Suggestion:

Review the first two chapters of Cowan — Statistical Data Analysis
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Binomial distribution

Consider N independent experiments (Bernoulli trials):

outcome of each 1s ‘success’ or ‘failure’,

probability of success on any given trial 1s p.

Define discrete r.v. n = number of successes (0 <n < N).

Probability of a specific outcome (in order), e.g. ‘ssfsf’ is

pp(1l —p)p(l —p) =p"(1 _p)N—n
N
n!(N—n)!

But order not important; there are

ways (permutations) to get n successes in N trials, total
probability for z 1s sum of probabilities for each permutation.
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Binomial distribution (2)

The binomial distribution 1s therefore

N1

© N, — ne1 _ N—n
f/("n p) TN — )t (1—p)
random parameters

variable

For the expectation value and variance we find:
N
E[n] = ) nf(n;N,p) = Np

n=0

VIn] = E[n?] — (E[n])? = Np(1 — p)
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Binomial distribution (3)

Binomial distribution for several values of the parameters:

2 04 2 04
> N=5 > N=20
S:; 02 | H H p=05 _ é 02 | n “ p=0] i
0 N H H N 0 ] H ” 0 -
0 5 10 15 20 0 5 10 15 20
n n
2 04 2 04
z N=10 = N=20
£ 02t H p=05 L 2 02 | n p=02 |
0 n”” H”n Onﬂ”“ HHH
0 5 10 15 20 0 5 10 15 20
n n
2 04 2 04
= N=20 = N=20
= 02 | p=05 1 Z o2} p=06 |
, e , e
0 5 10 15 20 0 5 10 15 20

n n

Example: observe N decays of W+, the number n of which are

W—uv is a binomial r.v., p = branching ratio.
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Multinomial distribution

Like binomial but now m outcomes instead of two, probabilities are

m
1=1

For N trials we want the probability to obtain:

n, of outcome 1,
n, of outcome 2,

n, of outcome m.

This is the multinomial distribution for 7 = (n1,...,nm)
N
f(7; N, p) = p1tp52 - pt
nilno!l - -npy!
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Multinomial distribution (2)

Now consider outcome i as ‘success’, all others as ‘failure’.

— all n; individually binomial with parameters N, p,

E[n;] = Np;, VIn;] = Np;(1 —p;) foralli
One can also find the covariance to be
Vii = Np;(6;5 — pj)

Example: 7 = (ny,...,nm) represents a histogram

with m bins, N total entries, all entries independent.
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Poisson distribution

Consider binomial z 1n the Iimit

20

20

N — oo, p — 0O, FElnl]=Np—v.
> 04
= v=2
— n follows the Poisson distribution: =, | N N
V?’L 0 } H ” I o
f(niv)="e™ (n>0) Cor
n: = 04
= v=5
Enl=v, Vn]l=v. Tz}
0 ln [ H H H H ” |
0 5 10 15
Example: number of scattering events | ’
n with cross section o found for a fixed £ V=10
. . . . 0.2 r
integrated luminosity, with v = o [ L dt . i
i ln
0 0 10 15
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From Binomial to Poisson to Gaussian
P(k:n,p){ Z jp"(l—p)”"‘

/lke_k
k!

P(k:n,p) N np=A > Poiss(k;A) =

(k)y=A, o,=JA
k—oo=x=k
Using Stirling Formula

1 2 2
prob(x)=G(x,0 =V 1)= (-1 120

e
N2Tmo

This is a Gaussian, or Normal distribution

with mean and variance of A
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Histograms

N collisions
Lo(pp— H) Ae,

Lo(pp)

bs .. .
Prob to see n;” in N collisions is

p(Higgs event) =

N 1,0bs _,0bs
P(ni,’”)=[ ot ]p*’ (1-p)* ™

) nobs JSAx,
At St
lim,_ P(ny’)= Poiss(nl’ ,A) = ‘ — mass
ny |
Lo(pp — H) Ae
A= Np=Lo(pp)- —% b= ngy
Lo(pp)
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Histograms

_ . . 8 30 T T T T
pdf = histogram with : o
infinite data sample, 2T T
zero bin width, o !
normalized to unit area. T, ks,
° D 2 4 B 8 10
N(z) )
f(x) — ;5 500 . . T T
nAx o | © |
. 300 -
n = number of entries | |
Ax = bin width | 1
° D 2 4 B 8 10
N(x) = number of entries in a bin containing x x
f(x) = pdf [ f(x)dx=1
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Uniform distribution

Consider a continuous r.v. x with —co < x < oo . Uniform pdf is:

1 a<z< g
f<x;a,ﬁ>={“ CErEP R
0 otherwise T L
1 a6 | B-(l
Elz] = S(a+ 5) |
Vie] = 58— o)’ |
12 g 1 : :

N.B. For any r.v. x with cumulative distribution F(x),
y = F(x) 1s uniform 1n [0,1].

