ | $1.17,8.10$ | $0.74,7.60$ | $0.24,7.10$ | $0.00,6.60$ | $0.00,6.10$ | $0.00,5.60$ | $0.00,5.10$ | $0.00,4.60$ | $0.00,3.60$ |
| 5 | $1.84,9.99$ | $1.53,9.49$ | $1.25,8.99$ | $0.93,8.49$ | $0.43,7.99$ | $0.00,7.49$ | $0.00,6.99$ | $0.00,6.49$ | $0.00,5.99$ | $0.00,4.99$ |
| 6 | $2.21,11.47$ | $1.90,10.97$ | $1.61,10.47$ | $1.33,9.97$ | $1.08,9.47$ | $0.65,8.97$ | $0.15,8.47$ | $0.00,7.97$ | $0.00,7.47$ | $0.00,6.47$ |
| 7 | $3.56,12.53$ | $3.06,12.03$ | $2.56,11.53$ | $2.09,11.03$ | $1.59,10.53$ | $1.18,10.03$ | $0.89,9.53$ | $0.39,9.03$ | $0.00,8.53$ | $0.00,7.53$ |
| 8 | $3.96,13.99$ | $3.46,13.49$ | $2.96,12.99$ | $2.51,12.49$ | $2.14,11.99$ | $1.81,11.49$ | $1.51,10.99$ | $1.06,10.49$ | $0.66,9.99$ | $0.00,8.99$ |
| 9 | $4.36,15.30$ | $3.86,14.80$ | $3.36,14.30$ | $2.91,13.80$ | $2.53,13.30$ | $2.19,12.80$ | $1.88,12.30$ | $1.59,11.80$ | $1.33,11.30$ | $0.43,10.30$ |
| 10 | $5.50,16.50$ | $5.00,16.00$ | $4.50,15.50$ | $4.00,15.00$ | $3.50,14.50$ | $3.04,14.00$ | $2.63,13.50$ | $2.27,13.00$ | $1.94,12.50$ | $1.19,11.50$ |
| 11 | $5.91,17.81$ | $5.41,17.31$ | $4.91,16.81$ | $4.41,16.31$ | $3.91,15.81$ | $3.45,15.31$ | $3.04,14.81$ | $2.67,14.31$ | $2.33,13.81$ | $1.73,12.81$ |
| 12 | $7.01,19.00$ | $6.51,18.50$ | $6.01,18.00$ | $5.51,17.50$ | $5.01,17.00$ | $4.51,16.50$ | $4.01,16.00$ | $3.54,15.50$ | $3.12,15.00$ | $2.38,14.00$ |
| 13 | $7.42,20.05$ | $6.92,19.55$ | $6.42,19.05$ | $5.92,18.55$ | $5.42,18.05$ | $4.92,17.55$ | $4.42,17.05$ | $3.95,16.55$ | $3.53,16.05$ | $2.78,15.05$ |
| 14 | $8.50,21.50$ | $8.00,21.00$ | $7.50,20.50$ | $7.00,20.00$ | $6.50,19.50$ | $6.00,19.00$ | $5.50,18.50$ | $5.00,18.00$ | $4.50,17.50$ | $3.59,16.50$ |
| 15 | $9.48,22.52$ | $8.98,22.02$ | $8.48,21.52$ | $7.98,21.02$ | $7.48,20.52$ | $6.98,20.02$ | $6.48,19.52$ | $5.98,19.02$ | $5.48,18.52$ | $4.48,17.52$ |
| 16 | $9.99,23.99$ | $9.49,23.49$ | $8.99,22.99$ | $8.49,22.49$ | $7.99,21.99$ | $7.49,21.49$ | $6.99,20.99$ | $6.49,20.49$ | $5.99,19.99$ | $4.99,18.99$ |
| 17 | $11.04,25.02$ | $10.54,24.52$ | $10.04,24.02$ | $9.54,23.52$ | $9.04,23.02$ | $8.54,22.52$ | $8.04,22.02$ | $7.54,21.52$ | $7.04,21.02$ | $6.04,20.02$ |
| 18 | $11.47,26.16$ | $10.97,25.66$ | $10.47,25.16$ | $9.97,24.66$ | $9.47,24.16$ | $8.97,23.66$ | $8.47,23.16$ | $7.97,22.66$ | $7.47,22.16$ | $6.47,21.16$ |
| 19 | $12.51,27.51$ | $12.01,27.01$ | $11.51,26.51$ | $11.01,26.01$ | $10.51,25.51$ | $10.01,25.01$ | $9.51,24.51$ | $9.01,24.01$ | $8.51,23.51$ | $7.51,22.51$ |
| 20 | $13.55,28.52$ | $13.05,28.02$ | $12.55,27.52$ | $12.05,27.02$ | $11.55,26.52$ | $11.05,26.02$ | $10.55,25.52$ | $10.05,25.02$ | $9.55,24.52$ | $8.55,23.52$ |

In case of a Poisson variable n_{0} in presence of background

The frequentist unified approach (Feldman and Cousins PRD 573873 (1998))

The dotted lines means there is also a lower limit, not only an upper one

In the classical case, the upper limit on zero-counting without any background is 2.3 , with 90% C.L.

The dashed portions indicate regions where the probability of obtaining the number of events observed or fewer is less than 1% (very unlikely configuration, small n_{0} with large b)

The squared energy and momentum of a particle are independently measured:
$\mathrm{E}^{2}=1010 \pm 17 \mathrm{eV}^{2}$
$\mathrm{P}^{2}=1064 \pm 25 \mathrm{eV}^{2}$
Put an upper limit on the squared mass
$m^{2}=E^{2}-P^{2}$
of the particle using:

- The classical frequentist approach
- The unified approach (Feldman Cousins) with the mean of the Gaussian constrained to be non-negative
- The Bayesian approach (briefly comment the choice of the prior)

