Proposed exercise

The values of the parameter W=0/ 0Oy, for the Higgs boson for the three main decay channels
measured in 2014 by ATLAS were:

fiory = 1.55 % 0.30

Lzz =143 +0.37
MWW — 0.99 £0.29

Evaluate the compatibility among the three independent ATLAS results and calculate
the best overall estimate of u from ATLAS. Then evaluate the compatibility with the

SM expectation (u=1).

Q Methods in Experimental Particle Physics 19/05/19



Proposed exercise

Consider the Higgs production (Mg =125 GeV) at a pp collider at /s = 14 TeV.
Evaluate the interval in rapidity y and the minimum value of = for direct Higgs
production.

a Methods in Experimental Particle Physics 19/05/19



Bayesian vs frequentist intervals (revisited)



Bayesian intervals

_ prior
posterior
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The interval [0, 0] is called credible interval.



The edges 0., 0, of the Bayesian intervals are not uniquely defined

02
/ p(etrue/$0)d9true — 6
0

1

Central intervals: the pdf integral is the same above and below the interval:

01 1 —
/ p(etrue/xO)detrue — TB

+o00 1 —
/ p(etrue/xO)d‘gtrue — —6
6, 2

Upper limits: O is below a certain value. In this case the interval is between
0 (if # is a non-negative quantity) and 6,,:

Oup
/ p(etrue/x0>d9true — 5
0

Lower limits: 0440 1s above a certain value 6;,,,:

+00
/ p(etrue/xO)dgtrue — 6

Hlow



Frequentist intervals

Neynman construction of the confidence intervals

x2(0)
/ L(x/0)dx =
x1(6)
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Comments:

Bayes:
- Non informative prior (does it exist?)
- Recursive Bayes estimation => Bayes filter

posterior o< prior X likelihood

V

revised o< current X new likelihood

Tne1(0) o< mr(0) X Lpr1(0) = mp(0)F (Xxnr1 | Xn, 0).

In this dynamic perspective we notice that at time n we only need
to keep a representation of 7, and otherwise can ignore the past.

The current m, contains all information needed to revise knowledge
when confronted with new information L, 1(0).

We sometimes refer to this way of updating as recursive.



Comments:

Bayes:
- Non informative prior (does it exist?)
- Recursive Bayes estimation => Bayes filter

Applications

Ballistics

Robotics
— Robot localization

Tracking hands/cars/...

Econometrics
— Stock prediction

Navigation

Many more...

© Michael Rubinstein
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Confidence Interv-al & Coverage

oYou claim, Cl,=[p,,K,] at the 95% CL

i.e. In an ensemble of experiments CL (95%) of the
obtained confidence intervals will contain the true

Vvalue of .

off your statement is accurate, you have Full
coverage

off the true CL is>95%, your interv-al has an ov-er
cov-erage

off the true CL is <95%, your interv-al has an
undercov-erage



Signal searches: upper and lower limits

(consider the simple example of counting experiment)

e Discovery: the Null Hypothesis Hj, based on the Standard Model is falsified
by a goodness-of-fit test. This means that new physics should be included to
account for the data. This is an important discovery.

e Exclusion: the Alternative Hypothesis H;, based on an extension of the Stan-
dard Model (or on a new theory at all), doesn’t pass the goodness-of-fit test. H;
is excluded by data.

Exclusion means that the search has given a negative result. However a negative result
is not a complete failure of the experiment, but it gives important informations that have
to be expressed in a quantitative way so that theorists or other experimentalists can use
them for further searches. These quantitative statements about negative results of a
search for new phenomena are normally the ”upper limits” or the ”lower limits”.

By upper limit we mean a statement like the following: such a particle, if it exists,
is produced with a rate (or cross-section) below this quantity, with a certain probability.
On the other hand, by lower limit statements like: this decay, if exists, takes place
with a lifetime larger than this quantity, with a certain probability. Both statements
concern an exclusion.