Example: for 1’ — vy, E,is uniform in [E ; , E, .. ], with

m max

Emin = %Ew(l —B), Emax = %Ew(l +5)
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Exponential distribution

The exponential pdf for the continuous r.v. x 1s defined by:

1

%e‘x/g x>0 08

f(x; &) ={
0

f(x:€)

otherwise 06 |
E[aj] — € 0.4 —\\

02 |

Viz] = ¢°

Example: proper decay time ¢ of an unstable particle

f(t; ) = le_t/T (7= mean lifetime)
T

Lack of memory (unique to exponential): f(t — tglt > tg) = f(¢)
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Gaussian distribution

The Gaussian (normal) pdf for a continuous r.v. x 1s defined by:

~~

3 — u=0, o=1
f(x, Jy O') = 1 6_(:6_/'02/20.2 = 06 T --- u=0, 0=2 i

V270 et o

04

Elz] =p  (N.B. often i, 0® denote
mean, variance of any o2

V[z] = 0% 1.V, notonly Gaussian.)

.

-
-

0 =~

Special case: £=0, 0>=1 (‘standard Gaussian’):

r) = . e /2 D= [ z') dx’
pe)= =7, o@) = [ e@)d

If y ~ Gaussian with u, 0, then x = (y - ) /o follows ¢(x).
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Gaussian pdf and the Central Limit Theorem

The Gaussian pdf is so useful because almost any random
variable that 1s a sum of a large number of small contributions
follows 1t. This follows from the Central Limit Theorem:

For n independent r.v.s x; with finite variances ¢;?, otherwise
arbitrary pdfs, consider the sum

mn
y= )
1=1

In the limit » — oo, y 1s a Gaussian r.v. with
n

Ely] = En: i Viyl = Y o7
1=1 )

1=1

Measurement errors are often the sum of many contributions, so
frequently measured values can be treated as Gaussian r.v.s.

@ Methods in Expcrimcntal Particle Ph}'sics 3/13/20



)

Meaning of parameter estimate ok

 We are interested in some physical unknown parameters

« Experiments provide samplings of some PDF which has among
its parameters the physical unknowns we are interested in

« Experiment’s results are statistically “related” to the unknown
PDF

— PDF parameters can be determined from the sample within some
approximation or uncertainty

«  Knowing a parameter within some error may mean different
things:
— Frequentist: a large fraction (68% or 95%, usually) of the
experiments will contain, in the limit of large number of

experiments, the (fixed) unknown true value within the quoted
confidence interval, usually [u — o,u + o] (‘coverage’)

— Bayesian: we determine a degree of belief that the unknown
parameter is contained in a specified interval can be quantified as
68% or 95%

We will see that there is still some more degree of arbitrariness
in the definition of confidence intervals...
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Statistical inference

Probability

Data fluctuate according
to process randomness

Inference

Model uncertainty due to

fluctuations of the data sample
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Hypothesis tests

Which hypothesis is the most
consistent with the experimental
data?
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Parameter estimators INFN

* An estimator is a function of a given sample whose
statistical properties are known and related to some
PDF parameters

— “Best fit”

* Simplest example:

— Assume we have a Gaussian PDF with a known o and an
unknown u

— A single experiment will provide a measurement x
— We estimate uw as usst = x

— The distribution of ust (repeating the experiment many times)
is the original Gaussian

— 68.27%, on average, of the experiments will provide an
estimate within:u-o<u®s'<u+o

« We can determine: u=u*t+ o
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Likelihood function INFN

« Given a sample of N events each with variables (x,, ..., x,), the
likelihood function expresses the probability denS|ty of the sample, as a
function of the unknown parameters:

L= Hf:z,l ozl 0,)

« Sometimes the used notation for parameters is the same as for
conditional probability:

f(flh,“' 7xn|917... ,gm)'

« If the size N of the sample is also a random variable, the extended
likelihood function is also used:

L:p<N7917 70m>1_‘[f<l?[7 733;;617"' 79m>

— Where p is most of the times a Poisson distribution whose average is a
function of the unknown parameters

