
Particle properties
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� Once a particle has been identified (either directly or 
through its decay products), it is interesting to measure its
properties:
� Mass M
� Total DecayWidth G
� LifeTime t
� Couplings g

� If the particle is identified through its decay, all these
parameters can be obtained through a dedicated analysis of
the kinematics of its decay products.



Invariant Mass - I
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� Suppose that a particle X decays to a number of particles (N), and 
assume we can measure the quadri-momenta of all them. We can 
evaluate the Invariant Mass of X for all the candidate events of our
final sample:

� It is a relativistically invariant quantity. In case of N = 2

� If N=2 and the masses are 0 or very small compared to p

� Where q is the opening angle between the two daughter particles.
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Invariant Mass - II
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� Given the sample of candidates, we do the invariant mass 
distribution and we typically get a plot like that:
- A peak (the signature of the 
particle)
- A background (almost flat
in this case) è irreducible
background.

� What information can we
get from this plot (by fitting it) ?
(1) Mass of particle; 
(2) Width of the particle (BUT not in this case…); 
(3) Number of particles produced (related to s or BR)

B+ => J/ψ K+
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� Given the sample of candidates, we do the invariant mass 
distribution and we typically get a plot like that:
- A peak (the signature of the 
particle)
- A background (almost flat
in this case) è irreducible
background.

� What information can we
get from this plot (by fitting it) ?
(1) Mass of particle; 
(2) Width of the particle (BUT not in this case…); 
(3) Number of particles produced (related to s or BR)

B0
s→ J/ψ f0(980)
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Capitolo 3. Introduzione all<inferenza 155 

da cui si vede che valore atteso e varianza di p sono leggermente spostate rispetto alle 

(3.35)-(3.36). La moda è invece pari a n / N. Lo spostamento di valore atteso e varianza di-

venta trascurabile per N grandi. 

3.2.5. Il caso di zero conteggi: limiti superiori e inferiori 

A completamento dei due paragrafi precedenti, consideriamo ora il caso in cui l1esito 

dell1esperimento di conteggio consista nell1aver contato n = 0 nel tempo ∆t. Applicando 

direttamente la prescrizione (3.39), dovremmo concludere che la nostra migliore stima del 

rate è pari a 0 ±  0, cioè, prendendo il risultato alla lettera, affermeremmo non solo che il 

rate di quel conteggio è esattamente nullo ma che lo è senza alcuna incertezza. Analoga-

mente, se misurassimmo l1efficienza di un rivelatore e contassimo 0 o N su N particelle in 

ingresso, secondo le (3.35) e (3.36) dovremmo concludere di avere osservato, nei due casi, 

efficienze pari, rispettivamente a 0 ±  0 o 1 ±  0. 

Si tratta naturalmente di conclusioni erronee. Per convincersene basta osservare che il 

fatto di aver contato 0 nel tempo ∆t non ci garantisce in alcun modo che attendendo per un 

tempo più lungo non arrivi ad un certo punto un conteggio. D1altra parte, aver contato 0 è 

un1informazione rilevante, che punta nella direzione che il rate di quel fenomeno, seppure 

non esattamente 0, sarà comunque GpiccoloH al di sotto di un certo valore. 

Abbiamo già accennato in ambedue i precedenti paragrafi al fatto che per bassi valori di 

N l1applicazione dell1inferenza bayesiana conduce ai risultati (3.34) e (3.38) diversi da 

quelli qui indicati. In particolare l1applicazione della (3.34) darebbe, per zero conteggi un 

risultato, 1 ±  1, che starebbe ad indicare un intervallo tra 0 e 2. 

Vediamo ora quale è un modo corretto di dare il risultato della misura nel caso di zero 

conteggi. Ci riferiamo al caso del conteggio poissoniano e applichiamo in primo luogo le 

considerazioni frequentiste sviluppate nel par. (3.1.2). 

Supponiamo dunque di aver misurato n = 0 conteggi e di voler determinare un intervallo 

di confidenza per λ caratterizzato da un certo valore della probabilità, diciamo α. Nel caso di 

zero conteggi, il limite inferiore di tale intervallo è chiaramente λ = 0, dunque si tratta di de-

terminare il limite superiore per λ. Nel paragrado (3.1.2) abbiamo visto che gli estremi di un 

intervallo di confidenza possono essere definiti come quei due valori del parametro, in questo 

caso λ, tali che se ciascuno di essi fosse il valore vero, vi sarebbe una probabilità (1 k α)/2 di 

ottenere un risultato rispettivamente inferiore o superiore al valore osservato. Nel caso in cui 

il valore osservato è 0, dovremo adattare l1argomento tenendo conto che abbiamo una sola 

coda nella distribuzione, il limite inferiore essendo definito. Quindi cercheremo quel valore di 

λ tale che, se esso fosse il valor vero, la probabilità di ottenere un valore inferiore a quello 

misurato sarebbe non (1 k α)/2 ma semplicemente (1 k α), o equivalentemente sarebbe α la 
probabilità di avere un valore superiore a quello misurato, cioè a 0. Otteniamo dunque: 
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Lezioni di Statistica per la Fisica Sperimentale 156

da questa relazione determiniamo il limite superiore λ : 
 

)1ln( αλ −−=  (3.40) 
 

Allo stesso risultato si giunge muovendosi nel contesto bayesiano. In tal caso infatti, la 
densità di probabilità di λ, nell1ipotesi di distribuzione a priori uniforme sarà data da: 
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Si tratterà in questo caso di trovare quel valore di λ, diciamo λ , tale che: 
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equivalente al risultato frequentista (3.39). In Fig. 3.3 è riportata la distribuzione di λ ed in 
tabella sono riportati i limiti superiori per λ per tre diversi intervalli di confidenza. 
 

