Analysis of event distributions: the fit

(i) to compare the distributions with expectations from theories, and (ii) to extract from
them physical quantities of interest like masses, widths, couplings, spins and so on. We
call fit the method to do both these important things.



Analysis of event distributions: the fit

(1) First of all we have to define the hypothesis. It can be the theoretical function
y(x/0), x being the variable or the set of variables, and 6 a set of K parameters
. K could be even 0, in this case the theory makes an ”absolute prediction” and
there is no need to adjust parameters to compare it to theory.



Analysis of event distributions: the fit

(2) Then we have to define a test statistics ¢, that is a variable depending on the
data that, if the hypothesis is correct, has a known distribution function (in
the following we use pdf to indicate probability distribution functions). The
meaning of this pdf is the following: if we repeat the experiment many times
and if every time we evaluate t, if the hypothesis is correct the histogram of the
sample statistics will follow the pdf within the statistical errors of the sample.



Analysis of event distributions: the fit

(3) Finally we do the experiment. In case the theory depends on few parameters, we
adjust the parameters in such a way to get the best possible agreement between
data and theory. From this we obtain the estimates of the parameters with their
uncertainties. We evaluate then the actual value of ¢, let’s call it t* from the data
after parameter adjustment, and see if in the ¢ pdf this value corresponds to a
region of high or low probability. In case it is in a region of high probability,
it’s likely that the theory is correct, so that we conclude that the experiment
corroborates the theory. In case it corresponds to a region of low probability
it’s unlikely that the theory is correct, so that we say that the experiment falsifies
the theory, or, in other words, that we have not found any parameter region that
allows an acceptable agreement.



Choice of test statistics: binned data

1G0C

oo |

M
Histogram: Z ni =N Q

200 |

Theory: y=y(x/0) 6;,i=1...K S

4
x(r)
Prediction of the theory in bin i:

1) Value of the function at the center fi of the bin Yi = y(xz / Q) 0x
multiplied by the bin width ox (note: [y]=[dN/dx])

2) tly integrat the bin Titor/2
Oor more €xac mtegratin Oover Inc nin 1
y g gy y; = / y(az/Q)dx

M T¢—55E/2

The predicted total number Z y; = Np
of events is: i—1

The two definitions are equivalent in the limit of small bin size wrt to the typical
scale of variations in the distribution



Choice of test statistics: binned data

Which statistics for the n; data in the histogram?
two possibilities:

e We repeat the experiment holding the total number of events N fixed. In this
case n; has a multinomial distribution. The joint distribution of the n;, with
1=1,....M is

p(nl, nM) — N! H bi

where p; is the probability associated to the bin 7. Notice that the joint distribu-
tion cannot be factorized in a product of single bin probability distributions, since
the fixed value of events N determines a correlation between the bin contents.

Eln;] = Np;
Varln;] = Np;(1—p;)
covlni,nj] = —Np;p;

Correlation negligible for events distributed over a large number of bins



Choice of test statistics: binned data

Which statistics for the n; data in the histogram?
two possibilities:

e We repeat the experiment holding fixed the integrated luminosity or the obser-
vation time of the experiment. In this case N is not fixed and fluctuates in

general between an experiment and another. The n; are independent and have
poissonian distributions:

M

p(nl, nM) = H

1=1

g ,—A\;
A tem

where )\; is the expected counting in each bin.

Varln;] = N\

covln;,nj] = 0




Choice of test statistics: binned data

Fit: we impose the condition y;

Definition of the test statistics t :

Neiman y?

XN =




Choice of test statistics: binned data
Fit: we impose the condition 1; = F[n;]

Definition of the test statistics t :

M 2
2 _ (ni — yi)
Neiman 2 XN = .
. Uz

Pearson y?



Gaussian pdf and the Central Limit Theorem

The Gaussian pdf 1s so useful because almost any random
variable that 1s a sum of a large number of small contributions
follows 1t. This follows from the Central Limit Theorem:

For n independent r.v.s x, with finite variances ¢, otherwise
arbitrary pdfs, consider the sum (and mean 1)

mn
y= )
=1

In the limit » — oo, y 1s a Gaussian r.v. with
n

Elyl = > wi Viyl = > of
1=1 )

1 =1

Measurement errors are often the sum of many contributions, so
frequently measured values can be treated as Gaussian r.v.s.