Bayes limits

e~ 5 gno
L(ng/s) =
(n0/s) = -
Assume background b=0
If we count n,=0
L(0/s)=¢e"?

Let’s consider Bayes theorem and assume uniform prior (w=cost for s>0 and =0 for s<0)

R

Given a probability content a (e.g. «=95%) the upper limit s, will be such that:

/Soop(s/O)ds =1—-«

up

O
/ e °ds =e " =1 — o
S

up

We easily find s,,=2.3 for a=90% and s,,=3 for a=95%.




Bayes limits

Assume background b # 0 with negligible uncertainty and same prior as before

If we count ny,=0
e~ (5T0) (5 4 p)no
no!

oo ,—(s5+b) bh)"no
/ ‘ (s +b) ds=1—«

n()!

p(s/no) =

up



Bayes limits

Figure 2

0 1 l l 1
0 S [¢] 15 20 B

FIGURE 18. 90% limit s,, (A in the figure) vs. b (B in the figure) for
different values of ng. These are the upper limits resulting from a bayesian
treatment with uniform prior. (taken from O.Helene, Nucl.Instr. and

Meth. 212 (1983) 319)



Poisson
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Fig. 9.9 Upper limits v.P at a confidence level of 1 — 3 = 0.95 for different numbers of events
observed nqps and as a function of the expected number of background events uvy,. (a) The
classical limit. (b) The Bayesian limit based on a uniform prior density for v;.



Bayes limits

Assume background b # 0 with uncertainty described by a pdf f(b) within interval bmin, bmax

6—(s—|—b) (S 4+ b)no
no!

p(s/n0) =

Convolution with the resolution f(b)

bmax 6—(s+b’) (S 4+ b/)no

pls/mo) = | - -

In general the width of f(b) affects the limit, large uncertainty on b => increase of S,
The result in general depends on the prior (n(s)= cost, 1/s, 1/Vs) (not in the case n,=b=0)

F(b—b)ay



Bayes limits

The General result for any n,, is the pdf
p(s/no)

If nO significantly larger than b => observation of the signal
=> transition from upper limit to central interval:

§=mng—bE/ng+ o2(b)

Depending on the observed value and somewhat arbitrary =>
flip-flop problem (see next)



Frequentist approach Neyman’s construction

\

Ml(xo) S S X

( ‘_ ’“‘” _____ ‘ ) -

Ox; >< le*) Xo Xz(W'g) '

By construction the probability to measure x,'<x, if the true value u=p,(x,) is (1-a)/2
X, >X, if the true value u=u,(x,) is (1-a)/2

Coverage: suppose u* the true value

P(x, (1) <xy<x,(()) =

28/05/19 Methods in Exper imental Particle Phys ics



Frequentist approach Neyman’s construction

(11)

Ml(xo) S S A

-

1500

.
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(W) u* N

%

.

XO o *e{ Ipf) x;(sap XQ
( (W) (k)
x; (4)
j Fx/ wydx =«
xp (1)

By construction the probability to measure x,'<x, if the true value u=p,(x,) is (1-a)/2
X, >X, if the true value u=u,(x,) is (1-a)/2

Coverage: suppose u* the true value

P(x, (1) <xy<x,(()) =

28/05/19 Methods in Experimental Particle Physics 18



frequentist limits

The belt is limited on one side only, and for any result of a measurement
no we identify s,, in such a way that if sy = syup, the probability to get a counting
smaller than ng is 1 — 8°!. By considering the Poisson statistics without background
(b=0) we get:

10 e Sup gN
Sy
n!
n=0
If ng = 0 we have
e v =1-7
1
Sup = In

1-p

from which we get the same numbers for s,, obtained in the bayesian case.



frequentist limits

By construction the probability to measure n,’<n, if the true value s=5,p(1g) Is (1 -B) (only one limit)

or the probability to measure n,,’> n, if the true value s=s_ (n,) is
P Y 0 0 up\Io
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FIGURE 19. Neyman construction for the case of an upper limit. In
this case a segment between n1(f) and oo is drawn for each value of the
parameter . The segments define the confidence region. Once a value
of n, np is obtained, the upper limit s,, is found. (For simplicity the
discrete variable n is considered as a real number here).



frequentist limits

If b is not equal to 0 but is known,

no e—(sup—|—b)(8up_|_b)n

(201) > - —1-0

n=0

and from this equation upper limits can be evaluated for the different situations.