 90% 95% 99% 

λ 2.3 3.0 4.6 

 
Quindi, nel caso di Gconteggio zeroH in un tempo ∆t, il risultato corretto per il rate del fe-
nomeno sarà: 
 

t
r

∆
< λ  al livello di confidenza α. 

 

 
 

Figura 3.3. Distribuzione di probabilità del parametro λ di una poissoniana quando ho contato n = 0, 
secondo il teorema di Bayes. L:area tratteggiata costituisce un intervallo di probabilità del 95% 

frequentist

Bayesian
(uniform prior)

IN
TERNO 5

Lezioni di Statistica per la Fisica Sperimentale 156

da questa relazione determiniamo il limite superiore λ : 
 

)1ln( αλ −−=  (3.40) 
 

Allo stesso risultato si giunge muovendosi nel contesto bayesiano. In tal caso infatti, la 
densità di probabilità di λ, nell1ipotesi di distribuzione a priori uniforme sarà data da: 
 

λ

λ

λ

λλλλ

λλλ −
∞

−

−

∞ ==
=

===

		
e

de

e

dfnp

fnpng

00
0

0

)()/0(

)()/0()0/(  (3.41) 

 

Si tratterà in questo caso di trovare quel valore di λ, diciamo λ , tale che: 
 

αλλλ λ
λ

λ =−==< −−	 edep 1)(
0

 (3.42) 

 

equivalente al risultato frequentista (3.39). In Fig. 3.3 è riportata la distribuzione di λ ed in 
tabella sono riportati i limiti superiori per λ per tre diversi intervalli di confidenza. 
 

 90% 95% 99% 

λ 2.3 3.0 4.6 

 
Quindi, nel caso di Gconteggio zeroH in un tempo ∆t, il risultato corretto per il rate del fe-
nomeno sarà: 
 

t
r

∆
< λ  al livello di confidenza α. 

 

 
 

Figura 3.3. Distribuzione di probabilità del parametro λ di una poissoniana quando ho contato n = 0, 
secondo il teorema di Bayes. L:area tratteggiata costituisce un intervallo di probabilità del 95% 

IN
TERNO 5

Lezioni di Statistica per la Fisica Sperimentale 156

da questa relazione determiniamo il limite superiore λ : 
 

)1ln( αλ −−=  (3.40) 
 

Allo stesso risultato si giunge muovendosi nel contesto bayesiano. In tal caso infatti, la 
densità di probabilità di λ, nell1ipotesi di distribuzione a priori uniforme sarà data da: 
 

λ

λ

λ

λλλλ

λλλ −
∞

−

−

∞ ==
=

===

		
e

de

e

dfnp

fnpng

00
0

0

)()/0(

)()/0()0/(  (3.41) 

 

Si tratterà in questo caso di trovare quel valore di λ, diciamo λ , tale che: 
 

αλλλ λ
λ

λ =−==< −−	 edep 1)(
0

 (3.42) 

 

equivalente al risultato frequentista (3.39). In Fig. 3.3 è riportata la distribuzione di λ ed in 
tabella sono riportati i limiti superiori per λ per tre diversi intervalli di confidenza. 
 

 90% 95% 99% 

λ 2.3 3.0 4.6 

 
Quindi, nel caso di Gconteggio zeroH in un tempo ∆t, il risultato corretto per il rate del fe-
nomeno sarà: 
 

t
r

∆
< λ  al livello di confidenza α. 

 

 
 

Figura 3.3. Distribuzione di probabilità del parametro λ di una poissoniana quando ho contato n = 0, 
secondo il teorema di Bayes. L:area tratteggiata costituisce un intervallo di probabilità del 95% 

IN
TERNO 5

Lezioni di Statistica per la Fisica Sperimentale 156

da questa relazione determiniamo il limite superiore λ : 
 

)1ln( αλ −−=  (3.40) 
 

Allo stesso risultato si giunge muovendosi nel contesto bayesiano. In tal caso infatti, la 
densità di probabilità di λ, nell1ipotesi di distribuzione a priori uniforme sarà data da: 
 

λ

λ

λ

λλλλ

λλλ −
∞

−

−

∞ ==
=

===

		
e

de

e

dfnp

fnpng

00
0

0

)()/0(

)()/0()0/(  (3.41) 

 

Si tratterà in questo caso di trovare quel valore di λ, diciamo λ , tale che: 
 

αλλλ λ
λ

λ =−==< −−	 edep 1)(
0

 (3.42) 

 

equivalente al risultato frequentista (3.39). In Fig. 3.3 è riportata la distribuzione di λ ed in 
tabella sono riportati i limiti superiori per λ per tre diversi intervalli di confidenza. 
 