In many cases it is convenient to use —In L or —2In L: IH->
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Maximum likelihood estimates

ML is the widest used parameter estimator
* The “best fit” parameters are the set that
maximizes the likelihood function
— “Very good” statistical properties

* The maximization can be performed
analytically, for the simplest cases, and
numerically for most of the cases

* Minuit is historically the most used
minimization engine in High Energy Physics
— F. James, 1970’s; rewritten in C++ recently
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/CL & Cl measurement (1=1.1%£0.3

L) = G(u: 1,5,
= CI of 1=[0.8,14]at 68% CL

o A confidence interv-al (Cl) is a particular kind of
interv-al estimate of a population parameter.

o Instead of estimating the parameter by a single alue,
an interv-al likely to include the parameter is giv-en.

o How likely. the interv-al is to contain the parameter is
determined by the confidence lev-el

o Increasing the desired confidence lev-el will widen the
confidence interval.




Confidence Interval & Coverage

«Say you have a measurement p . of p with p, , being
the unknown true value of p

«Assume you know the probability distribution function
P(Hymeqs!H)

ebased on your statistical method you deduce
that there is a 95% Confidence interval [p,,u,].

(it is 95% likely that the p,, . is in the quoted interval)

The correct statement:
oln an ensemble of experiments 95% of the obtained
confidence interv-als will contain the true alue of p.




Confidence intervals 1n practice

The recipe to find the interval [a, b] boils down to solving

o0 R ©. — —~
o =/ g(@;@)d&z/g 9(0:a) do

v 0 éOS -~ —~
B = /ﬁ()g(é;e)dézf " g(0:b)do .

—00 — 00
S 3
=) (a) 2 - (b)
> 1 a eobs - o 1 e°l?s b

05 F i 05

A/ ’
0 0
0 1 4 5 0 4 &
6 0

— a 1s hypothetical value of 6 such that P(§ > 0 ) = o
— b 1s hypothetical value of 8 such that P(0 < 0,,c) = 5.
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Meaning of a confidence interval

N.B. the interval is random, the true € is an unknown constant.

A A

Often report interval [a, b] as éf?, ie.c=0—a, d=b—20.

So what does 6 = 80.2570-31 mean? It does not mean:

P(80.00 < 6 < 80.56) = 1 — a — 3, but rather:

repeat the experiment many times with same sample size,
construct interval according to same prescription each time,

in 1 — a — [ of experiments, interval will cover 6.

@ Methods in Experimental Particle Physics 3/13/20



Confidence Interval & Cov-erage

oYou claim, Cl,=[pn,,H,] at the 95% CL

i.e. In an ensemble of experiments CL (95%) of the
obtained confidence interv-als will contain the true

Vvalue of p.

off your statement is accurate, you have Full
cov-erage

off the true CL is>95%, your interv-al has an over
cov-erage

off the true CL is <95%, your interv-al has an
undercov-erage
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/ How to deduce a CI RN

o One can show that if the data is \

distributed normal around the ——2 | we | s | ae | o |
2

-1 0 1 2

3

avrerage i.e. P(datalp )=normal ° Stonderd Deviatons
1 _'!r)—til"“’ Side Note:

A Clis an interv-al in the
true parameters phase-
space

fl@|mo)=—=c

e then one can construct a 68% Ci

around the estimator of p to be

X0 liex,, €li-0.5+0,]|@68%CL

Irue

e Howev-er, not all distributions eOne can guarantee a

are normal, many. distributions o\ org o0 with the

are even unknown and Neyman Construction

cov-erage might be a real issue (193%)

Neyman, J. (1937)
Philosophical Transactions of the Roy.al Society of London A, 236, 333-380.

017



The Frequentist Game a ’la
Neyman

Or

How to ensure a Coverage with
Neyman construction




Y Y
o(8)  xy(9) X

Y

Y

Fig. 7.1 Graphical illustration of Neyman belt construction (/eft) and inversion (right)

x"P(6p)
| —a = J (x| 6o) dx
x1°(6o)
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Ney.man Construction

Prob(s,, |s,)is known

St




“Neyman Construction

Prob(s, |s,)is known

St




- Ney.man Construction

St

Prob(s, |s,)is known

[ 8ts. 15,ds, =63% The INTERVAL contains 68% of the

Accenbance likerval terms with the maximum likelihood




N
Neyman Construction
Prob(s,, |s,)is known
St
3 [ 8ts. 15,)ds, =68% The INTERVAL contains 68% of the
t1 Acce \m.}&-_@ Interval  terms with the maximum likelihood




