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The Poisson counting experiment 
Suppose we do a counting experiment and observe n events. 

 Events could be from signal process or from background –  
 we only count the total number. 

Poisson model:   

s = mean (i.e., expected) # of signal events 

b = mean # of background events 

Goal is to make inference about s, e.g., 

     test s = 0 (rejecting H0 ≈ “discovery of signal process”) 

     test all non-zero s  (values not rejected =  confidence interval) 

In both cases need to ask what is relevant alternative hypothesis. 
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Poisson counting experiment: discovery p-value 
Suppose b = 0.5 (known), and we observe nobs = 5.   

Should we claim evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 
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Poisson counting experiment: discovery significance 

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended to 
cover, e.g., hidden systematics, 
plausibility signal model, 
compatibility of data with signal, 
“look-elsewhere effect”  
(~multiple testing), etc. 

Equivalent significance for p = 1.7 × 10�4:   

Often claim discovery if Z > 5 (p < 2.9 × 10�7, i.e., a “5-sigma effect”) 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 

Statistical Data Analysis / Stat 3 
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The significance of a peak 

Suppose we measure a value  
x for each event and find: 

Each bin (observed) is a 
Poisson r.v., means are 
given by dashed lines. 

In the two bins with the peak, 11 entries found with b = 3.2. 
The p-value for the s = 0 hypothesis is: 
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The significance of a peak (2) 

But... did we know where to look for the peak? 

 →  “look-elsewhere effect”; 
        want probability to find peak at least as significant 
        as the one seen anywhere in the histogram.  

How many bins × distributions have we looked at? 

  → look at a thousand of them, you’ll find a 10-3 effect 

Is the observed width consistent with the expected x resolution? 

 →  take x window several times the expected resolution 

Did we adjust the cuts to ‘enhance’ the peak? 

  → freeze cuts, repeat analysis with new data 

Should we publish???? 
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When to publish (why 5 sigma?) 
HEP folklore is to claim discovery when p = 2.9 × 10�7, 
corresponding to a significance Z = Φ�1 (1 – p) = 5 (a 5σ effect). 

There a number of reasons why one may want to require such 
a high threshold for discovery: 

 The “cost” of announcing a false discovery is high. 

 Unsure about systematic uncertainties in model. 

 Unsure about look-elsewhere effect (multiple testing). 

 The implied signal may be a priori highly improbable 
 (e.g., violation of Lorentz invariance). 

But one should also consider the degree to which the data are 
compatible with the new phenomenon, not only the level of 
disagreement with the null hypothesis; p-value is only first step! 
 

Statistical Data Analysis / Stat 3 
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The primary role of the p-value is to quantify the probability 
that the background-only model gives a statistical fluctuation 
as big as the one seen or bigger. 

It is not intended as a means to protect against hidden systematics 
or the high standard required for a claim of an important discovery. 

In the processes of establishing a discovery there comes a point 
where it is clear that the observation is not simply a fluctuation, 
but an “effect”, and the focus shifts to whether this is new physics 
or a systematic. 

Providing LEE is dealt with, that threshold is probably closer to 
3σ than 5σ. 

Why 5 sigma (cont.)? 



Proposed exercise

Extract N random numbers distributed as an 
exponential function with lifetime t

Fill an histogram

Write the likelihood L(t|t) in the binned and unbinned cases



N=100; x<-runif(N) ; x
[1] 0.405059710 0.028044254 0.758571449 0.382914253 0.231949128 0.457176317
[7] 0.736658152 0.038088207 0.104203774 0.513283288 0.742335360 0.368812945

[13] 0.898926650 0.884993284 0.029905424 0.510855547 0.976764989 0.163296696
[19] 0.312905139 0.172199152 0.789298260 0.518792378 0.076755612 0.187093519
[25] 0.613189997 0.007589616 0.476067148 0.091391122 0.254679165 0.642145047
[31] 0.068187724 0.213190998 0.284391620 0.652574104 0.375936000 0.938753973
[37] 0.768648992 0.934079373 0.576549295 0.822300084 0.963397188 0.677318145
[43] 0.804149516 0.278122875 0.918408046 0.161690666 0.816283114 0.219679127
[49] 0.247514679 0.144359027 0.238819577 0.499138632 0.801599954 0.882881265
[55] 0.817341159 0.484859340 0.865183191 0.866059658 0.375084123 0.287952191
[61] 0.832247817 0.392507337 0.292606502 0.018239798 0.980023583 0.892270450
[67] 0.843237637 0.927634800 0.204098272 0.763523759 0.545941953 0.600462520
[73] 0.078878091 0.445519178 0.375912647 0.614324038 0.194723071 0.839467755
[79] 0.265073122 0.870599505 0.696728359 0.085964346 0.004559065 0.710412472
[85] 0.824518329 0.868817609 0.730170102 0.016328960 0.087571226 0.173662371
[91] 0.367700928 0.491316323 0.085512807 0.738371863 0.977629644 0.378448315
[97] 0.194459494 0.754219429 0.376693783 0.939928670
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Likelihood is NOT a PDF

Jan 2018

A Poisson distribution describes  
a discrete event count n for  
a real valued Mean 

	!