 90% 95% 99% 

λ 2.3 3.0 4.6 

 
Quindi, nel caso di Gconteggio zeroH in un tempo ∆t, il risultato corretto per il rate del fe-
nomeno sarà: 
 

t
r

∆
< λ  al livello di confidenza α. 

 

 
 

Figura 3.3. Distribuzione di probabilità del parametro λ di una poissoniana quando ho contato n = 0, 
secondo il teorema di Bayes. L:area tratteggiata costituisce un intervallo di probabilità del 95% 

IN
TERNO 5

Lezioni di Statistica per la Fisica Sperimentale 156

da questa relazione determiniamo il limite superiore λ : 
 

)1ln( αλ −−=  (3.40) 
 

Allo stesso risultato si giunge muovendosi nel contesto bayesiano. In tal caso infatti, la 
densità di probabilità di λ, nell1ipotesi di distribuzione a priori uniforme sarà data da: 
 

λ

λ

λ

λλλλ

λλλ −
∞

−

−

∞ ==
=

===

		
e

de

e

dfnp

fnpng

00
0

0

)()/0(

)()/0()0/(  (3.41) 

 

Si tratterà in questo caso di trovare quel valore di λ, diciamo λ , tale che: 
 

αλλλ λ
λ

λ =−==< −−	 edep 1)(
0

 (3.42) 

 

equivalente al risultato frequentista (3.39). In Fig. 3.3 è riportata la distribuzione di λ ed in 
tabella sono riportati i limiti superiori per λ per tre diversi intervalli di confidenza. 
 

 90% 95% 99% 

λ 2.3 3.0 4.6 

 
Quindi, nel caso di Gconteggio zeroH in un tempo ∆t, il risultato corretto per il rate del fe-
nomeno sarà: 
 

t
r

∆
< λ  al livello di confidenza α. 

 

 
 

Figura 3.3. Distribuzione di probabilità del parametro λ di una poissoniana quando ho contato n = 0, 
secondo il teorema di Bayes. L:area tratteggiata costituisce un intervallo di probabilità del 95% 

Suppose Poisson variable and  n=0 is measured (no background) 
=> 0±0 (freq) or 1±1 (Bayes) ?

By construction the probability to measure  x0’<x0 if the true value µ=µ1(x0) is (1-a) (only one limit)
or the probability to measure x0’> x0 if the true value µ=µ1(x0) is a

l (68.3%)=1.15



Parenthesys: 2 kinds of background
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� Irreducible background: same final state as the signal, no way to 
disentangle. The only way to separate signal from unreducible
background is to fit the inv.mass spectrum

� Reducible background: a different final state that mimic the 
signal (e.g. because you are losing one or more particles, or 
because you are confusing the nature of one or more particles)

� Example: 
� Signal: ppàHàZZ*à4l
� Irreducible background: ppà ZZ*à4l
� Reducible backgrounds: ppàZbb with Zà2l and two leptons, one

from each b-quark jet; ppà tt with each tàWbàln”l”j
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Figure 4. The KLOE combination plotted with the individual cross section measurements, where
the KLOE combination is represented by the yellow band and the KLOE08, KLOE10 and KLOE12
cross section measurements are given by the blue, black and pink markers, respectively (colour
online). In all cases, the error bars shown are the statistical and systematic uncertainties summed
in quadrature.
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Figure 5. The normalised difference of the KLOE combination and the individual KLOE mea-
surements, where the yellow band represents the statistical and systematic uncertainties of the
KLOE combination summed in quadrature and the KLOE08, KLOE10 and KLOE12 cross section
measurements are given by the blue, black and pink markers, respectively (colour online). Here,
the errors bars of the individual measurements are not shown in order to be able to distinguish the
data points, but are in good agreement with the KLOE combination.

when comparing to KLOE10 and KLOE12. KLOE12 exhibits the largest fluctuations when

comparing to the fitted combination, but is well within the errors of the data. In plot (a)

of figure 5, we note how the KLOE0810 and KLOE1012 systematic uncertainties have

a non-trivial effect in the lower energy region where only the KLOE10 data exist, with

the correlations providing an expected upward pull (which is well within the errors of the

combination) to the KLOE combination cross section away from the KLOE10 data points.

– 13 –

r(770) mass 775.26 MeV  width 149.1 MeV
w(782)  mass 782.65 MeV  width 8.49 MeV

e+e- => p+p- (g)

Irreducible effects (“background”): 
quantum interference



11 Dt=|t1-t2|
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Background
e+e- => p+p-p+p-

Irreducible or Reducible background?



Mass and Width measurement
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� Fit of the Minv spectrum with a Breit-Wigner + a continuos background: 
BUT careful with mass resolution. It can be neglected only if
s(Minv)<<G

� If s(Minv) ≈ G or s(Minv)>G there are two approaches (as we already
know):
� Folding: correct the theoretical distribution to be used in the fit:

� Unfolding: correct the experimental data and fit with the theoretical
function. 

� Use a gaussian (or a “Crystal Ball” function) neglecting completely the width.

� In many cases only the mass is accessible: the uncertainty on the mass is
the one given by the fit (taking into account the statistics) + possible
scale systematics.

