Homework n. 1

Evaluate numerically and plot graphically the convolution integral of the energy spectrum $f(E)$ with a gaussian resolution $g(E)$ defined below.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{E})=\mathrm{f}_{1}(\mathrm{E})+\mathrm{f}_{2}(\mathrm{E})+\mathrm{f}_{3}(\mathrm{E}) \\
& \mathrm{f}_{1}(\mathrm{E})=1 / \mathrm{E} \text { for } 0.1<\mathrm{E}<0.9 \mathrm{MeV} \\
& \mathrm{f}_{1}(\mathrm{E})=0 \quad \text { for } \mathrm{E}<0.1 \text { or } \mathrm{E}>0.9 \mathrm{MeV} \\
& \mathrm{f}_{2}(\mathrm{E})=\mathrm{G}(\mu=1 \mathrm{MeV}, \sigma=0.01 \mathrm{MeV}) \\
& \mathrm{f}_{3}(\mathrm{E})=\mathrm{G}(\mu=1.3 \mathrm{MeV}, \sigma=0.01 \mathrm{MeV}) \\
& \mathrm{g}(\mathrm{E})=\mathrm{G}(\mathrm{E}, \sigma) \text { with } \sigma / \mathrm{E}=5 \% / \sqrt{ }(\mathrm{MeV})
\end{aligned}
$$

Homework n. 2

At the end of the event selection looking for a signal $\mathrm{e}+\mathrm{e}-=>\mathrm{X}$ we get - candidate events: Ncand = 1590;

- background events: $\mathrm{Nb}=640 \pm 60$ (evaluated from side-bands); The efficiency is $\varepsilon=0.246$ with negligible uncertainty
a) Evaluate the number of signal events N_{X} and its relative uncertainty.
b) We want to reduce the uncertainty on the signal and apply a rejection on the background. Assuming an uncertainty of 10% on the background evaluation (after rejection), which rejection factor is needed on Nb above to obtain $\sigma\left(\mathrm{N}_{\mathrm{X}}\right) / \mathrm{N}_{\mathrm{X}}<3.5 \%$?

Given the formula:

$$
\frac{\left|\eta_{+-}\right|^{2}}{\left|\eta_{00}\right|^{2}}=\frac{\left\lceil\frac{\left.B R\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)\right\rceil}{\left[B R\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)\right.}\right\rceil}{\left\lfloor\frac{\left.B R\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)\right\rceil}{\left[B R\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)\right.}\right\rfloor 1+6 \Re e\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)}
$$

Show that :

$$
\delta \mathfrak{R} e\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right)_{\text {stat }}=\frac{1}{6} \frac{1}{\sqrt{(2 / 3) N_{L}^{0}}}
$$

with N_{L}^{0} number of counts $K_{L}->\pi^{0} \pi^{0}$.

1) In which approximation does the formula hold?

Homework n. 3

The relationship between branching ratios $\mathrm{BR}_{\mathrm{S}, \mathrm{L}}$ and counts $\mathrm{N}_{\mathrm{S}, \mathrm{L}}$ is given by:

$$
N_{S, L}^{ \pm, 0}=N_{S, L}^{ \pm 0}(o b s)-B c k_{s, L}^{ \pm 0}=N_{K K} \cdot \rho_{S, L}(t a g) \cdot B R_{S, L}^{ \pm, 0} \cdot\left\langle\rho_{S, L}^{ \pm .0}\right\rangle \cdot \iint_{F V} g\left(l-l^{\prime}\right) I(l) d l d l^{\prime}
$$

with:

- $N_{S_{L}, L}^{ \pm, 0}(o b s)$ is the number of observed decavs into $\pi^{+} \pi^{-}, \pi^{0} \pi^{0}$
- $N_{K K}$ is the total number of produced $\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{I}}$ pairs
- $\rho_{S, L}($ tag $)$ is the tagging efficiency
$-B R_{S, L}^{ \pm .0}$ is the branching ratio of the decay $\mathrm{K}_{\mathrm{S}, \mathrm{L}}=>\pi^{+} \pi^{-}, \pi^{0} \pi^{0}$
$-\left\langle\rho_{S, L}^{ \pm, 0}\right\rangle$ is the average detection efficiency for the decays $K_{S, L}=>\pi^{+} \pi^{-}, \pi^{0} \pi^{0}$

$$
\begin{array}{ll}
-\iint_{F V} g\left(l-l^{\prime}\right) I(l) d l d l^{\prime} & \begin{array}{l}
\text { is the convolution integral of an exponential decay intensity } \\
\mathrm{I}(\mathrm{l})=\exp \left(-1 / 1_{\mathrm{S}, \mathrm{~L}}\right) \text { with the resolution } g\left(1-1 l^{\prime}\right) \text { on the decay length }
\end{array} \\
& \mathrm{l}, \text { and integrated on the fiducial volume } \mathrm{FV}
\end{array}
$$

- $B c k_{s, L}^{ \pm .0}$ is the contribution of background events

$$
N_{L}^{0}=\underbrace{3 \mu \mathcal{L}}_{\sigma_{e^{+} e^{-\rightarrow \phi}}^{3 \mu b}} \cdot \underbrace{0.66}_{\int L d t} \cdot \underbrace{0.6 R\left(\phi \rightarrow K_{S} K_{L}\right)}_{\rho_{L}\left(t a_{g}\right)} \underbrace{0.34}_{B R_{L}^{0}} \cdot \underbrace{10^{-3}}_{\text {fiducial volume }} \cdot\left(e^{-3 q 350}-e^{-15 q_{350}}\right)
$$

2) Given an integrated luminosity of $\mathcal{L}=10^{4} \mathrm{pb}^{-1}$, which rejection factor of the background $\mathrm{K}_{\mathrm{L}^{-}}>3 \pi^{0}$ (on the signal $\mathrm{K}_{\mathrm{L}^{-}}>2 \pi^{0}$) is necessary to have an uncertainty $\delta\left(\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)\right)<3 \times 10^{-4}$ and assuming to know the background with a 20% precision?