Central Limit Theorem (2)

The CLT can be proved using characteristic functions (Fourier
transforms), see, e.g., SDA Chapter 10.

For finite n, the theorem is approximately valid to the
extent that the fluctuation of the sum 1s not dominated by
one (or few) terms.

A Beware of measurement errors with non-Gaussian tails.

Good example: velocity component v, of air molecules.

OK example: total deflection due to multiple Coulomb scattering.
(Rare large angle deflections give non-Gaussian tail.)

Bad example: energy loss of charged particle traversing thin

gas layer. (Rare collisions make up large fraction of energy loss,
cf. Landau pdf.)



Chi-square (y?) distribution

The chi-square pdf for the continuous r.v. z (z > 0) i1s defined by

1 ™
: — n/2—1_—z/2
Hzim) 2n/2F (n)2) )

NN oON N
oo
2 N

n=1,2,..= number of ‘degrees of
freedom’ (dof)

Flz] =n, V][z]=2n.

For independent Gaussian x, i = 1, ..., n, means [, variances 07,

n )2
z= > (@i 02/%) follows y? pdf with n dof.
i=1 i
Example: goodness-of-fit test variable especially in conjunction
with method of least squares.




Choice of test statistics: binned data
Fit: we impose the condition 1; = F[n;]

Definition of the test statistics t :

o~ (i — i)
2 ) )
Pearson y? XP = Z Vi
1=1

In case of n; being poissonian variables in the gaussian limit, the Pearson x? is a statistics
following a x? distribution with a number of degrees of freedom equal to M — K. Infact
we know that a y? variable is the sum of the squares of standard gaussian variables, so
that if y=E[nl holds, this is the case for X%. However we know that the gaussian limit
is reached for n; at least above 10+-20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of x% is not exactly a x* so that care is
needed in the result interpretation.



Choice of test statistics: binned data

Fit: we impose the condition 1; = F[n;]

Definition of the test statistics t :

M 2
2 _ (ni — yi)
Neiman 2 XN = .
1=1



Choice of test statistics: binned data
Fit: we impose the condition 1; = F[n;]

Definition of the test statistics t :

M 2
2 (s — i)
Neiman 2 XN = .
i=1 T

The Neyman x? is less well defined. In fact a x? variable requires the gaussian o
in each denominator. By putting n; we make an approximation'®. However in case of
large values of n; to a good approximation the Neyman y? has also a y? distribution. A
specific problem of the Neyman y? is present when n; = 0. But again, for low statistics
histogram a different approach should be considered.

187The Neyman x? was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.



Choice of test statistics: binned data
Fit: we impose the condition 1; = F[n;]

More general test statistics t : Likelithood method

N fixed (multinomial case) (y; = Nop;)
(negligible bin correlation assumed)




Choice of test statistics: binned data
Fit: we impose the condition 1; = F[n;]

More general test statistics t : Likelithood method

N not fixed (Poisson case) yi=A\,
M oy

Lyn/y) = [[ 2

1=1




Choice of test statistics: binned data

Fit: we impose the condition 1; = F[n;]

More general test statistics t : Likelithood method

N not fixed (poisson case) yi=\;
_ ?
Lp (ﬂ/g) _ H '
M ) T
1=1
N= Z"i Mo N1
tntaf) = ] e = ST
i=1 " 0 4
M 1
NO :zyl M ynl G_NONN
=1 Ly(n/y) = e V0 H # = 2 Lin(n/y)

L, is essentially L,, multiplied by the poissonian fluctuation of N with mean Ny



Choice of test statistics: binned data

Fit: we impose the condition 1; = F[n;]

More general test statistics t : Likelithood method

Which test statistics for the Likelihood function?

