Designing an experiment

• Introduction

• • from apparent unbalance in the event (hermeticity)

Momentum measurement

Momentum measurement

Assume a uniform magnetic field **B** in a region of dimension **L** and a particle of trasverse momentum p_T entering the region $p_T(GeV) = 0.3\rho(m)B(T)$ We define the "sagitta" *s* and suppose to measure it through 3 points x_1, x_2 and $x_3: s = x_2 - (x_1 + x_3)/2$ $s = \frac{0.3BL^2}{8p_T}$ From *s* we get the transverse momentum, given the field **B** and the distance **L** between detectors 1 and 3

The resolution on p_T is:

$$\frac{\sigma(p_T)}{p_T} = \sqrt{\frac{3}{2}}\sigma_X \frac{8p_T}{0.3BL^2}$$

In case of N points rather than 3, the resolution is:

$$\frac{\sigma(p_T)}{p_T} = \sqrt{\frac{720}{N+4}} \sigma_X \frac{p_T}{0.3BL^2}$$

03/06/19

^{1/7} **particle measurement : spectrometers**

- track $\perp \vec{B}$ (or ℓ = projected trajectory);
- \vec{B} = constant;
- $\mathfrak{e} \ll R$ (i.e. α small, s $\ll R$, arc \approx chord);
- then (p in GeV, B in T, ℓ R s in m) :

$$R^{2} = (R - s)^{2} + \ell^{2} / 4 \rightarrow (R, \ell \gg s)$$

$$0 = \sqrt[3]{2} - 2Rs + \ell^{2} / 4 \rightarrow$$

$$s = \frac{\ell^{2}}{8R} \approx \frac{R\alpha^{2}}{8};$$

$$p = 0.3BR = 0.3B\frac{\ell^{2}}{8s};$$

$$\frac{\Delta p}{p} = \left|\frac{\partial p}{\partial s}\right|\frac{\Delta s}{p} = \frac{p}{s}\frac{\Delta s}{p'} = \frac{\Delta s}{s} = \left(\frac{8\Delta s}{0.3B\ell^{2}}\right)p.$$
Methods in Experimental Particle Physics

- e.g. B = 1 T, ℓ = 1.7 m, Δ s = 200 μ m \rightarrow $\Delta p/p = 1.6 \times 10^{-3} p$ (GeV);
- in general, from N points at equal distance along ℓ, each with error ε :

$$\frac{\Delta p}{r} \simeq \frac{\epsilon p}{0.2 p \ell^2} \sqrt{\frac{720}{N+4}}$$

p $0.3B\ell^2 \sqrt{N+4}$

(Gluckstern formula [PDG]).

Resolution of energy measurements through e.m. calorimetry

- In general the energy resolution of an e.m. calorimeter is given in terms of $\sigma(E)/E$.
- Main contributions:
 - $a/\sqrt{E} \rightarrow$ due to statistics: sampling fluctuations and/or number of photoelectrons fluctuations;
 - *b*/E → tipically due to the fluctuations of a constant contribution to the energy (e.g. pedestal, electronic noise,...)
 - $c \rightarrow$ constant term: due to systematics, calibration, containment.
- All three terms contribute. Normally *c* dominates at high energies, and *a* at low/intermediate energies. *b* is present only in specific cases.

Electromagnetic calorimetry

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_0$	$2.7\%/E^{1/4}$	1983
Bi ₄ Ge ₃ O ₁₂ (BGO) (L3)	$22X_{0}$	$2\%/\sqrt{E} \oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E} \oplus 0.45\%$	1996
CsI(Tl) (BaBar)	16-18X ₀	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_0$	1.7% for $E_{\gamma} > 3.5~{\rm GeV}$	1998
PbWO ₄ (PWO) (CMS)	$25X_{0}$	$3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990
Liquid Kr (NA48)	$27X_0$	$3.2\%/\sqrt{E} \oplus \ 0.42\% \oplus 0.09/E$	1998
Scintillator/depleted U (ZEUS)	20-30X ₀	$18\%/\sqrt{E}$	1988
Scintillator/Pb (CDF)	$18X_0$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$5.7\%/\sqrt{E} \oplus 0.6\%$	1995
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (H1)	20-30X0	$12\%/\sqrt{E} \oplus 1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_0$	$16\%/\sqrt{E} \oplus 0.3\% \oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_0$	$10\%/\sqrt{E} \oplus 0.4\% \oplus 0.3/E$	1996

Table 31.8: Resolution of typical electromagnetic calorimeters. E is in GeV.

