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Data analysis in particle physics  

Observe events of a certain type 

Measure characteristics of each event (particle momenta, 
number of muons, energy of jets,...) 
Theories (e.g. SM) predict distributions of these properties 
up to free parameters, e.g., α, GF, MZ, αs, mH, ... 
Some tasks of data analysis: 

 Estimate (measure) the parameters; 
 Quantify the uncertainty of the parameter estimates; 
 Test the extent to which the predictions of a theory 
 are in agreement with the data. 



5

G. Cowan  Statistical Data Analysis / Stat 1 8 

Dealing with uncertainty  
In particle physics there are various elements of uncertainty: 
 

 theory is not deterministic 
  quantum mechanics 

 random measurement errors 
  present even without quantum effects 

 things we could know in principle but don’t 
  e.g. from limitations of cost, time, ... 

 
We can quantify the uncertainty using PROBABILITY 
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A definition of probability  
Consider a set S with subsets A, B, ... 

Kolmogorov 
axioms (1933) 

From these axioms we can derive further properties, e.g. 
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Conditional probability, independence 

Also define conditional probability of A given B (with P(B) ≠ 0): 

E.g. rolling dice: 

Subsets A, B independent if: 

If A, B independent, 

N.B. do not confuse with disjoint subsets, i.e., 



8
G. Cowan  Statistical Data Analysis / Stat 1 11 

Interpretation of probability 
I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
but subjective probability can provide more natural treatment of  
non-repeatable phenomena:   
     systematic uncertainties, probability that Higgs boson exists,... 
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Bayes� theorem 
From the definition of conditional probability we have, 

and 

but , so 

Bayes’ theorem 

First published (posthumously) by the 
Reverend Thomas Bayes (1702−1761) 

An essay towards solving a problem in the 
doctrine of chances, Philos. Trans. R. Soc. 53 
(1763) 370; reprinted in Biometrika, 45 (1958) 293. 



10 G. Cowan  Statistical Data Analysis / Stat 1 13 

The law of total probability 

Consider a subset B of  
the sample space S, 

B ∩ Ai 

Ai 

B 

S 

divided into disjoint subsets Ai 
such that ∪i Ai = S, 

→ 

→ 

→ law of total probability 

Bayes’ theorem becomes 
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An example using Bayes� theorem 
Suppose the probability (for anyone) to have a disease D is: 

← prior probabilities, i.e., 
     before any test carried out 

Consider a test for the disease:  result is + or �

← probabilities to (in)correctly 
     identify a person with the disease 

← probabilities to (in)correctly 
     identify a healthy person 

Suppose your result is +.  How worried should you be?
G. Cowan  
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Bayes� theorem example (cont.) 
The probability to have the disease given a + result is 

i.e. you’re probably OK! 

Your viewpoint:  my degree of belief that I have the disease is 3.2%. 

Your doctor’s viewpoint:  3.2% of people like this have the disease.

← posterior probability 

G. Cowan  

P(D|+) and P(+|D) can be very different (depends on the prior!)
(3.2% vs 98%)
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Suppose you repeat the test a second time and get again a positive result +.
How worried should you be?
P(D|++) = 0.52
P(D|+++)=0.97

P(D|++-)=?

Bayes factor:
P D |+( )
P noD |+( )

Posteriors ratio
! "# $#

=
P + |D( )
P + | noD( )

Bayes factor
! "# $#

P D( )
P noD( )

Priors ratio
!"# $#

P D |++−( )
P noD |++−( )

=
P − |D( )
P − | noD( )

P + |D( )
P + | noD( )

P + |D( )
P + | noD( )

P D( )
P noD( )

= 0.022

⇒ P D |++−( ) = 0.022
1+ 0.022

≅ 0.022
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Frequentist Statistics − general philosophy  
In frequentist statistics, probabilities are associated only with 
the data, i.e., outcomes of repeatable observations (shorthand:     ). 

 Probability = limiting frequency 

Probabilities such as 

 P (Higgs boson exists),  
 P (0.117 < αs < 0.121),  

etc. are either 0 or 1, but we don’t know which. 

The tools of frequentist statistics tell us what to expect, under 
the assumption of certain probabilities, about hypothetical 
repeated observations. 

The preferred theories (models, hypotheses, ...) are those for 
which our observations would be considered ‘usual’. 

(i.e. “unknown certainty” ?!)
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Probability definition (freqentist) 

•  A bit more formal definition of probability: 
•  Law of large numbers: 

    if 

•  i.e.: 

… isn’t it a circular definition? 
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Fig. 1.10 An illustration of the law of large numbers using a computer simulation of die rolls. The
average of the first N out of 1000 random extraction is reported as a function of N. 1000 extractions
have been repeated twice (red and blue lines) with independent random extractions

The law of large numbers has many empirical verifications for the vast majority
of random experiments and has a broad validity range.