The pdf of a likelihood function in general depends on the

specific problem, and can be evaluated by means of

a MonteCarlo simulation of the situation we are

considering (TOY MC), i.e. simulations done for different values of

the parameters 0;



Choice of test statistics: binned data

WILKS THEOREM

expectation values v; = F/|n;| of the contents of each bin

L(n/y)
L(n/v)

X?\ = —21In

has a x? pdf with M — K degrees of freedom in the asymptotic limit

( V; gaussians )

—> We can use Likelihood ratios as test statistics with known pdf, more general

than Pearson 2, it holds in asymp. limit but whatever is the stat. model.



Connection with the

Neyman—Pearson Lemma

P(type — Ierrors) =1 — € = «

1
P(type — Ilerrors) = == 5]

Given the two hypotheses H; and Hj and given a set of K discriminating variables x1,
x9,...Xx ¢, we can define the two ”likelihoods”

(66) L(xy,...xx/Hs) = P(x1,..xx/Hy)
(67) L(:Cl,...,CUK/Hb) :P(azl,...xK/Hb)

equal to the probabilities to have a given set of values x; given the two hypotheses, and
the likelihood ratio defined as

(68) )\(azl,...xK) =

Neyman—Pearson Lemma:

For fixed o value, a selection based on the discriminant variable A has the lowest [3 value.

=>The “likelihood ratio” is the most powerful quantity to discriminate between hypotheses.

e Methods in Expcrimcntal Particle Physics 4/30/20



General formulation of Wilks’ theorem:
Likelihood ratio (1)

Suppose we model data using a likelihood L(x) that depends on N
parameters u = (y,,..., 1ty). Define the statistic

L(p)
L(f)

where 2 is the ML estimator for . Value of t, retlects agreement
between hypothesized 4 and the data.

N .
Good agreement means g =~ u, so ¢, 1s small;

Larger 7, means less compatibility between data and p.

From G.Cowan
@ Methods in Experimental Particle Physics 4/30/20



General formulation of Wilks’ theorem:
Likelihood ratio (2)

Now suppose the parameters g = (uy,..., 1)) can be determined by
another set of parameters 0 = (0,,..., 0,,), with M < N.

E.g. in LS fit, use yu, = u(x;; @) where x 1s a control variable.

Define the statistic
/ fit M parameters

\ fit N parameters

Use g, to test hypothesized functional form of u(x; 0).
To get p-value, need pdf f(g,[v).

From G.Cowan

@ Methods in Experimental Particle Physics 4/30/20



Wilks’ Theorem (1938)

Wilks’ Theorem: 1f the hypothesized parameters u = (u,,..., 1) are
true then in the large sample limit (and provided certain conditions
are satistied) 7, and g, follow chi-square distributions.

For case with u = (uy,..., ,y) fixed in numerator:

L(p) 2
tp = —2In—= f(tulp) ~x
H L (”) H N\
Or if M parameters adjusted in numerator, degrees of
N / freedom
L(p(0))

Fqule) ~ XN—m

= —21In -
o L(jx)

S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite
hypotheses, Ann. Math. Statist. 9 (1938) 60-2.

From G.Cowan
@ Methods in Experimental Particle Physics 4/30/20



Choice of test statistics: binned data

WILKS THEOREM
In the following we evaluate X?\ for the poissonian histogram.
M e—yz’yn’i M e Viyi
2 _ i i
(110) X5 = —2lnH o + 21nH o
i=1 i=1

Notice that the first term includes the theory (through the y;), while the second requires
the knowledge of the expectation values of the data. If we make the identification v; = n;,
we get:

M M
2 Yi Yi
(111) X5 2; (nZ In . (yi nz)) 2; (nZ In nz) + 2(Ng — N)
By imposing v; = n; eq. Xi is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is X%\ the better is the agreement between data and theory. For
y; = n; (perfect agreement) x3 = 0.

If we make the same calculation for the multinomial likelihood we obtain the same
expression but without the Ny — N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.



Choice of test statistics: binned data

WILKS THEOREM

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements z; all characterized by gaussian fluctuations with uncertainties o; done
for different values of an independent variable x. If the theory predicts a functional
dependence between z and z given by the function z = f(x/0) possibly depending
on a set of parameters @, in case of no correlation between the measurements z;, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:

M 1 (2, —F(2;/8))?

