
Event	  selec*on	  -‐	  Kinema*c	  fit	  
	  
1)  Determine	  or	  improve	  knowledge	  of	  kinema*c	  quan**es	  
2)  Define	  a	  test	  sta*s*cs	  to	  select	  the	  event	  

Impose	  kinema*cal	  constraints	  on	  measured	  variables	  



Example

Example: Decay of Neutral Pion into Two Photons

⇡0 ! ��

both photons detected

assume photon directions are known precisely

energies have relative uncertainty �
E

/E = 5%/
p
E

for simplicity: look at 500 MeV/c ⇡0 moving in z-direction

but, will not assume 500 MeV/c nor z-direction for pion
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Example

two-photon invariant mass
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Example

relative error on single photon energy
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Example

two-photon measured momentum
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Example

What is the problem?

want to improve resolution

assume that photons came from ⇡0, so mass is known
can we use this information?

could adjust one photon (why just one?)
could scale them both (high energy �: better E measurement)

could minimize

�2 =

✓
E1,fit � E1,meas

�1

◆2

+

✓
E2,fit � E2,meas

�2

◆2

but minimum is clear: Efit = Emeas (something is missing!)

must introduce constraint: (k1 + k2)2 = m2
⇡ gives

2E1E2(1� cos ✓) = m2
⇡

Problem: minimize �2 while simultaneously satisfying constraint

Mark Ito (JLab) Kinematic Fitting July 14, 2015 12 / 28



Example

Minimization Strategy

multi-variable minimization with constraints: Lagrange multipliers

instead of minimizing over two variables, minimize over three E1,fit,
E2,fit, and �

�2 =

✓
E1,fit � E1,meas

�1

◆2

+

✓
E2,fit � E2,meas

�2

◆2

+2�
⇥
2E1,fitE2,fit(1� cos ✓)�m2

⇡

⇤
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Comments:	  	  
1	  d.o.f.	  
X2	  evaluated	  for	  each	  single	  event	  



Results

fit relative error on single photon energy
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Results

fit two-photon measured momentum
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Results

fit two-photon invariant mass
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Diagnostics

�2 Distribution
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General Formalism

Variable Definitions I

measured variables

N number of measured variables (input)
y vector of measurements, N-dimensional (input)
V covariance matrix, N ⇥ N (input)
⌘ vector of fit values of measured variables, N-dimensional

�2 = (y � ⌘)TV�1(y � ⌘)

unmeasured variables

J number of unmeasured variables (input)
⇠ vector of unmeasured variable values, J-dimensional
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(output)	  

(input)	  



General Formalism

Variable Definitions II

constraints

K number of constraints (input)
f vector of constraint functions, K dimensional (input)

Each constraint a function of measured and unmeasured variables. When
constraint is satisfied

f
k

(⌘1, . . . , ⌘
N

, ⇠1, . . . , ⇠
J

) = 0 for k = 1, . . . ,K

Lagrange multipliers

� vector of mulipliers, K -dimensional

Extended �2 to be minimized:

�2(⌘, ⇠,�) = (y � ⌘)TV�1(y � ⌘) + 2�T f (⌘, ⇠)
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General Formalism

Minimization Condition

Set all partial derivatives to zero:

@�2

@⌘
n

=
h
�2V�1(y � ⌘) + 2FT

⌘ �
i

n

= 0, n = 1, . . . ,N

@�2

@⇠
j

=
h
2FT

⇠ �
i

j

= 0, j = 1, . . . , J

@�2

@�
k

= [2f ]
k

= 0, k = 1, . . . ,K

where

(F⌘)
kn

=
@f

k

⌘
n

and (F⇠)kj =
@f

k

⇠
j

In general, a system of non-linear equations, N + J + K equations with
N + J + K unknowns.
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Diagnostics

Stretch Functions or “Pulls”

How to tell if the thing is working?

look at use these N quantities:

z
n

=
y
n

� ⌘
np

�2(y
n

)� �2(⌘
n

)
n = 1, . . . ,N

Gaussian with mean at 0, � of 1

If not there are problems:
o↵set mean: measurements biased
wrong width: errors not correct
tails: non-Gaussian tails in measurements, background in sample
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Diagnostics

stretch function
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Diagnostics