Say,	we	observe	no 	events
What	is	the	likelihood	of	µ?
The	likelihood	of	µ 	is	given	by
L(µ)=Pois(no |µ)
It	is	a	continues	function
	of	µ 	but	it	is	NOT a	PDF

!17

as a function of µ it is not a pdf
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Testing an Hypothesis (wikipedia…)

● The first step in any hypothesis test is to state the relevant 
null,  H0     and alternative hypotheses, say, H1 

● The next step is to define a test statistic, q,  under the null 
hypothesis  

● Compute from the observations the observed value qobs of the 

test statistic q. 

● Decide (based on qobs ) to either  
fail to reject the null hypothesis or  
reject it in favor of an alternative hypothesis  

● next: How to construct a test statistic, how to decide? 

Jan 2018!18



● By defining α you determine your 
tolerance towards mistakes… 
(accepted mistakes frequency) 

● type-I error:  the probability to 
reject the tested (null) hypothesis 
(H0) when it is true 

●  
 
 

● Type II: The probability to accept the 
null hypothesis when it is wrong 
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Basic Definitions: type I-II errors

● The pdf of q….

0 0Pr ( | )ob reject H H
typeI error

α

α

=

=

typeII errorβ =

0 0

1 1

Pr ( | )
Pr ( | )
ob accept H H
ob reject H H

β =

=

H0
H1

!28

1−β     α=significance

β



1−β     α=significance

β

Eilam Gross Statistics in PP

Basic Definitions: POWER
●   

● The POWER of an hypothesis  
test is the probability to reject 
 the null hypothesis when it is indeed 
wrong 
 (the alternate analysis is true)  

●  
 
 
 
 
 
 

● The power of a test increases as  
the rate of type II error decreases 

0 0Pr ( | )ob reject H Hα =

Jan 2018

POWER = Prob(reject H0 |H0 )
H0 = H1

POWER = Prob(reject H0 |H0 )
β = Prob(accept H0 |H0 )
1− β = Prob(reject H0 |H0 )
H0 = H1
1− β = Prob(reject H0 |H1)

H0
H1

!29



29 Higgs Statistics, SSI, eilam gross, 2012 

Basic Definitions: POWER 

    
  The POWER of an hypothesis test is the probability to reject the 

null hypothesis when the alternate analysis is true! 

   

  The power of a test increases as the rate of type II error decreases  

POWER = Prob(reject H0 | H1)
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p-Value
●The observed p-value is a measure of the 

compatibility of the data with the tested 
hypothesis.  

● It is the probability, under assumption of the null 
hypothesis Hnull, of finding data of equal or 

greater incompatibility with the predictions of Hnull 

●An important property of a test statistic is that its 
sampling distribution under the null hypothesis be 
calculable, either exactly or approximately, which 
allows p-values to be calculated. (Wiki)

Jan 2018!30
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PDF of a test statistic

f (q | null ) f (q | alt)

alt like
q

Null  like

Jan 2018!31

qobs
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PDF of a test statistic

f (q | null ) f (q | alt)

alt like
q

Null  like

p-value (pnull): 
The probability, under 
assumption of the null 
hypothesis Hnull, of finding 
data of equal or greater 
incompatibility with the 
predictions of Hnull

p =
qobs

∞

∫ f (qnull | Hnull )dqnull

Jan 2018!32

If p ≤α reject null

qobs





f (q | null ) f (q | alt)

alt like
q

Null  like

If p ≤α reject null

qobs
Eilam Gross Statistics in PP

PDF of a test statistic

Jan 2018!34

palt pnull

POWER = Prob(rej Hnull |Halt )

POWER = 1− palt
1− p

alt



Spin 0 vs Spin 1 Hypotheses

Null Hypothesis H0 = Spin 0

Alt   Hypothesis H1 = Spin1
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The Neyman-Pearson Lemma

● Define a test statistic 

● When performing a hypothesis test between two 
simple hypotheses, H0 and H1,  
the Likelihood Ratio test, 
          
which rejects H0 in favor of H1,  
is the most powerful test  
for a given significance level  
with a threshold η 

λ =
L(H1)
L(H0 )

19 Jan 2018

α = prob(λ ≤η)

!25

λ =
L(H1)
L(H0 )



Building PDF

pdf of Q(x |H0 )

pdf of Q(x |H1)

Build the pdf of the test statistic

qNP = qNP(x) = −2ln
L(H0 | x)
L(H1 | x)