σ fit E( ) = Gres E −E0( )σ BW E0( )dE0∫



Gaussian vs. Crystal Ball
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� Gaussian: 3-parameters, A, µ, s. Integral =As√2p

� Crystal-Ball: 5-parameters, m, s, a, n, N

Essentially takes into account energy losses, useful in many cases.
(in this case s is not the gaussian standard deviation with 68% c.l.) 
Crystal-Ball function and its first derivative are both continuos.
After Crystal-Ball collaboration, Crystal Ball hermetic NaI detector at SPEAR Stanford 
1979 (then DESY, AGS-BNL, A2-Mainz Microtron…)

f (m / A,µ,σ ) = Aexp(− (m−µ)
2

2σ 2 )

for
for

(Gaussian core + power law tail)
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Crystal Ball function



Effect of the mass resolution on the 
significativity of a signal
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� Let’s consider now the case in which we look for a process and 
we expect a peak in a distribution at a definite mass: when may
we say that we have observed that process ?

� Method of assessment: simple fit S+B (e.g. template fit). 
S±s(S) away from 0 at least 3 (5) standard deviations.

� Ingredients:
� Mass resolution;
� Background

� Effect of mass resolution negligible on the uncertainty on S if:

S >> 6bσM     ⇒     σM <<
S

6b

σ 2 S( ) =σ 2 N( )+σ 2 B( ) = N +σ 2 B( )
≈ N = S +B = S + 6σMbneglecting s(B)

Number of background
events in a window
[MS-3sM , MS+3sM ]

b=bck events per unit mass
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Figure 8. Simulation of S = 200 J/ events superimposed to a flat
background of 10000 distributed on a range of 200 MeV (b=50 MeV�1).
�M = 2 MeV (left) and �M = 10 MeV (right). The limits of ±3�M
intervals around the expected position of the peak are shown. Outside
these limits are the sidebands.

The resulting uncertainty on S can be written in the present case as:

(80) �
2(S) ⇠ N = S +B = S + 6b�M

so that in order to make negligible the e↵ect of the resolution, it should be:

(81) �M <<
S

6b

In the case illustrated in the figure it should be �M << 0.67 MeV, that is not verified
in the two cases. So that in both cases the e↵ect of the resolution is important and the
observation of the signal can be improved by reducing the resolution.

4.3. Branching Ratio. An unstable particle decays in general in several di↵erent decay
chains, involving di↵erent final states. For each decay chain a branching ratio is defined
as the probability that the particle decays in that chain. If � is the total width of the
particle and �i is the partial width in the decay chain i, we have:

(82) BR(i) =
�i

�

Since the sum of all the partial widths is equal to the total width, the sum of all the
branching ratios of a particle should be equal to 1.

Background  b= 50 /MeV      in an interval of 60 MeV (+/- 3*10 MeV)  B=b*60 MeV = 3000  (broad)
in an interval of 12 MeV (+/- 3*2 MeV)  B=b*12 MeV = 600      (narrow)

Signal S=200
Significance = 3.5 (broad)  and 7.1 (narrow)
S/6b = 0.67 MeV        => in both cases   sM <<S/6b not satisfied  => resolution effect important 

and observation of the signal can be improved reducing the resolution

sM= 2 MeV sM= 10 MeV



Hàgg ATLAS: is the resolution 
negligible ?
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Numbers directly from
the plot:

S≈1000
b≈5000/2 GeV 

= 2500/GeV
sM≈10 GeV/6

=1.7 GeV

èS/6b 
= 0.07 GeV << sM

(B=6sMb≈25000  => Significance=6.2)



Template fits: not functions but
histograms
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In this case the fit is not done
with a function with parameters
BUT it is a “template” fit:

F = aHIST1(mH,…) + bHIST2
a, b and mH are free parameters.
The method requires the knowledge
(from MC) of the expected
distributions (“shapes”). Such a 
knowledge improves our uncertainties. 
NB: HIST1 and HIST2 take into
account experimental resolution: 
so it is directly the folding method.
(NB2: take into account also QM interf. if present)

An example: Higgs mass in the 
4l channel.



Lifetime measurement - I
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à In the first decades of EPP, bubble-chambers
and emulsions allowed to see directly the 
decay length of a particle either neutral
or charged (see Kaons);
àThe decay length l is related to the lifetime
through the L = bgtc è t = L /bgc
à For a sample of particles produced we
expect an exponential distribution
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� Example: pions, kaons, c and b-hadrons in the LHC context
(momentum range 10 ÷ 100 GeV).

p+ K+ D+ B+

Mass (GeV) 0.140 0.494 1.869 5.279

Life Time (s) 2.6 × 10-8 1.2 × 10-8 1.0 × 10-12 1.6 × 10-12

Decay length (m)
p = 10 GeV

557 72.8 1.6 × 10-3 9.1 × 10-4

Decay length (m)
p = 100 GeV

5570 728 0.016 0.0091

NB When going to c or b quarks, decay lengths O(<mm) are obtained
è Necessity of dedicated “vertex detectors” 
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For low-t particles
(e.g. B-hadrons, t, …):
à define the proper decay time 

(bg=p/m):

€ 

τ =
Lm
p

At hadron colliders the proper decay time
is defined on the transverse plane:

€ 

τ =
Lxym
pT

The fit takes into account the background and the resolution

Typical resolutions: O(10-13 s) è tens of µm
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B-factories 