1.18 Frequentist Definition of Probability

The frequentist definition of the probability P.E/ of an event E is formulated with
following limit:

P.E/ D p if 8 " lim
N!1

P
!ˇ̌
ˇ̌N.E/

N
! p

ˇ̌
ˇ̌ < "

"
: (1.48)

The limit is intended, in this case, as convergence in probability, given by the law
of large numbers. The limit only rigorously holds in the non-realizable case of an
infinite number of experiments. Rigorously speaking, the definition of frequentist
probability in Eq. (1.48) is defined itself in terms of another probability, which could
introduce conceptual problems. F. James et al. report the following sentence:

Œ! ! ! ! this definition is not very appealing to a mathematician, since it is based on
experimentation, and, in fact, implies unrealizable experiments (N ! 1) [5].

1.17 The Law of Large Numbers 21

The multinomial variables ni have negative correlation, and their covariance is, for
i ¤ j:

Cov.ni; nj/ D !Np ip j : (1.45)

For a binomial distribution, Eq. (1.45) leads to the obvious conclusion that n1 D n
and n2 D N ! n are 100% anticorrelated.

1.17 The Law of Large Numbers

Assume to repeat N times an experiment whose outcome is a random variable x
having a given probability distribution. The average of all results is given by:

Nx D x1 C " " " CxN
N

: (1.46)

Nx is itself a random variable, and its expected value is, from Eq. (1.20), equal to
the expected value of x. The distribution of Nx, in general, has a smaller range of
fluctuation than the variable x and central values of Nx tend to be more probable. This
can be demonstrated, using classical probability and combinatorial analysis, in the
simplest cases. A case with N D 2 is, for instance, the distribution of the sum of
two dices d1 Cd2 in Fig. 1.1, where Nx is just given by .d1 Cd2 /=2 . The distribution
has the largest probability value for .d1 Cd2 /=2 D 3:5, which is the expected value
of a single dice roll:

hxi D 1 C2 C3C4 C5C6

6
D 3:5 : (1.47)

Repeating the combinatorial exercise for the average of three or more dices, gives
even more ‘peaked’ distributions.

In general, it is possible to demonstrate that, under some conditions about the
distribution of x, as N increases, a smaller probability corresponds to most of the
possible values of Nx, except the ones very close to the expected average hNxi D hxi.
The probability distribution of Nx becomes a narrow peak around the value hxi, and
the interval of values that correspond to a large fraction of the total probability (we
could choose—say—90% or 95%) becomes smaller. Eventually, for N ! 1, the
distribution becomes a Dirac’s delta centered at hxi.

This convergence is called law of large numbers, and can be illustrated in a
simulated experiment consisting of repeated dice rolls, as shown in Fig. 1.10, where
Nx is plotted as a function ofN for two independent random extractions. Larger values
of N correspond to smaller fluctuations of the result and to a visible convergence
towards the value of 3.5. If we would ideally increase to infinity the total number of
trials N, the average value Nx would no longer be a random variable, but would take
a single possible value, equal to hxi D 3:5.
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Classical Probability 

•  Assumes all accessible cases are equally probable 
•  This analysis is rigorously valid on discrete cases only 

–  Problems in continuous cases ( Bertrand’s paradox) 

Probability   =  
Number of favorable cases 

Number of total cases 

P = 1/2 

P = 1/10 

P = 1/4 

P = 1/6  
(each dice) 
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Fig. 1.10 An illustration of the law of large numbers using a computer simulation of die rolls. The
average of the first N out of 1000 random extraction is reported as a function of N. 1000 extractions
have been repeated twice (red and blue lines) with independent random extractions

The law of large numbers has many empirical verifications for the vast majority
of random experiments and has a broad validity range.

1.18 Frequentist Definition of Probability

The frequentist definition of the probability P.E/ of an event E is formulated with
following limit:

P.E/ D p if 8 " lim
N!1

P
!ˇ̌
ˇ̌N.E/

N
! p

ˇ̌
ˇ̌ < "

"
: (1.48)

The limit is intended, in this case, as convergence in probability, given by the law
of large numbers. The limit only rigorously holds in the non-realizable case of an
infinite number of experiments. Rigorously speaking, the definition of frequentist
probability in Eq. (1.48) is defined itself in terms of another probability, which could
introduce conceptual problems. F. James et al. report the following sentence:

Œ! ! ! ! this definition is not very appealing to a mathematician, since it is based on
experimentation, and, in fact, implies unrealizable experiments (N ! 1) [5].