Unmeasured Variables, Number of Constraints

go back to ⇡0 decay

could have introduced unmeasured variables: p⇡,x , p⇡,y , p⇡,z

but then would have to apply 3-momentum conservation

now have 4 constraints with 3 unmeasured variables

used to have 1 constraint with 0 unmeasured variables

same problem recast: 1-C fit

C = K � J, the number of degrees of freedom
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Diagnostics

Check �2

�2 should have a standard probablility density distribution: f (�2)

Convenient to check �2 probability:

P(�2
0) =

Z 1

�2
0

f (�2)d�2

P runs from 0 to 1

for nominal �2 distribution P will be uniform

non-uniformity: problem with errors, check the pulls

often see peaks near 0: bad �2, background in sample
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Diagnostics

�2 Distribution
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Diagnostics

�2 Probability Distribution
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Summary

Summary

measured variables, with or without statistical correlation, may have
physical relationships
kinematic fit varies values of measured quantities to satisfy
relationships
minimize �2 with constraints
improved measurements
diagnostics about bias and errors in measurements are generated
goodness of fit a handle on correctness of physical relationships
assumed

Reference: A. G. Frodesen, O. Skjeggestad, H. Tøfte. Probability and Statistics in Particle
Physics. Universitetsforlaget, 1979. ISBN 82-00-01906-3
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Event	  selec*on	  of	  3	  photons	  final	  state	  -‐	  Kinema*c	  fit	  
	  

76

Figure 29. Best estimate of the signal strength with a confidence inter-
val of 1 std.deviation as a function of MH . For all the excluded region,
the result is compatible with 0. In the signal region µ̂ deviates from the
Standard Model expected value of 1 by slightly more than 1 st. devia-
tion.(taken from ATLAS collaboration, Phys.Lett. B716 (2012) 1-29)

hold, namely:

E�1 + E�2 + E�3 =
p
s(230)

~p�1 + ~p�2 + ~p�3 = 0(231)

with [E�
i

, ~p�
i

] being the i-th photon quadri-momentum and s is the square of the center
of mass energy. Then, by combining two out of the three photons an invariant mass
equal to the ⌘ mass should be found. We have three choices for the photon pairings, and
for one of them, say the i-j pair, we have:

(232) E�
i

E�
j

(1� cos�↵ij) = M2
⌘

�↵ij being the angular separation between the two photons. Eqs. 230, 231 and 232
provide three conditions that the kinematics of the decay have to match if the decay is
the one we are hypothesizing. The third should be verified for at least one of the three
possible photon combinations.

The kinematic fit is a method that allows to use the constraints to make a fit of the
event. The outcome of such a fit will be a test statistics, normally a �2 allowing to
test the final state hypothesis (the 3-photon event is an ⌘� final state or a background
event) and estimates of the particle momenta and energies improved with respect to the
original measurements.

Impose	  kinema*cal	  constraints	  on	  measured	  variables	  

Ti-‐Ri/c=0	  

3	  photons	  
in	  the	  final	  state:	  
7	  constraints	  
	  

φ→ηγ with  η→γγ



23	  

φ→ηγ with  η→γγ

φ→ηγ→3γ   φ→π0γ  
e+e-→γγ  χ2 



24	  

φ→ηγ with  η→γγ

π0 peak 
 
m23

2 <0.65 GeV2–m12
2  

η peak 
 
m23

2 <0.73 GeV2–m12
2  
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Imposing	  the	  constraint:	  
	  
	  
would	  limit	  the	  study	  of	  the	  background	  or	  other	  similar	  contribu*ons	  (e.g.	  π0→γγ )
	  	  	  

3	  photons	  
in	  the	  final	  state:	  
	  
1+3+3=7	  constraints	  
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Let’s turn now to a second example. We consider the kaon decay KL ! ⇡e⌫e. We
assume that the quadri-momentum of the KL is known43 and that we are able to measure
the quadri-momenta of the pion and of the electron but not the one of the neutrino. We
can guess that the missing particle is a neutrino, but we are not in condition to measure
it. If we assume that the lost particle has a mass equal to 0, we are left with three free
parameters, namely the three components of ~p⌫

e

. On the other hand, we can use the four
constraints coming from the quadri-momentum conservation so that we have a number
of constraints exceeding the number of ”unknowns”. If we have two neutrinos rather
than one (like e.g. in the decay K+ ! ⇡+⌫⌫44 the number of unknowns is larger than the
number of constraints. So that we see that to apply a kinematic fit, we need a number
of constraints larger than the number of unknowns. When this happens normally we say
that the kinematics is ”closed” and the kinematic fit is possible.