BABAR  @ PEP-II BELLE  @ KEKB 

B 

collected L=557 fb-1 collected L=1040 fb-1 
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B-factories 

BABAR  @ PEP-II BELLE  @ KEKB 

B 

collected L=557 fb-1 collected L=1040 fb-1 

In the U(4s) rest frame: B mesons
bg=0.062   L=bgtc~28 µm !
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Correlated B meson pairs  B 

⟨βγ⟩ =	0.55 for B mesons∆t	=	∆z/⟨βγ⟩c
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Correlated B meson pairs  B 

⟨βγ⟩ =	0.55 for B mesons
L=bgtc~250 µm

∆t	=	∆z/⟨βγ⟩c

In the U(4s) rest frame: B mesons
bg=0.062   L=bgtc~28 µm !
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� Suppose you want to measure the detection efficiency of a 
final state X: X contains N particles e.g. Zàµµ contains 2 
particles and whatever else. How much is the probability to 
select an event containing a Zàµµ ?

� Let’s suppose that:
� Trigger is: at least 1 muon with pT>10 GeV and |h|<2.5
� Offline selection is: 2 and only 2 muons with opposite charge

and MZ-2G < Minv < MZ+2G 
� Approach for efficiency

� Full event method: apply trigger and selection to simulated
events and calculate Nsel/Ngen (validation is required)

� Single particle method: (see next slides)
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� Measure single muon efficiencies as a function of kinematics
(pT, h, …);  perform the same “measurement” using
simulated data.

� Tag & Probe method: muon detection efficiency measured using an 
independent detector and using “correlated” events.

� Trigger efficiency using “pre-scaled” samples collected with a trigger 
having a lower threshold.

εtrigger =
#µ − triggered
#µ − total

T&P: a “Tag Muon” in the
MS and a “Probe” in the ID
Tag+Probe Inv.Mass consistent
With a Z boson
è There should be a track
in the MS 

εTP =
#µ − reco

#µ − expected
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� Muon Efficiency – ATLAS experiment.

� As a function of h and pT – comparison with simulation è
Scale Factors
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� After that one gets: eT(pT, h, …) and eS(pT, h, …)
� From MC one gets the expected kinematic distributions of 

the final state muons and applies for each muon its efficiency
depending on its pT and h. The number of surviving events
gives the efficiency for X

� In alternative one simply applies the scale factors to the MC 
fully simulated events to take into account data-MC 
differences.
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� Based on simulations:
� define all possible background processes (with known cross-sections);
� apply trigger and selection to each simulated sample;
� determine the amount of background in the “signal region” after

weighting with known cross-sections.
� Data-driven methods:

� “control regions” based on a different selection (e.g. sidebands);
� fit control region distributions with simulated distributions and get

weigths;
� then export to “signal region” using “transfer-factors”.

� Example: reducible background of H4l ATLAS analysis (next
slides)
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Extrapolate to “signal region”
using transfer factors
è (see next slide)
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estimated from simulation. The background estimation
follows the methods previously described in Refs. [4,92]
with several improvements and additional cross-checks.

A. ll+ μμ background

The llþ μμ reducible background arises from Z þ jets
and tt̄ processes, where the Z þ jets contribution has a Zbb̄
heavy-flavor quark component in which the heavy-flavor
quarks decay semileptonically, and a component arising
from Z þ light-flavor jets with subsequent π=K in-flight
decays. The number of background events from Z þ jets
and tt̄ production is estimated from an unbinned maximum
likelihood fit, performed simultaneously to four orthogonal
control regions, each of them providing information on one
or more of the background components. The fit results are
expressed in terms of yields in a reference control region,
defined by applying the analysis event selection except for
the isolation and impact parameter requirements to the
subleading dilepton pair. The reference control region is
also used for the validation of the estimates. Finally, the
background estimates in the reference control region are
extrapolated to the signal region.
The control regions used in the maximum likelihood fit

are designed to minimize contamination from the Higgs
boson signal and the ZZ" background. The four control
regions are

(a) Inverted requirement on impact parameter signifi-
cance. Candidates are selected following the analy-
sis event selection, but (1) without applying the
isolation requirement to the muons of the subleading
dilepton and (2) requiring that at least one of the two
muons fails the impact parameter significance re-
quirement. As a result, this control region is enriched
in Zbb̄ and tt̄ events.

(b) Inverted requirement on isolation. Candidates are
selected following the analysis event selection, but
requiring that at least one of the muons of the
subleading dilepton fails the isolation requirement.
As a result, this control region is enriched in Z þ
light-flavor-jet events (π=K in-flight decays) and tt̄
events.

(c) eμ leading dilepton (eμþ μμ). Candidates are
selected following the analysis event selection, but
requiring the leading dilepton to be an electron-muon
pair. Moreover, the isolation and impact parameter

requirements are not applied to the muons of the
subleading dilepton, which are also allowed to have
the same or opposite charge sign. Events containing a
Z-boson candidate decaying into eþe− or μþμ− pairs
are removed with a requirement on the mass. This
control region is dominated by tt̄ events.

(d) Same-sign subleading dilepton. The analysis event
selection is applied, but for the subleading dilepton
neither isolation nor impact parameter significance
requirements are applied and the leptons are required
to have the same charge sign (SS). This same-sign
control region is not dominated by a specific back-
ground; all the reducible backgrounds have a sig-
nificant contribution.