It has been pointed out that the use of eq.201 gives rise to some problems. In particular
negative values of s,;, can be obtained using directly the formula®?. This doesn’t happen
in the bayesian context where the condition s > 0 is put directly by using the proper

prior.

32A rate is a positive-definite quantity. However, if a rate is 0 or very small with respect to the
experimental sensitivity, the probability that ng is larger than b is exactly equal to the probability that
no is lower than b. This implies that a negative rate naturally comes out from an experimental analysis
based on a difference between two counts. The acceptance of such results is a sort of ”philosophical”

question and is controversial.



Poisson
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Fig. 9.9 Upper limits v.P at a confidence level of 1 — 3 = 0.95 for different numbers of events
observed nqps and as a function of the expected number of background events uvy,. (a) The
classical limit. (b) The Bayesian limit based on a uniform prior density for v;.



Flip-flop problem

Another general problem affecting both bayesian and frequentist approach is the so
called flip-flop problem. When ng is larger than b, at a given point the experimentalist
decides to present the result as a number £ an uncertainty rather than an upper limit.
Such a decision is somehow arbitrary. A method to avoid this problem is the so called
unified approach due to Feldman and Cousins, developed in the frequentist context.

(see next)



Example of discrepancy between frequentist and Bayesian approaches. (data available in “90s)

Results from fits; __9 5
PDG weighted average: m- = —5H4 + 30 eV

How can this result be converted into an upper limit for the neutrino mass?



Example of discrepancy between frequentist and Bayesian approaches. (data available in “90s)

Results from fits; __9 5
PDG weighted average: m- = —5H4 + 30 eV

How can this result be converted into an upper limit for the neutrino mass?
In the frequentist approach, Neyman’s construction

At95%CL => m2 < 4.6 eV?2

Neutrino mass square - Frequentist

[f(m?)
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Example of discrepancy between frequentist and Bayesian approaches. (data available in “90s)

Results from fits; __9 5
PDG weighted average: m- = —5H4 + 30 eV

How can this result be converted into an upper limit for the neutrino mass?
In the frequentist approach, Neyman’s construction

At95%CL => m2 < 4.6 eV?2

Neutrino mass square - Frequentist

At90% CL=> m2< —16eV? ??? ()

0.012—

0.01:
0.008:
0.006:
0.004:

0.002

0 o= 111 L
-200 -150 -100 -50 0 50 100



Example of discrepancy between frequentist and Bayesian approaches. (data available in “90s)
Results from fits; __9 5
PDG weighted average: m- = —5H4 + 30 eV

How can this result be converted into an upper limit for the neutrino mass?

In the Bayesian approach, using a prior forcing m,? to be positive
(rt=cost for m:?>0 and =0 for m,?<0)

Neutrino mass square - Bayesian

D ( m? /m2) (_2/ m% ) 2 (m% ) ::;_p(mf)
f dm /mt ) 0.06|-
At95%CL => mi < 34 eV?

At90%CL=> mi < 27 eV?

0.02F

0.01




Example of discrepancy between frequentist and Bayesian approaches. (data available in ‘90s)

Neutrino mass square - Frequentist

[f(m?)

0.012—
0.01—

0.008

0.006

0.004

mg < 4.6 eVQ 0.002:

0 = |
-200 -150 -100 -50 0 50 100

Neutrino mass square - Bayesian
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F1GURE 21. Example of the square neutrino mass. Construction of the
upper limit in the frequentist approach (left plot) and in the bayesian

approach (right plot). (left) The red gaussian is the experimental like-
lihood, the blue gaussian corresponds to the 95% CL upper limit that
leaves 5% of possible the experiment outcomes below the present experi-

mental average. (right) The blue curve is the result of the Bayes theorem

when a prior forcing to positive values is applied (eq.202).