-
‘ e
Neyman Construction
Prob(s, |s,)is known
St
S f (s, |5, )ds, =68% The INTERVAL contains 68% of the
t1 Acce ~t;§5cc Interval  terms with the maximum likelihood




Ney.man Construction
Prob(s, |s,)is known

>, A t -
AS - 21 2k B = 1INMa \\ -

- L. WA L« i- D s - s
1.} 1.1

i —_ — <
ne maximum hkelihood




Neywman Construction

Prob(s, |s,)is known

Confidence Belt




Prob(s, |s,)is known

St

Neyman Constmctic)/n

Confidence Belt




Neyman Construction

Prob(s, |s,)is known

‘onfidence Belt

[s),;s,] 68% Confidence Interval
In 68% of the experiments the derived C.l. contains the unknown true value of s




- Ney.man Construction

Prob(s, |s,)is known

Contfidence Belt

S
............ & ORI | TITTISTR T T oy S IRPP L P puLy
Su
E
S' """""""""""""""""""""""""""""""""""
Sm1

S

m

with the correct rate.

onfidence Interval will

« With Neyman Construction we guarantee a coverage via construction, i.e. for
any value of the unknown true s, the Construction




Ney.ma,n Construction
=s,, X=S pdf f(x10)is known

for each prospective @ generate x

measured

f(x|@) construct aninterval in DATA phase — space
Interval = | f (x10)dx = 68%

repeat for each 0

e
),

/

Use the Confidence belt to construct the
CI =[6,,6,](for a given x,,)

. - in 0 phase —space
Figure from K Cranmer iy T




Confidence intervals 1n practice

The recipe to find the interval [a, b] boils down to solving

o0 R ©. — —~
o =/ g(@;@)d&z/g 9(0:a) do

v 0 éOS -~ —~
B = /ﬁ()g(é;e)dézf " g(0:b)do .

—00 — 00
S 3
=) (a) 2 - (b)
> 1 a eobs - o 1 e°l?s b

05 F i 05

A/ ’
0 0
0 1 4 5 0 4 &
6 0

— a 1s hypothetical value of 6 such that P(§ > 0 ) = o
— b 1s hypothetical value of 8 such that P(0 < 0,,c) = 5.
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Meaning of a confidence interval

N.B. the interval is random, the true € is an unknown constant.

A A

Often report interval [a, b] as éf?, ie.c=0—a, d=b—20.

So what does 6 = 80.2570-31 mean? It does not mean:

P(80.00 < 6 < 80.56) = 1 — a — 3, but rather:

repeat the experiment many times with same sample size,
construct interval according to same prescription each time,

in 1 — a — [ of experiments, interval will cover 6.
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Neyman’s construction

3 3 3
% () x.{j2) \

Hi(X) #Ookemmmmanas X () S \\\

[

()

(o) §\§ .

ATN

///;:

-

a0

XO Xp
x, (4)

jf(x/ﬂ)dxz 1-0

xp (u4)
By construction the probability to measure x,’<x if the true value U=p,(x,) is ot/ 2

'>x, if th 1 = ' )
The determined C.1. is [W,(x,) , Ly(Xo) |- Xo > if the true value H=H,(xo) is oL/

Check the correct coverage: suppose ¥ is the true value. I repeat N times the measurement and
determine each time the C.I. By construction in a fraction 1-0 of the cases x, is within x, (L*)
and x,(W*) and the corresponding C.I. provides coverage of [1*.

P(x,(U)<x,<x,(t))= 1-a

In & cases x,, lies outside the interval [x,(U*), x,(W*)] and the corresponding C.I. does not cover p*.
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Neyman’s construction

=i 3

i o (u)
Hi(xg) “ohemmmaes &

\\ ______ \ 4
Ha(Xo)

—

ATN

.

-

%

(k) R . 4

]

.

>

.XO Xp (

(1) lefill*) %0 Xz(u>*53
jf(x/ﬂ)dxz 1-0

xp (u4)
By construction the probability to measure x,’<x if the true value U=p,(x,) is ot/ 2

X, X, if the true value p=p,(x,) is oL/ 2

N

¥

The determined C.L is [,(xo) , Hy(X0) |-
Check the correct coverage: suppose ¥ is the true value. I repeat N times the measurement and
determine each time the C.I. By construction in a fraction 1-0 of the cases x, is within x, (L*)
and x,(W*) and the corresponding C.I. provides coverage of [1*.