The expected composition for each control region is
shown in Table III. The uncertainties on the relative yields
between the control regions and the reference control
region are introduced in the maximum likelihood fit as
nuisance parameters. The residual contribution from
ZZ" and the contribution from WZ production, where—
contrary to the Z þ jets and tt̄ backgrounds—only one of
the leptons in the subleading dilepton is expected to be a
nonisolated backgroundlike muon, are estimated for each
control region from simulation.
In all the control regions, the observable is the mass of

the leading dilepton,m12, which peaks at the Z mass for the
resonant (Z þ jets) component and has a broad distribution
for the nonresonant (tt̄) component. For the tt̄ component
the m12 distribution is modeled by a second-order
Chebyshev polynomial, while for the Z þ jets component
it is modeled using a convolution of a Breit-Wigner
distribution with a Crystal Ball function. The shape
parameters are derived from simulation. In the combined
fit, the shape parameters are constrained to be the same in
each of the control regions, and are allowed to fluctuate
within the uncertainties obtained from simulation. The
results of the combined fit in the four control regions are
shown in Fig. 4, along with the individual background
components, while the event yields in the reference control
region are summarized in Table IV. As a validation of the fit
method, the maximum likelihood fit is applied to the
individual control regions yielding estimates compatible
to those of the combined fit; these are also summarized in
Table IV.
The estimated yields in the reference control region are

extrapolated to the signal region by multiplying each

TABLE III. Expected contribution of the llþ μμ background sources in each of the control regions.

Control region

Background Inverted d0 Inverted isolation eμþ μμ Same-sign

Zbb̄ 32.8 # 0.5% 26.5 # 1.2% 0.3 # 1.2% 30.6 # 0.7%
Z þ light-flavor jets 9.2 # 1.3% 39.3 # 2.6% 0.0 # 0.8% 16.9 # 1.6%
tt̄ 58.0 # 0.9% 34.2 # 1.6% 99.7 # 1.0% 52.5 # 1.1%
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Measurements of Higgs boson production and couplings in the
four-lepton channel in pp collisions at center-of-mass energies of

7 and 8 TeV with the ATLAS detector

G. Aad et al.*

(ATLAS Collaboration)
(Received 22 August 2014; published 16 January 2015)

The final ATLAS Run 1 measurements of Higgs boson production and couplings in the decay channel
H → ZZ! → lþl−l0þl0−, where l, l0 ¼ e or μ, are presented. These measurements were performed using
pp collision data corresponding to integrated luminosities of 4.5 and 20.3 fb−1 at center-of-mass energies
of 7 and 8 TeV, respectively, recorded with the ATLAS detector at the LHC. The H → ZZ! → 4l signal is
observed with a significance of 8.1 standard deviations, with an expectation of 6.2 standard deviations, at
mH ¼ 125.36 GeV, the combined ATLAS measurement of the Higgs boson mass from the H → γγ and
H → ZZ! → 4l channels. The production rate relative to the Standard Model expectation, the signal
strength, is measured in four different production categories in theH → ZZ! → 4l channel. The measured
signal strength, at this mass, and with all categories combined, is 1.44þ0.40

−0.33 . The signal strength for Higgs
boson production in gluon fusion or in association with tt̄ or bb̄ pairs is found to be 1.7þ0.5

−0.4 , while the signal
strength for vector-boson fusion combined with WH=ZH associated production is found to be 0.3þ1.6

−0.9 .

DOI: 10.1103/PhysRevD.91.012006 PACS numbers: 14.80.Bn

I. INTRODUCTION

In the Standard Model (SM) the Brout-Englert-Higgs
(BEH) mechanism is the source of electroweak symmetry
breaking and results in the appearance of a fundamental scalar
particle, the Higgs boson [1–3]. The ATLAS and CMS
experiments have reported the observation of a particle in
the search for the SM Higgs boson [4,5], where the most
sensitive channels areH → ZZ! → 4l,H → WW! → lνlν
andH → γγ.An important step in the confirmationof thenew
particle as the SM Higgs boson is the measurement of its
properties, which are completely defined in the SM once its
mass is known. Previous ATLAS studies [6,7] have shown
that this particle is consistent with the SM Higgs boson.
The Higgs boson decay to four leptons,H → ZZ! → 4l,

where l ¼ e or μ, provides good sensitivity for the
measurement of the Higgs boson properties due to its high
signal-to-background ratio, which is about 2 for each of the
four final states: μþμ−μþμ− (4μ), eþe−μþμ− (2e2μ),
μþμ−eþe− (2μ2e), and eþe−eþe− (4e), where the first
lepton pair is defined to be the one with the dilepton
invariant mass closest to the Z boson mass. The contribu-
tion to these final states from H → ZZ!, Zð!Þ → τþτ−

decays is below the per mille level in the current analysis.
The largest background in this search comes from con-
tinuum ðZð!Þ=γ!ÞðZð!Þ=γ!Þ production, referred to as ZZ!