The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

Scan an unknown
parameter 0 over its range

Given 0, compute the
interval [x,, x,]| that contain x
with a prolaatz)ility CL=1-a
Ordering rule is needed!
Central interval? Asymmetric?
Other?

Invert the confidence belt,
and find the interval [0,, 0,]
for a given experimental
outcome of x

A fraction 1-a of the
experiments will produce x
such that the corresponding
interval

parameter 0

X,(80)  %,(8)

[0,, 6,] contains the true
value of u (coverage
probability)

Note that the random
variables are [0, 0,], not 0

Possible experimental values x

From PDG statistics review

RooStats: :NeymanConstruction




The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )
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FIG. 1. A generic confidence belt construction and its use. For
each value of u, one draws a horizontal acceptance interval [ x; ,x, ]
such that P(x €[x; ,x,]|s)= . Upon performing an experiment to
measure x and obtaining the value x, one draws the dashed verti-
cal line through x,. The confidence interval [ u; ,u,] is the union
of all values of u for which the corresponding acceptance interval is
intercepted by the vertical line.

P(xe[x;.x]|u)=a.

P(xe[x; x,]lu)=a. (2.4)

Such intervals are drawn as horizontal line segments in Fig.
1, at representative values of u. We refer to the interval
[x;,x,] as the “‘acceptance region’’ or the ‘‘acceptance in-
terval’’ for that u. In order to specify uniquely the accep-
tance region, one must choose auxiliary criteria. One has
total freedom to make this choice, if the choice is not influ-
enced by the data x,. The most common choices are

133

P(x<x|lp)=1—a, (2.5)

which leads to ‘“‘upper confidence limits’’ (which satisfy
P(u>u,)=1-a), and

P(x<x|pu)=P(x>xa|p)=(1-a)/2, (2.6)

which leads to ‘‘central confidence intervals’’ [which satisfy
P(u<pmy)=P(u>puy)=(1—a)/2]. For these choices, the



The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

Ordering rule INFN

* For a fixed 6 = 0, we can have different
possible choices of intervals giving the same
probability 1-o are possible

fix},) | 0, |

ol 1-o

Upper limit choice X Central interval X



The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )
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FIG. 2. Standard confidence belt for 90% C.L. upper limits for
the mean of a Gaussian, in units of the rms deviation. The second
line in the belt is at x= + o,
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FIG. 3. Standard confidence belt for 90% C.L. central confi-
dence intervals for the mean of a Gaussian, in units of the rms
deviation.



The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

J@)] 0%
5% 5%
90% >
10% > X
. w=x=+1.645
X
n<x+1.282

v

o=1

Fig. 7.6 Illustration of the flip-flopping problem. The plot shows the quoted central value of u as
a function of the measured x (dashed line), and the 90% confidence interval corresponding to the
choice of quoting a central interval for x/oc > 3 and an upper limit for x/0 < 3. The coverage
decreases from 90 to 85% for a value of i corresponding to the horizontal lines with arrows



The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

In order to avoid the flip-flopping problem and to ensure the correct coverage, the
ordering rule proposed by Feldman and Cousins [3] provides a Neyman confidence
belt, following the procedure described in Sect. 7.2, that smoothly changes from a
central or quasi-central interval to an upper limit, in the case of low observed signal
yield.