!26

J=1J=0



Building PDF

pdf of Q(x |H0 )

pdf of Q(x |H1)

Build the pdf of the test statistic

qNP = qNP(x) = −2ln
L(H0 | x)
L(H1 | x)

!27

J=1J=0



Power and Luminosity

For a given significance the power increases with increased luminosity 

Luminosity ~ Total number of events in an experiment

!35



Power and Luminosity

For a given significance the power increases with increased luminosity  

Luminosity ~ Total number of events in an experiment

!35



!36

-10 -5 0 5 10 15-2Log(L(0)/L(1))0

50

100

150

200

250
N experiments

95% H0
H1 asimov

N per exp = 1000
power = 0.689

α = 5%



!40

-10 -5 0 5 10 15-2Log(L(0)/L(1))0

50

100

150

200

250
N experiments

95% H0
H1 asimov

N per exp = 100
power = 0.155

α = 5%

Hard to tell f(q|J=0) from f(q|J=1) 
—>CLs
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Parameter estimation: Maximum likelihood method

Best estimate of parameters to fit theory to data

It is obtained maximizing the likelihood 

We get

θ̂i

39

� associated at the two kinds of errors are:

↵ =

Z 1

tcut

f(t/H0)dt(121)

� =

Z
tcut

�1
f(t/H1)dt(122)

The Neyman-Pearson lemma also applies here, and can be used for the definition of
the test statistics.

We finally remark that the p-value is not the probability of the hypothesis. It is rather
a probabilistic statement on the repetition of the experiment, namely the probability that
by repeating the experiment and if the hypothesis is correct, we obtain a disagreement
larger than the one found. It is possible to evaluate the probability of the hypothesis H,
but for doing that, the Bayes theorem, including priors, has to be used.

5.4. Parameter estimation. If the theory depends on one or more parameters ✓, we
have to determine the best values of the parameters ✓̂

23. The value of the sample
statistics t⇤ will depend in this case on the estimated values of the parameters t⇤(✓̂).

The most important method for parameter estimation is the maximum likelihood
(ML) method. Suppose we have the likelihood of our data L(x/✓). Once the experimen-
tal data have been taken and are fixed, L can be considered a function of the parameters,
L(✓). It is reasonable to think that the best values of the parameters are those corre-
sponding to the maximum value of the function L(✓). With this method the problem
of finding parameter estimators becomes essentially a problem of finding the maxima
of a K-dimensional function, K being the number of parameters. This problem can be
approached in two ways.

• Analytically, by doing the derivatives of the function (of the logarithm of the
function to simplify the calculations) with respect to the parameters and putting
them equal to 0.

(123)
@ lnL

@✓k
= 0

This is possible in several cases, like the linear fits or other situations that will be
described in the following. It results in a system of M equations in M unknowns.

• Numerically, in all cases. The ”hystorical” programMINUIT developed at CERN
in the ’70s is still now the most used package for this kind of problems.

The Maximum Likelihood method is not the unique method used, but is a robust
method widely used. Another popular method, the Least Squares method, can be derived
under general hypotheses from the maximum likelihood method. Other methods are not
discussed in these notes.

An estimator ✓̂ is a random variable with its own pdf, a mean E[✓̂] and a variance
V ar[✓̂]. It is required to have some properties. We quote here the most important of
them that typical ML estimators have.

23Here and in the following when we put the ”hat” on a parameter, it means it is the estimator of
the parameter.
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a probabilistic statement on the repetition of the experiment, namely the probability that
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larger than the one found. It is possible to evaluate the probability of the hypothesis H,
but for doing that, the Bayes theorem, including priors, has to be used.

5.4. Parameter estimation. If the theory depends on one or more parameters ✓, we
have to determine the best values of the parameters ✓̂

23. The value of the sample
statistics t⇤ will depend in this case on the estimated values of the parameters t⇤(✓̂).

The most important method for parameter estimation is the maximum likelihood
(ML) method. Suppose we have the likelihood of our data L(x/✓). Once the experimen-
tal data have been taken and are fixed, L can be considered a function of the parameters,
L(✓). It is reasonable to think that the best values of the parameters are those corre-
sponding to the maximum value of the function L(✓). With this method the problem
of finding parameter estimators becomes essentially a problem of finding the maxima
of a K-dimensional function, K being the number of parameters. This problem can be
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• Analytically, by doing the derivatives of the function (of the logarithm of the
function to simplify the calculations) with respect to the parameters and putting
them equal to 0.
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@ lnL
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This is possible in several cases, like the linear fits or other situations that will be
described in the following. It results in a system of M equations in M unknowns.

• Numerically, in all cases. The ”hystorical” programMINUIT developed at CERN
in the ’70s is still now the most used package for this kind of problems.