Designing an experiment

• examples

KLOE - I

- e^+e^- collisions at $\sqrt{s} = 1.02 \text{ GeV} = M_{\phi}$
- Low multiplicity events well suited for "exclusive" analyses.
- Particles to detect (momentum range $50 \div 500$ MeV):
 - Pions
 - Photons
 - Electrons
 - Muons
 - Charged kaons from $\phi \rightarrow K^+K^-$ (momentum = 130 MeV)
 - Neutral Kaons (see later)
- At these low momenta, there are not "hadronic showers", a pion is similar to a muon. On the other hand, electrons and photons are "e.m. showers".
- Strategy:
 - A tracking chamber in magnetic field to measure charged particles momenta (with some charged kaon discrimination through dE/dx measurement);
 - A calorimeter on its back to measure photons, and to help in the discrimination between pions, muons and electrons through time-of-flight;

KLOE - II

Specific KLOE case determines the detector overall dimensions:

 $\phi \to K_0 \overline{K}_0 \to K_S K_L$

$$p(K_0) = 110.6 \text{ MeV/c} \tau(K_S) = 0.8954 \times 10^{-10} \text{ s} \qquad \Rightarrow l(K_S) = \tau(K_S) \beta\gamma \text{ c} = 6 \text{ mm} \tau(K_L) = 5.116 \times 10^{-8} \text{ s} \qquad \Rightarrow l(K_L) = \tau(K_L) \beta\gamma \text{ c} = 3.4 \text{ m}$$

A>50% (acceptance on K_L) if
$$A = \int_{0}^{R} f(r) dr = \frac{1}{l(K_L)} \int_{0}^{R} e^{-r/l(K_L)} dr = 1 - e^{-R/l(K_L)}$$

R>2.3 m

SuperConducting Coil + Return Yoke $B \approx 0.5 T$ typical curvature radii $R = p_T/0.3B = 33 \div 330 \text{ cm}$ Drift chamber $\approx 10^4$ wires in stereo configuration momentum measurement down to 50 MeVtypical track: ≈ 30 hits with 200 µm space resolution each. Calorimeter Lead-Scintillating fibers calorimeter Read-out through 4880 PMTs

Energy resolution (record for a sampling calorimeter)

$$\frac{\sigma(p_T)}{p_T} \approx 0.4\%$$
$$\frac{\sigma(E)}{E} \approx \frac{5.7\%}{\sqrt{E(GeV)}}$$

The KLOE drift chamber

Stereo wires

Y

η

 η_0

Measurement of two coordinates in the two views:

$$Y = Y_0$$

 $\eta = \eta_0$

13

Each measurements is a line in the X-Y plane:

$$\begin{split} Y &= Y_0 \\ Y &= \eta_0 / \cos \theta + tg \theta X \\ \text{Risolvo il sistema e ottengo } (\sin \theta \approx \theta, \cos \theta \approx 1 \\ X &= (Y_0 \cos \theta - \eta_0) / \sin \theta \approx (Y_0 - \eta_0) / \theta \end{split}$$

NB: given $\sigma(Y_0) \sim \sigma(\eta_0)$ $\Rightarrow \sigma(X) = \sigma(Y_0) \sqrt{2/\theta}$

Х

The KLOE calorimeter

The KLOE calorimeter

Fig. 1. $e^+e^- \rightarrow e^+e^-\gamma$: (a) Differential linearity vs. E_{γ} , (b) Energy resolution vs. E_{γ} .

Fig. 38. Photons efficiency vs. energy for $e^+e^- \rightarrow e^+e^-\gamma$ events (circles), $\phi \rightarrow \pi^+\pi^-\pi^0$ (squares) and $K_L \rightarrow \pi^+\pi^-\pi^0$ (triangles).

KLOE calorimeter: Time-of-flight

KLOE-2 at **DAΦNE**

00

LYSO Crystal w SiPM Low polar angle

Tungsten / Scintillating Tiles w SiPM Quadrupole Instrumentation

LEI

Scintillator hodoscope +PMTs

calorimeters LYSO+SiPMs at $\sim 1 \text{ m}$ from IP

KLOE event: $\phi \rightarrow K_{S}K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}$

07/06/19

$\mathbf{K}_{\mathbf{S}}$ and $\mathbf{K}_{\mathbf{L}}$ Tagging at KLOE

 K_S tagged by K_L interaction in EmC Efficiency ~ 30% (largely geometrical) K_S angular resolution: ~ 1° (0.3° in ϕ) K_S momentum resolution: ~ 2 MeV

 K_L tagged by $K_S \rightarrow \pi^+\pi^-$ vertex at IP Efficiency ~ 70% (mainly geometrical) K_L angular resolution: ~ 1° K_L momentum resolution: ~ 2 MeV