The proposed ordering rule is based on a likelihood ratio whose properties will
be further discussed in Sect. 9.5. Given a value 6, of the unknown parameter 6, the
chosen interval of the variable x used for the Neyman belt construction is defined
by the ratio of two PDFs of x, one under the hypothesis that 6 is equal to the
considered fixed value 6, the other under the hypothesis that 6 is equal to the

maximum likelihood estimate value é(x), corresponding to the given measurement



The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

The likelihood ratio must be greater than a constant k, whose value depends on
the chosen confidence level 1 — «. In a formula:

x| 6o)
fx[0(x))

The constant k, should be taken such that the integral of the PDF in the confidence
interval R, 1s equal to 1 — «:

>k, . (7.11)

Alx] o) =

Fx|0)dx=1—a. (7.12)

Ro

The confidence interval R, for a given value 6 = 6 is defined by Eq. (7.11):

Ry (B0) = {x: A(x|60) > ko . (7.13)



The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

Fig. 7.7 Ordering rule in the A A
Feldman—Cousins approach, 1 (x[6)) J (x[6p)
based on the likelihood ratio f(x\é(x))

A(x | 60) =F (x| 6o)/f (x| B(x))




The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

Two examples
1) Gaussian errors with a bounded physical region
2) Poisson processes with background

In contrast with the usual classical construction for upper limits,
the unified construction “naturally” avoids the flip-flop problem
and unphysical confidence intervals



The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

P(xe[x;,x,]lp)=a.

Rank x in the acceptance interval [x;,x,] by the ratio
P(x|w) ut

P(x|/~Lbest) symmetric errors

R(x)=

where u, . is the physically allowed
value of u for which P(x|u) is maximum.

asymmetric errors

upper limit

. >
X

Fig. 7.8 Neyman confidence belt constructed using the Feldman—Cousins ordering



Flip-flop problem: the frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

TABLE X. Our confidence intervals for the mean u of a Gaussian, constrained to be non-negative, as a function of the measured mean
Xq, for commonly used confidence levels. Italicized intervals correspond to cases where the goodness-of-fit probability (Sec. IV C) is less
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FIG. 10. Plot of our 90% confidence intervals for the mean of a
Gaussian, constrained to be non-negative, described in the text.

than 1%. All numbers are in units of o.