Lg (é/Q) — H \/%0‘- € 20732




Choice of test statistics: binned data

WILKS THEOREM

Let’s now apply the Wilks theorem to this case. For the gaussian measurements we
make the identification v; = E|z;] = z; and we get:

(113)
M (2= F(24/0))° M (zi_zi ) M
1 - 1 (2; /9))
2 20'.2 7
:—21n|| e i —|—21n|| E
A 1V 2T0; 1V 27701 Py

The test statistics obtained here is a 2, typically used in the context of the so called
least squares method. So we have proved essentially that the least square method
can be derived through the Wilks theorem by a gaussian likelihood ratio model.



Choice of test statistics: unbinned data

5.2.3. Unbinned data. In case we have a limited number /N of events so that any binning
will bring us to small values of bin contents, a different approach can be used, equally
relying on the likelihood method: we can fit the unbinned data. In other words we
build our likelihood function directly considering the probability of each single event. If
we call H our hypothesis (eventually depending on a set of K parameters ), z; with
=1, ...N the values of the variable x for the N events and f(x/6) the pdf of x given the
hypothesis H, the likelihood can be written as:

(114) L(z/H) = Hf x;/0)

valid in case the events are not correlated. Notlce that in this case the product runs
on the events, not on the bins as in the previous case. If N is not fixed but fluctuates
we can include ”by hand” in the likelihood, the poissonian fluctuation of N around an
expectation value that we call Ny (eventually an additional parameter to be fit)?"

e_NONéV N
(115) L(z/H) = TN H f(zi/0)
i=1
This is called extended likelihood.

The - logarithm of the likelihood is used in most cases?!:

(116) —InL(z/H) = Zlnf x;/0)



Choice of test statistics: correlations

5.2.4. Fit of correlated data. By using the product of the probability functions to write
down the likelihood, we are assuming no correlation between bins (in case of histograms)
or between events (in case of unbinned fits). In general it is possible to take into account
properly the correlation between measurements in the definition of a likelihood function.
We see how this happens in a simple case. Assume that our gaussian measurements of
z; (see above) are not independent. In this case the likelihood cannot be decomposed in
the product of single likelihoods, but a ”joint likelihood” L(z, /6) is defined, including
the covariance matrix V;; between the measurements. The covariance matrix has the

parameters variances in the diagonal elements and the covariances in the off-diagonal
elements. Starting from the joint likelihood of the measurement, we build the likelihood
ratio and in the end we are left with the final y?:

M

(117) > = (z— fz;/0) Vit (2 — f(a1/0))
j.k=1

that is still a x? variable with M — K degrees of freedom.

For no correlations




Goodness-of-fit test : P-value

Test of hypothesis Hy (null hypothesis)

Fit done (best estimate of 0,) => t* obtained for the test statistics

Suppose pdf of test statistics t known => f(t | H)

o0

P-value Do = f (t/H()) dt
t*

Goodness-of-fit test

o
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FIGURE 9. x? distribution for 5 degrees of freedom. The case of t* = 8.2
is illustrated. The blue hatched area correspond to the py value.



Goodness-of-fit test : P-value

0@

Meaning of P-value Do = f (t/H()) dt
t*

Probability that - if Hy is true - the result t of the experiment will fluctuate
more than t*,

Repeating the experiment N times, py is the fraction in which we get t>t*

. If this number is low, either the hypothesis is wrong or there was an anomalous

large fluctuation. In other words we are on the right tail of the distribution. So we can

put a limit on the acceptable values of pg: if pg is less than, say 5% or 1% we will reject
the null hypothesis, if it is larger than the same limit we will say on the contrary that
the null hypothesis is corroborated. The choice of the limit (5, 1 or 0.1%) depends on
the nature of the problem, and on the degree we decide to be severe with the results we
are considering. Goodness ot es
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FIGURE 9. x? distribution for 5 degrees of freedom. The case of t* = 8.2

i.e. scarce agreement data—theory

is illustrated. The blue hatched area correspond to the py value.