P(x,(U)<x,<x,(t))= 1-a

In & cases x,, lies outside the interval [x,(U*), x,(W*)] and the corresponding C.I. does not cover p*.
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Neyman’s construction

=i 3

i o (u)
Hi(xg) “ohemmmaes &

\ ______________

—

ATN

.

7

70

///
K

v

.XO Xp

e :

_ a4
) ) wk‘" ,\\\\‘\\\\\\\\\\\\§ >
x (4) xi(Hx) X XQ(M*DB
By construction the probability to measure x,"<x, if the true value H=[,(x) is 0./2

jf(x/ﬂ)dxz 1-0
X, >, if the true value =1, (x,) is 0L/2

The determined C.L is [,(xo) , Hy(X0) |-
Check the correct coverage: suppose ¥ is the true value. I repeat N times the measurement and
determine each time the C.I. By construction in a fraction 1-0 of the cases x, is within x, (L*)
and x,(W*) and the corresponding C.I. provides coverage of [1*.

P(x,(U)<x,<x,(t))= 1-a

In & cases x,, lies outside the interval [x,(U*), x,(W*)] and the corresponding C.I. does not cover p*.
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Neyman’s construction

= ) e ()
<
Hi(Xp) §
_____ \ |
W ~
Hy(Xp) 0ol | |
\ N
o) wloup) D
% () Xy (WL*) Xz(“*s
jf(x/ﬂ)dxz 1-0
xp (4)

By construction the probability to measure x,’<x if the true value U=p,(x,) is ot/ 2

'>x, if th 1 = ' )
The determined C.1. is [W,(x,) , Ly(Xo) |- Xo > if the true value H=H,(xo) is oL/

Check the correct coverage: suppose ¥ is the true value. I repeat N times the measurement and
determine each time the C.I. By construction in a fraction 1-0 of the cases x, is within x, (L*)
and x,(W*) and the corresponding C.I. provides coverage of [1*.

P(x,(U)<x,<x,(t))= 1-a

In & cases x,, lies outside the interval [x,(U*), x,(W*)] and the corresponding C.I. does not cover p*.
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Y Y
o(8)  x,(8) X

\

Y

=

Fig. 7.1 Graphical illustration of Neyman belt construction (/eft) and inversion (right)
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4.5

3.5

w
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o
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’I":I 1 I 111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111
0O 05 1 15 2 25 3 35 4 45 5
X

Fig. 7.3 Neyman belt for the parameter p of a Gaussian with 0 = 1 at the 68.27%
confidence level
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Suppose Poisson variable and n=0 is measured (no background) Upper limit (lower limit =0)
=> 020 (freq) or 11 (Bayes) ?

By construction the probability to measure x,’<x if the true value U=, (x,) is (1-0L) (only one limit)
or the probability to measure x,’> x if the true value p=,(x,) is o

n —_

-1

=l-e"=a frequentist
Note: - = ln(l o 0()
in this example )

n=0/1)f,(4 _
O has complementary g(A/n=0)= p( )Jo(A) S —e* Bavesian
meaning than in ( 0/ ) f (A)dA —/7« dA y. .
p h= 0 (uniform prior)

previous slides
oa=>1-a

P(A< )= j Adi=1-¢" =a

gla/n=u)

90% | 95% | 99%
2.3 3.0 4.6

o

3/13/20
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frequentist limits

By construction the probability to measure ny’<n if the true value 5=5,,(1) is (1 -B) (only one limit)

or the probability to measure n,’> n,, if the true value 5=5,,(1) I B

5

4.5
S

4

3.5

3" T T 2 5

25
2

1.5

1

0.5

IIIIIIIIIIIIIIIIIIIIlIIlIIIII

FIGURE 19. Neyman construction for the case of an upper limit. In
this case a segment between ni(f) and oo is drawn for each value of the
parameter . The segments define the confidence region. Once a value
of n, ng is obtained, the upper limit s,, is found. (For simplicity the
discrete variable n is considered as a real number here).
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Poisson

- Ll
I75) )
o) a
o o
I 0
> o
T hat
o o
=¢D =GD
> >
r—1 C
S 8
T (/2]
a i)
o >
S ©
om
2 r o
O 1 L 1 H L

Yy

Fig. 9.9 Upper limits ;P at a confidence level of 1 — 3 = 0.95 for different numbers of events
observed nyps and as a function of the expected number of background events vy,. (2) The
classical limit. (b) The Bayesian limit based on a uniform prior density for vs.
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