X0 68.27% C.L. 90% C.L. 95% C.L. 99% C.L. Xq 68.27% C.L. 90% C.L. 95% C.L. 99% C.L.
—-30 0.00,004 000,026 000, 042 0.00,080 0.1 0.00,1.10 0.00,1.74 0.00,2.06 0.00,2.68
—-29 0.00,004 000,027 000, 044 0.00, 082 02 0.00,120 0.00,1.84 0.00,2.16 0.00,2.78
—28 000,004 0.00,028 000,045 000,084 03 0.00,1.30 000,194 000,226 0.00,2.88
—27 0.00,004 0.00,029 000,047 0.00, 087 04 0.00,140 0.00,2.04 0.00,236 0.00,298
—26 0.00,005 0.00,030 000, 048 0.00, 089 05 0.02,150 0.00,2.14 0.00,246 0.00,3.08
—-25 000,005 000, 032 000, 050 000, 092 0.6 007,1.60 000,224 000,256 0.00,3.18
—24 0.00,005 000,033 000 052 000,095 0.7 0.11,1.70  0.00,2.34 0.00,2.66 0.00,3.28
—-23 000,005 000,034 000,054 000,099 038 0.15,1.80 0.00,244 0.00,2.76 0.00, 3.38
—-22 000,006 000,036 000,056 000,102 09 0.19,1.90 0.00,2.54 0.00,2.86 0.00,348
—2.1 0.00,006 0.00,038 0.00,059 0.00,1.06 1.0 024,200 0.00,2.64 0.00,296 0.00,3.58
—-20 0.00,007 0.00,040 0.00,062 0.00,1.10 1.1 0.30,2.10 0.00,2.74 0.00,3.06 0.00, 3.68
-19 000,008 000,043 0.00,0.65 0.00,1.14 1.2 035,220 0.00,2.84 000,3.16 0.00,3.78
-18 000,009 000,045 0.00,0.68 0.00,1.19 13 042,230 002,294 000,326 0.0, 3.88
—-17 0.00,0.10 0.00,048 0.00,0.72 0.00, 1.24 14 049,240 0.12,3.04 0.00,336 0.00,3.98
—-16 000,011 000,052 000,076 0.00,1.29 15 0.56,2.50 0.22,3.14 000,346 0.00,4.08
-15 000,013 000,056 0.00,0.81 0.00,1.35 1.6 0.64,2.60 031,324 0.00,3.56 0.00,4.18
—-14 000,0.15 0.00,0.60 0.00,086 0.00, 141 1.7 072,270 038,334 0.06,3.66 0.00,4.28
—-13 0.00,0.17 0.00,0.64 0.00,091 0.00, 147 1.8 0.81,2.80 045,344 0.16,3.76  0.00,4.38
—-12 000,020 0.00,0.70 0.00,097 0.00, 1.54 1.9 090,290 051,354 0.26,3.86 0.00,448
—-1.1 000,023 0.00,0.75 0.00,1.04 0.00,1.61 20 100,300 058,3.64 035,396 0.00,4.58
-10 000,027 0.00,081 0.00,1.10 0.00,1.68 2.1 1.10,3.10 0.65,3.74 045,406 0.0, 4.68
-09 000,032 0.00,0.88 0.00,1.17 0.00,1.76 22 120,320 072,384 053,4.16 0.00,4.78
—-0.8 0.00,037 0.00,095 000,125 0.00,1.84 23 130,330 0.79,394 061,426 0.00,4.88
-0.7 000,043 0.00,102 0.00,133 0.00,193 24 140,340 087,404 0.69,436 007,498
—-0.6 000,049 0.00,1.10 0.00,141 0.00,201 25 150,350 095,4.14 076,446 0.17,5.08
—-05 000,056 0.00,1.18 0.00,149 0.00,2.10 2.6 1.60,3.60 102,424 0.84,456 0.27,5.18
-04 000,064 000,127 0.00,158 0.00,2.19 2.7 1.70,3.70  1.11,434 091,466 0.37,528
—-03 000,072 0.00,136 0.00,1.67 0.00,2.28 2.8 1.80,3.80 1.19,444 099,476 047,538
—-02 000,081 000,145 000,177 0.00,2.38 29 190,390 128,454 106,486 0.57,548
—-0.1 0.00,090 0.00,155 000,186 0.00,248 30 200,400 137,464 1.14,496 0.67,558
00 000,100 0.00,164 0.00,196 0.00,2.58 3.1 2.10,4.10 146,474 122,506 0.77,5.68




The frequentist unified approach

In case of a Poisson variable n, (Feldman and Cousins PRD 57 3873 (1998) )

in presence of background
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FIG. 8. Upper end w, of our 90% C.L. confidence intervals
[ ,m2], for unknown Poisson signal mean u in the presence of an
expected Poisson background with known mean b. The curves for
the cases n, from O through 10 are plotted. Dotted portions on the
upper left indicate regions where w, is non-zero (and shown in the
following figure). Dashed portions in the lower right indicate re-
gions where the probability of obtaining the number of events ob-
served or fewer is less than 1%, even if ©=0.



In case of a Poisson variable n,
in presence of background

The frequentist unified approach

(Feldman and Cousins PRD 57 3873 (1998) )

TABLE IV. 90% C.L. intervals for the Poisson signal mean u, for total events observed n , for known mean background » ranging from