Frequentist probability
definition:
(somewhat a circular definition:
a probability in terms of another probability)

Assuming each dice side has probability = 1/6
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Bayesian Statistics − general philosophy  
In Bayesian statistics, use subjective probability for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayes’ theorem has an “if-then” character:  If your prior 
probabilities were π (H), then it says how these probabilities 
should change in the light of the data. 

 No general prescription for priors (subjective!) 
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Definition of probability 
•  There are two main different definitions of the 

concept of probability 
•  Frequentist 

–  Probability is the ratio of the number of occurrences of an 
event to the total number of experiments, in the limit of very 
large number of repeatable experiments. 

–  Can only be applied to a specific classes of events 
(repeatable experiments) 

–  Meaningless to state: “probability that the lightest SuSy 
particle’s mass is less tha 1 TeV” 

•  Bayesian 
–  Probability measures someone’s the degree of belief that 

something is or will be true: would you bet? 
–  Can be applied to most of unknown events (past, present, 

future): 
•  “Probability that Velociraptors hunted in groups” 
•  “Probability that S.S.C Naples will win next championship”  

Luca Lista Statistical Methods for Data Analysis 
or Rome, Juventus etc..
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Problems with probability definitions 
•  Frequentist probability is, to some extent, circularly defined 

–  A phenomenon can be proven to be random (i.e.: obeying laws of statistics) 
only if we observe infinite cases 

–  F.James et al.: “this definition is not very appealing to a mathematician, since it 
is based on experimentation, and, in fact, implies unrealizable experiments 
(N→ ∞)”. But a physicist can take this with some pragmatism 

–  A frequentist model can be justified by details of poorly predictable 
underlying physical phenomena 

•  Deterministic dynamic with instability (chaos theory, …) 
•  Quantum Mechanics is intrinsically probabilistic…! 

–  A school of statisticians state that Bayesian statistics is a more natural and 
fundamental concept, and frequentist statistic is just a special sub-case 

•  On the other hand, Bayesian statistics is subjectivity by 
definition, which is unpleasant for scientific applications. 

–  Bayesian reply that it is actually inter-subjective, i.e.: the real essence of 
learning and knowing physical laws… 

•  Frequentist approach is preferred by the large fraction of 
physicists (probably the majority, but Bayesian statistics is 
getting more and more popular in many application, also thanks 
to its easier application in many cases 

Luca Lista Statistical Methods for Data Analysis 
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● The Bayesian infers from the data using priors 
 

● Priors is a science on its own. 
 Are they objective? Are they subjective? 

● The Frequentist calculates the 
probability of an hypothesis to  
be inferred from the data based 
on a large set of hypothetical experiments  
Ideally, the frequentist does not need priors, or any 
degree of belief while the Baseian posterior based inference is 
a “Degree of Belief”. 

● However, NPs (Systematic) inject a Bayesian flavour to any 
Frequentist analysis

Eilam Gross Statistics in PP

Frequentist vs Bayesian

  P(H | x) ≈ P(x | H ) ⋅P(H )posterior

Jan 2018!16

Eilam Gross
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Theory ↔ Statistics ↔ Experiment 

+ simulation 
of detector 
and cuts 

Theory (model, hypothesis): Experiment: 

+ data 
selection 
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Data analysis in particle physics  
Observe events (e.g., pp collisions) and for each, measure 
a set of characteristics: 

 particle momenta, number of muons, energy of jets,... 

Compare observed distributions of these characteristics to  
predictions of theory.  From this, we want to: 

   Estimate the free parameters of the theory: 

   Quantify the uncertainty in the estimates: 

   Assess how well a given theory stands in agreement  
   with the observed data: 

 
To do this we need a clear definition of PROBABILITY 



26

data 

G. Cowan  Statistical Data Analysis / Stat 1 66 

Data analysis in particle physics: 
testing hypotheses  

Test the extent to which a given model agrees with the data: 

spin-1/2 quark  
model “good” 

spin-0 quark  
model “bad” 

ALEPH, Phys. Rept. 294 (1998) 1-165 

In general need tests 
with well-defined properties  
and quantitative results. 
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Data analysis in particle physics: 
testing hypotheses  

Test the extent to which a given model agrees with the data: 

spin-1/2 quark  
model “good” 

spin-0 quark  
model “bad” 

ALEPH, Phys. Rept. 294 (1998) 1-165 

In general need tests 
with well-defined properties  
and quantitative results. 

What do the data have to be compared to ?