hereafter. For the four-lepton events with an invariant

mass, m4l, below about 160 GeV, there are also important
background contributions from Z þ jets and tt̄ production
with two prompt leptons, where the additional charged
lepton candidates arise from decays of hadrons with b- or
c-quark content, from photon conversions or from mis-
identification of jets.
Interference effects are expected between the Higgs

boson signal and SM background processes. For the H →
ZZ! → 4l channel, the impact of this interference on the
mass spectrum near the resonance is negligible [8]. This
analysis does not account for interference effects in the
mass spectra.
In the SM, the inclusive production of the H → ZZ! →

4l final state is dominated by the gluon fusion (ggF)
Higgs boson production mode, which represents 86% of
the total production cross section for mH ¼ 125 GeV atffiffiffi
s

p
¼ 8 TeV. Searching for Higgs boson production in the

vector-boson fusion (VBF) and the vector-boson associated
production (VH) modes allows further exploration of the
coupling structure of the new particle. The corresponding
fractions of the production cross section for VBF and VH
are predicted to be 7% and 5%, respectively.
This paper presents the final ATLAS Run 1 results of the

measurement of the SM Higgs boson production in the
H → ZZ! → 4l decay mode, where the production is
studied both inclusively and with events categorized
according to the characteristics of the different production
modes. The categorized analysis allows constraints to be
placed on possible deviations from the expected couplings
of the SM Higgs boson. The data sample used corresponds
to an integrated luminosity of 4.5 fb−1 at a center-of-mass
energy of 7 TeVand 20.3 fb−1 at a center-of-mass energy of
8 TeV, collected in the years 2011 and 2012, respectively.

* Full author list given at the end of the article.
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2e2μ, 2μ2e, 4e. The rate of two quadruplets in one event is
below the per mille level.
Events with a selected quadruplet are required to have

their leptons a distance ΔR > 0.1 from each other if they
are of the same flavor and ΔR > 0.2 otherwise. For 4μ and
4e events, if an opposite-charge same-flavor dilepton pair is
found with mll below 5 GeV the event is removed.
The Z þ jets and tt̄ background contributions are further

reduced by applying impact parameter requirements as well
as track- and calorimeter-based isolation requirements to
the leptons. The transverse impact parameter significance,
defined as the impact parameter in the transverse plane
divided by its uncertainty, jd0j=σd0 , for all muons (elec-
trons) is required to be lower than 3.5 (6.5). The normalized
track isolation discriminant, defined as the sum of the
transverse momenta of tracks, inside a cone of size ΔR ¼
0.2 around the lepton, excluding the lepton track, divided
by the lepton pT, is required to be smaller than 0.15.
The relative calorimetric isolation for electrons in the

2012 data set is computed as the sumof the cluster transverse
energies ET, in the electromagnetic and hadronic calorim-
eters, with a reconstructed barycenter inside a cone of size
ΔR ¼ 0.2 around the candidate electron cluster, divided by
the electron ET. The electron relative calorimetric isolation
is required to be smaller than 0.2. The cells within 0.125 ×
0.175 in η × ϕ around the electron barycenter are excluded.
The pileup and underlying event contribution to the calo-
rimeter isolation is subtracted event by event [91]. The
calorimetric isolation of electrons in the 2011 data set is cell
based (electromagnetic and hadronic calorimeters) rather
than cluster based, and the calorimeter isolation relative to
the electronET requirement is 0.3 instead of 0.2. In the case
of muons, the relative calorimetric isolation discriminant is
defined as the sum,ΣET, of the calorimeter cells above 3.4σ,
where σ is the quadrature sum of the expected electronic and
pileup noise, inside a cone of size ΔR < 0.2 around the
muon direction, divided by the muon pT. Muons are
required to have a relative calorimetric isolation less than
0.3 (0.15 in the case of stand-alone muons). For both the
track- and calorimeter-based isolations any contributions
arising from other leptons of the quadruplet are subtracted.
As discussed in Sec. IV C, a search is performed for FSR

photons arising from any of the lepton candidates in the
final quadruplet, and at most one FSR photon candidate is
added to the 4l system. The FSR correction is applied only
to the leading dilepton, and priority is given to collinear
photons. The correction is applied if 66 < mμμ < 89 GeV
and mμμγ< 100 GeV. If the collinear-photon search fails
then the noncollinear FSR photon with the highest ET is
added, provided it satisfies the following requirements:
mll < 81 GeV and mllγ< 100 GeV. The expected frac-
tion of collinear (noncollinear) corrected events is 4% (1%).
For the 7 TeV data, the combined signal reconstruction

and selection efficiency for mH ¼ 125 GeV is 39% for the
4μ channel, 25% for the 2e2μ=2μ2e channels and 17% for

the 4e channel. The improvements in the electron
reconstruction and identification for the 8 TeV data lead
to increases in these efficiencies by 10%–15% for the
channels with electrons, bringing their efficiencies to 27%
for the 2e2μ=2μ2e channels and 20% for the 4e channel.
After the FSR correction, the lepton four-momenta of the

leading dilepton are recomputed by means of a Z-mass-
constrained kinematic fit. The fit uses a Breit-Wigner Z line
shape and a single Gaussian to model the lepton momen-
tum response function with the Gaussian σ set to the
expected resolution for each lepton. The Z-mass constraint
improves the m4l resolution by about 15%. More complex
momentum response functions were compared to the single
Gaussian and found to have only minimal improvement for
the m4l resolution.
Events satisfying the above criteria are considered

candidate signal events for the inclusive analysis, defining
a signal region independent of the value of m4l.