0 to 5.
no\b 0.0 0.5 1.0 1.5 20 2.5 30 35 4.0 50
0 0.00, 244 0.00, 194 000, 1.61 0.00, 1.33 000, 126 0.00, 1.18 0.00, 1.08 0.00, 1.06 0.00, 1.01 0.00, 0.98
1 0.11, 436 0.00, 3.86 0.00, 336 0.00,291 0.00, 253 0.00,2.19 000, 1.88 0.00, 1.59 0.00, 1.39 0.00, 1.22
2 0.53, 591 003,541 000,491 0.00, 441 0.00,391 0.00,345 0.00,304 0.00, 267 0.00,2.33 0.00, 1.73
3 1.10, 742 0.60, 692 0.10, 642 0.00, 592 0.00, 542 0.00, 492 0.00, 442 0.00, 395 0.00, 3.53 0.00, 2.78
4 147, 860 1.17, 810 0.74, 7.60 024, 7.10 0.00, 6.60 0.00, 6.10 0.00, 560 0.00, 5.10 0.00, 4.60 0.00, 3.60
5 184,999 153,949 125,899 093,849 043,799 0.00, 749 0.00, 699 0.00, 649 0.00, 599 0.00, 4.99
6 221,1147 190,1097 1.61,1047 133,997 108,947 065,897 0.15, 847 0.00, 797 0.00, 747 0.00, 6.47
7 3.56,12.53 3.06,1203 256,11.53 2.09,11.03 1.59,1053 1.18,1003 0.89, 9.53 0.39, 9.03 0.00, 8.53 0.00, 7.53
8 396,1399 346,1349 296,1299 251,1249 2.14,1199 1.81,1149 1.51,1099 1.06,1049 0.66, 9.99 0.00, 8.99
9 436,1530 3.86,14.80 3.36,14.30 291,13.80 2.53,13.30 2.19,12.80 1.88,12.30 1.59,11.80 1.33,11.30 0.43,10.30
10 5.50,16.50 5.00,1600 4.50,1550 4.00,1500 3.50,1450 3.04,1400 2.63,13.50 2.27,13.00 1.94,12.50 1.19,11.50
11 591,17.81 541,17.31 4091,16.81 441,1631 391,1581 345,1531 3.04,1481 2.67,1431 233,13.81 1.73,12.81
12 7.01,1900 6.51,1850 6.01,1800 5.51,1750 5.01,1700 4.51,1650 4.01,1600 3.54,1550 3.12,15.00 2.38,14.00
13 7422005 692,1955 642,1905 592,1855 542,1805 4921755 442,1705 3.95,1655 3.53,16.05 2.78,15.05
14 8.50,21.50 8.00,21.00 7.50,20.50 7.00,20.00 6.50,19.50 6.00,19.00 5.50,18.50 5.00,18.00 4.50,17.50 3.59,16.50
15 9482252 8982202 8482152 7982102 7482052 6982002 648,19.52 598,19.02 548,18.52 4.48,17.52
16 9992399 9492349 8992299 8492249 7992199 7492149 6992099 6492049 599,1999 499,18.99
17 11.042502 10542452 10042402 9542352 9.0423.02 8542252 8042202 7542152 7.0421.02 6.04,20.02
18 114726.16 10972566 10472516 99724.66 94724.16 89723.66 84723.16 7972266 74722.16 64721.16
19 12512751 12012701 11.51,26.51 11012601 10512551 10012501 9.51,2451 9.01,2401 8.51,23.51 7.51,22.51
20 13.55,28.52 13.05,228.02 12.5527.52 12.05,27.02 11.5526.52 11.0526.02 10.5525.52 10.05,25.02 9.55,24.52 8.55,23.52




In case of a Poisson variable n,
in presence of background

The dotted lines means
there 1s also a lower limit,
not only an upper one

The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )
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In the classical case, the upper limit

on zero-counting without any
background is 2.3, with 90% C.L.

The dashed portions indicate
regions where the probability of
obtaining the number of events
observed or fewer is less than 1%

(very unlikely configuration,
small n, with large b)
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Homework n.6

The squared energy and momentum of a particle are independently measured:

E2=1010%17 eV?
P2=1064 + 25 eV?

Put an upper limit on the squared mass

m?=E2- P?

of the particle using:

- The classical frequentist approach

- The unified approach (Feldman Cousins) with the mean of the Gaussian
constrained to be non-negative

- The Bayesian approach (briefly comment the choice of the prior)