In general as we’ll see below, the number of degrees of freedom of the kinematic fit,
is the di↵erence between the number of constraints and the number of unknowns. If no
unknowns is present, like in the first example above, the number of degrees of freedom
is equal to the number of constraints.

8.2. Typical constraints. A list of the most common constraints used in kinematic
fits is given here. In the following with Nc we indicate the number of constraints.

• Quadri-momentum conservation (Nc = 4). To apply this constraint the initial
state has to be known. In e+e� collisions the initial state is known (apart from
initial state radiation e↵ects) while in pp collisions the initial state can be to a
good approximation known only in the transverse plane. In fact the interaction
takes place between 2 partons, so that the longitudinal momentum of the initial
state is not defined at all.

• Mass constraint (Nc = 1). When several combinations are possible, the con-
straint allows to determine the ”good” combination.

• Vertex constraint (Nc = 2Np � 3 Np is the number of particles). Two or more
particles are constrained to converge in the same point, the vertex. Several
methods have been developed to apply the vertex constraint.

• Velocity constraint (Nc = Np). If the particle time of flight is measured, and the
� of the particle is independently measured (or the particle is a photon so that
� = 1), the constraint T � L/(c�) can be applied to each particle.

8.3. The method of the Lagrange Multipliers: an example. The most widely
used implementation of the kinematic fit is based on the Lagrange Multipliers.

We consider here a purely ”mathematical” example to illustrate the main features of
the method. Suppose that two variables, a and b are measured, the values a0 ± �a and
b0 ± �b are obtained. We assume for simplicity that the a and b are not correlated and
that the two uncertainties are equal, �a = �b = �.

43In the case of KLOE the quadri-momentum of the K
L

can be estimated with the technique of the

”tagging” due to the special kinematic configuration of the � ! K0K
0
decays.

44This is a very interesting decay because the expected branching ratio is rather well known from the
Standard Model, however models beyond the Standard Model predict in general large deviations from
the SM prediction.
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On the other hand we know that the sum of the two variable should satisfy the relation:

(233) a+ b = s

with s a known fixed number. We apply the Lagrange Multiplier method to this very
elementary example.

The following �2 variable is introduced:

(234) �2 =
(a� a0)2

�2
+

(b� b0)2

�2
+ 2� (a+ b� s)

where to the usual �2 an additional term has been added multiplied by a new parameter
�. The meaning of such an additional term is clear: it imposes directly the constraint
233. The �2 variable is now minimized with respect to the three parameters: a, b and
�. From the system we get:

â =
s

2
+

a0 � b0
2

(235)

b̂ =
s

2
� a0 � b0

2
(236)

�̂ = � 1

2�2
(s� a0 � b0)(237)

â and b̂ are the best estimates of a and b taking into account the constraint. It is useful
to rewrite the solutions for â and b̂ in the following form:

â = a0 +
s� a0 � b0

2
(238)

b̂ = b0 +
s� a0 � b0

2
(239)

as the sum of the measured quantities a0 and b0 and a term that vanishes if the constraint
is satisfied by the measurements. In other words we see that the kinematic fit pulls a
and b away from the measured values by a quantity depending on the constraint.

Since the two estimates â and b̂ are functions of the measured a0 and b0, in order to
evaluate the covariance matrix of â and b̂, the formula for the uncertainty propagation
is used45. We get:

�â =
�p
2

(240)

�b̂ =
�p
2

(241)

cov
h
â, b̂

i
= ��2

2
(242)

45In case of M functions y
i

depending on N variables x
k

we have

cov [y
i

, y
j

] =
X

k,h

@y
i

@x
k

@y
j

@x
h

cov [x
k

, x
h

]
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or, expressing it as a covariance matrix:
 

�2

2 ��2

2

��2

2
�2

2

!

The results are very interesting and illustrate the main features of the kinematic fit.
As already said, the constraint pulls the estimates of a and b from the measured

values a0 and b0 to other values depending on the constraint. The uncertainties on the
parameters decrease with respect to the measurement uncertainties and the estimates
have a correlation even if the original measurements are not correlated.