B. Event categorization

To measure the rates for the ggF, VBF, and VH
production mechanisms, discussed in Sec. III, each H →
4l candidate selected by the criteria described above is
assigned to one of four categories (VBF enriched, VH-
hadronic enriched, VH-leptonic enriched, or ggF enriched),
depending on other event characteristics. A schematic view
of the event categorization is shown in Fig. 2.

ATLAS

l 4→ ZZ* →H 
 selectionl4

High mass two jets

VBF
VBF enriched

Low mass two jets

 jj)H→ jj)H, Z(→W(

Additional lepton

)Hll →)H, Z(νl →W(

VH enriched

ggF ggF enriched

FIG. 2 (color online). Schematic view of the event categoriza-
tion. Events are required to pass the four-lepton selection, and
then they are assigned to one of four categories which are tested
sequentially: VBF enriched, VH-hadronic enriched, VH-leptonic
enriched, or ggF enriched.
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rejected. Events are required to have at least one vertex with
three associated tracks with pT > 400 MeV, and the
primary vertex is chosen to be the reconstructed vertex
with the largest track

P
p2
T. Identical requirements are

applied to all four-lepton final states. For the inclusive
analysis, four-lepton events are selected and classified
according to their channel: 4μ, 2e2μ, 2μ2e, 4e. These
events are subsequently categorized according to their
production mechanism to provide measurements of each
corresponding signal strength.

A. Inclusive analysis

Four-lepton events were selected with single-lepton and
dilepton triggers. The pT (ET) thresholds for single-muon
(single-electron) triggers increased from 18 to 24 GeV (20
to 24 GeV) between the 7 and 8 TeV data, in order to cope
with the increasing instantaneous luminosity. The dilepton
trigger thresholds for 7 TeV data are set at 10 GeV pT for
muons, 12 GeV ET for electrons and (6, 10) GeV for
(muon, electron) mixed-flavor pairs. For the 8 TeV data, the
thresholds were raised to 13 GeV for the dimuon trigger, to
12 GeV for the dielectron trigger and (8, 12) GeV for the
(muon, electron) trigger; furthermore, a dimuon trigger
with different thresholds on the muon pT, 8 and 18 GeV,
was added. The trigger efficiency for events passing the
final selection is above 97% in the 4μ, 2μ2e and 2e2μ
channels and close to 100% in the 4e channel for both 7 and
8 TeV data.
Higgs boson candidates are formed by selecting two same-

flavor, opposite-sign lepton pairs (a lepton quadruplet) in an
event. Each lepton is required to have a longitudinal impact
parameter less than 10 mmwith respect to the primary vertex,
and muons are required to have a transverse impact param-
eter of less than 1 mm to reject cosmic-ray muons. These
selections are not applied to standalone muons that have no
ID track. Each electron (muon) must satisfy ET > 7 GeV
(pT > 6 GeV) and be measured in the pseudorapidity range
jηj < 2.47 (jηj < 2.7). The highest-pT lepton in the
quadruplet must satisfy pT > 20 GeV, and the second
(third) lepton in pT order must satisfy pT > 15 GeV
(pT > 10 GeV). Each event is required to have the triggering
lepton(s) matched to one or two of the selected leptons.
Multiple quadruplets within a single event are possible:

for four muons or four electrons there are two ways to pair
the masses, and for five or more leptons there are multiple
ways to choose the leptons. Quadruplet selection is done
separately in each subchannel: 4μ, 2e2μ, 2μ2e, 4e, keeping
only a single quadruplet per channel. For each channel, the
lepton pair with the mass closest to the Z boson mass is
referred to as the leading dilepton and its invariant mass,
m12, is required to be between 50 and 106 GeV. The
second, subleading, pair of each channel is chosen from the
remaining leptons as the pair closest in mass to the Z boson
and in the range mmin < m34 < 115 GeV, where mmin is
12 GeV for m4l < 140 GeV, rises linearly to 50 GeV at
m4l ¼ 190 GeV and then remains at 50 GeV for
m4l > 190 GeV. Finally, if more than one channel has a
quadruplet passing the selection, the channel with the
highest expected signal rate is kept, i.e. in the order 4μ,
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FIG. 1 (color online). (a) The invariant mass distributions of
Z → μþμ−ðγÞ events in data before collinear FSR correction (filled
triangles) and after collinear FSR correction (filled circles), for events
with a collinear FSR photon satisfying the selection criteria as de-
scribed in Sec. IV C. The prediction of the simulation is shownbefore
correction (red histogram) and after correction (blue histogram).
(b) The invariant mass distributions of Z → μþμ−ðγÞ events with a
noncollinear FSR photon satisfying the selection criteria as described
in Sec. IVC. The prediction of the simulation is shown before
correction (red histogram) and after correction (blue histogram).
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Background measurement - III
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The “ABCD” factorization method
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� Use two variables (var1 and var2) with these features:
� For the background they are completely independent
� The signal is localized in a region of the two variables

� Divide the plane in 4 boxes: the signal is on D only

For the background, due to the independence
we have few relations:

B/D = A/C
B/A = D/C

So: If we count the background (in data) events
in regions A,B and C we can extrapolate in the
signal region D:

D = CB/A