Goodness-of-fit test : P-value

Meaning of P-value

Po

/t T/ Hy)dt

f(t) pdf of t
g(F) pdf of F primitive of f

The P-value is a random variable itself uniformly distributed between 0 and 1:

g(F)dF = f(t)dt

0 0
dF/dt — f(b)

by definition dF/dt = f(t) g(F)

All p-values are equally probable! e.g. py=0 or p,~1



Goodness-of-fit test : P-value

Meaning of P-value

Po

/t " f(t/Ho) dt

*

f(t) pdf of t
g(F) pdf of F primitive of f

The P-value is a random variable itself uniformly distributed between 0 and 1:

g(F)dF = f(t)dt

0 0
dF/dt — f(b)

by definition dF/dt = f(t) g(F)

All p-values are equally probable! e.g. py=0 or p,~1
If Hy is true, it Hy is false usually py =0.



Goodness-of-fit test : P-value

Meaning of P-value

Po

/t " f(t/Ho) dt

*

f(t) pdf of t
g(F) pdf of F primitive of f

The P-value is a random variable itself uniformly distributed between 0 and 1:

g(F)dF = f(t)dt

fit) _ f#)

by definition dF'/dt = f(t F) = = —= =1

All p-values are equally probable! e.g. p,=0 or p,~1 g(Pol H)

If Hy is true, if Hy is false usually p, =0. / L g(po | Ho)
In general under assumption of Hy true, g(p, | Hy) is uniform [0, 1]. 0 1 Po

For a broad class of alternative H’, g(po | H") is concentrated towards zero.



Goodness-of-fit test : P-value

0@

Meaning of P-value Do = f (t/H()) dt
t*

The P-value is a random variable itself uniformly distributed between 0 and 1:

All p-values are equally probable! e.g. p,=0 or p,~1
If Hy is true, if Hy is false usually py =0.

po~1 => underfluctuations of experimental points or overestimate

of the uncertainties , i.e. scarce self-consistency of data

Goodness-of-fit test

2-tails test vs 1-tail test

TTTTT ‘\H‘\H‘\H‘H\‘\H‘\H‘\H‘Hw

. 0 0
e.g. Accept Hyif 5% <py<95% 7 o
¥ i

FIGURE 9. x? distribution for 5 degrees of freedom. The case of t* = 8.2
is illustrated. The blue hatched area correspond to the py value.



Goodness-of-fit test : P-value

H, = NULL hypothesis
Py-value => GOODNESS-OF-FIT TEST

TEST OFTHE NULL hyp.
i.e. ONLY ONE hyp. INDEPENDENTLY OF ANY ALTERNATIVE hyp.



Example of two alternate hypotheses Hj and H,

In the two-body decay H — Y'Y, the spin information is extracted from the distribution of the polar angle 0% of the
photons with respect to the z-axis of the Collins-Soper frame.

: Y1y
cos O = Smh('hi - 7772) . 2pT] pT2
Yy 2 2
1+ (pT /mw)

YY
With this choice, the impact of initial state radiation is expected to be minimized and a better discrimination power

m

compared to other choices of axis, such as the beam axis or the boost axis of the particle, is achieved. A spin-0 particle

decays isotropically in its rest frame; before any acceptance cuts, the distribution dN/d cos 0% is thus uniform. The

corresponding distribution for a spin-2 particle follows a combination of Wigner functions for the production and decay
whose probabilities are specified in particular models.
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Example of two alternate hypotheses H, and H,
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F1GURE 10. One of the results of the ATLAS experiment for the study
of the spin of the Higgs boson. The pdf’s of the test statistics ¢ (defined
as the logarithm of the likelihood ratio) are shown for two alternative
hypotheses: spin 0 and spin 2. The black vertical line corresponds to the
experimental value of the test statistics. The blue hatched area is the
1-p-value. (taken from ATLAS Collaboration, ATLAS-CONF-2013-029).



Two alternate hypotheses Hjand H,

Define t_,,
If t* <t => accept the null hypothesis

If t* >t => accept the alternate hypothesis

By applying a cut we accept type-I and type-II errors (similarly to single events...)

o = [ ft/H)dt
leut
teut

g = f(t/Hy)dt

Apply Neyman-Pearson lemma, i.e. construct a Likelihood ratio variable

as best test statistics