By substituting the values of a and b in eq.234 with â and b̂ given in eqs.241 and 242,
the following �2 is obtained:

(243) �2 =
2

�2

✓
s

2
� a0 + b0

2

◆

Since the uncertainty on (a0 + b0)/2 is �/
p
2, it is a �2 with one degree of freedom, as

expected since we have posed a single constraint.
If an additional variable c not measured (a sort of ”neutrino”) is introduced, it can

be verified that with a single constraint only a trivial solution is obtained :

â = a0(244)

b̂ = b0(245)

ĉ = s� a0 � b0(246)

with �2 identically equal to 0. No fit is obtained clearly, the number of unknowns being
equal to the number of constraints. Additional constraints are needed in this case.

8.4. The method of the Lagrange Multipliers: general formulation. Let’s as-
sume that the final state we are analyzing depends on N variables ↵i

46. All these
variables have been measured and the values ↵i0 have been obtained, with Vij being
the experimental covariance matrix of the measurements. Then we suppose to have R
constraints, each of the form Hk(~↵) = 047, with the Hs being general functions. The �2

function including the Lagrange multipliers is:

(247) �2 =
X

ij

(↵i � ↵i0)V
�1
ij (↵j � ↵j0) + 2

X

k

�kHk(~↵)

The constraints can be expanded around a certain N -dimensional point ~↵A

(248) Hk(~↵) = Hk(~↵A) +
X

j

@Hk

@↵j
(↵j � ↵jA)

46If the final state consists of K particles, in the most general case N = 7K since each particle have
to be described in the most complete form by 7 variables: 3 coordinates of a point, three components of
a vector and a mass.

47In this section we use the vecto symbol ~↵ to identify vectors and the notation V to identify matrices.
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with �2 identically equal to 0. No fit is obtained clearly, the number of unknowns being
equal to the number of constraints. Additional constraints are needed in this case.

8.4. The method of the Lagrange Multipliers: general formulation. Let’s as-
sume that the final state we are analyzing depends on N variables ↵i

46. All these
variables have been measured and the values ↵i0 have been obtained, with Vij being
the experimental covariance matrix of the measurements. Then we suppose to have R
constraints, each of the form Hk(~↵) = 047, with the Hs being general functions. The �2

function including the Lagrange multipliers is:

(247) �2 =
X

ij

(↵i � ↵i0)V
�1
ij (↵j � ↵j0) + 2

X

k

�kHk(~↵)

The constraints can be expanded around a certain N -dimensional point ~↵A

(248) Hk(~↵) = Hk(~↵A) +
X

j

@Hk

@↵j
(↵j � ↵jA)

46If the final state consists of K particles, in the most general case N = 7K since each particle have
to be described in the most complete form by 7 variables: 3 coordinates of a point, three components of
a vector and a mass.

47In this section we use the vecto symbol ~↵ to identify vectors and the notation V to identify matrices.
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The linearization of the constraints allows to have an analytically solvable system. The
details of the derivation of the solution are not given here, the final results are shown.

Using a matrix formalism the following vectors and matrices are defined:

�~↵ = ~↵� ~↵A(250)

~d = ~H( ~↵A)(251)

Dki =
@Hk

@↵j

����
↵
j

=↵
jA

(252)

where the first is a vector of dimension N , the second of dimension R, the third is a
R⇥N matrix. The �2 can be written as

(253) �2 = (~↵� ~↵0)
TV �1(~↵� ~↵0) + 2~�T (D�~↵+ ~d)

The minimization gives the following solution for the variables ~↵:

(254) ~̂↵ = ~↵0 � V DT (DVDT )�1(D�~↵0 + ~d)

and the covariance matrix of the estimates is

(255) V 0 = V � V DT (DVDT )�1DV

Finally the �2 can be expressed as the sum of R terms:

(256) �2 = ~�T (D�~↵0 + ~d)

one per constraint.
Eq.254 shows that the best estimate of the kinematic variables of the event are equal

to the measured values minus terms that depend on the constraints. The variables are
”pulled” from the measured values. The covariance matrix of the estimated variables is
also pulled (see eq.255) from the measurement covariance matrix. It can be demonstrated
that the diagonal terms of V 0 are always smaller than the corresponding diagonal terms
of V , so that the outcome of the kinematic fit is an improved kinematic reconstruction
of the event.

Finally the so called pulls are defined as measures of how each single variable is pulled
away from the measured values:

(257) pulli =
↵̂i � ↵i0q
�2
↵
i0
� �2

↵
i

the denominator is the uncertainty on the di↵erence between the two variables. If the
kinematic fit is working correctly, the distribution of the pulls should have a standardized
gaussian shape.
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