The Maximum Likelihood method is not the unique method used, but is a robust
method widely used. Another popular method, the Least Squares method, can be derived
under general hypotheses from the maximum likelihood method. Other methods are not
discussed in these notes.

An estimator ✓̂ is a random variable with its own pdf, a mean E[✓̂] and a variance
V ar[✓̂]. It is required to have some properties. We quote here the most important of
them that typical ML estimators have.

23Here and in the following when we put the ”hat” on a parameter, it means it is the estimator of
the parameter.
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23. The value of the sample
statistics t⇤ will depend in this case on the estimated values of the parameters t⇤(✓̂).

The most important method for parameter estimation is the maximum likelihood
(ML) method. Suppose we have the likelihood of our data L(x/✓). Once the experimen-
tal data have been taken and are fixed, L can be considered a function of the parameters,
L(✓). It is reasonable to think that the best values of the parameters are those corre-
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This is possible in several cases, like the linear fits or other situations that will be
described in the following. It results in a system of M equations in M unknowns.

• Numerically, in all cases. The ”hystorical” programMINUIT developed at CERN
in the ’70s is still now the most used package for this kind of problems.

The Maximum Likelihood method is not the unique method used, but is a robust
method widely used. Another popular method, the Least Squares method, can be derived
under general hypotheses from the maximum likelihood method. Other methods are not
discussed in these notes.

An estimator ✓̂ is a random variable with its own pdf, a mean E[✓̂] and a variance
V ar[✓̂]. It is required to have some properties. We quote here the most important of
them that typical ML estimators have.

23Here and in the following when we put the ”hat” on a parameter, it means it is the estimator of
the parameter.

Problem of finding the maxima of a K-dimensional function
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This is possible in several cases, like the linear fits or other situations that will be
described in the following. It results in a system of M equations in M unknowns.

• Numerically, in all cases. The ”hystorical” programMINUIT developed at CERN
in the ’70s is still now the most used package for this kind of problems.

The Maximum Likelihood method is not the unique method used, but is a robust
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23Here and in the following when we put the ”hat” on a parameter, it means it is the estimator of
the parameter.

system of M equations with M unknowns
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ML estimators properties:
40

(1) Unbiasness: the mean of the estimator should be equal to the ”true” value of
the parameter E[✓̂] = ✓true.

(2) Consistency: the estimator should converge to the ”true” value once the num-
ber of measurements increases V ar[✓̂] ! 0 for N ! 1.

(3) E�ciency: the estimator variance should be the minimum, any other estimator
of the same parameter should have a larger variance.

5.5. Interval estimation.

5.5.1. Introduction. Since every estimator is a random variable, an assessment on its
uncertainty is required. In general the result for the parameter has to be given as an
interval, typically ✓̂ ± �

✓̂
. Moreover to such an interval a probability content has to

be associated. The meaning of this probability content depends on the approach used,
either frequentist or bayesian, as it will be clarified in the next chapter. For the moment
we take this probability content as a statement about the probability that the true value
✓true of the parameter is contained in the interval.

Assume the data are characterized by a likelihood function L(x/✓), and suppose we
have determined the best values of the parameters by maximizing L, let’s call ✓̂ the
estimated values of the parameters. They are also called the ”central values” of the pa-
rameters. Now we are interested in the determination of the variances of the parameters
or, in a more general sense, the covariance matrix Vjk = cov[✓̂j , ✓̂k].

5.5.2. The Cramer-Rao inequality. An important result from the theory of estimators is
the so called Cramer-Rao inequality. We omit the proof that can be found in spe-
cialistic text-books. We enunciate the Cramer-Rao inequality first for a single parameter
case than for K parameters.

(K=1). The variance of an unbiassed estimator ✓̂ obeys the following inequality:

(124) V ar[✓̂] � 1

E

h
�@2 lnL

@✓2

i

the denominator is also called Fisher information factor, and is usually indicated as
I(✓).

(K >1). Given the ”Fisher information” matrix

(125) I(✓)jk = E


�@

2 lnL

@✓j✓k

�

each term of the covariance matrix Vjk obeys the following inequality

(126) Vjk � I
�1(✓)jk

The Fisher information matrix is also called Hessian matrix of the function L
24.

The Cramer-Rao inequality states that the inverse of the Fisher information is the
minimum variance attainable for an estimator. When the inequality becomes an equality,
the estimator is said to be fully e�cient.

A few theorems are valid for the ML estimators.

24Notice that I�1(✓)jk in eq.126 is the inverse matrix of the Hessian. So, it has to be evaluated using
the rules of matrix inversion.
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(1) Unbiasness: the mean of the estimator should be equal to the ”true” value of
the parameter E[✓̂] = ✓true.

(2) Consistency: the estimator should converge to the ”true” value once the num-
ber of measurements increases V ar[✓̂] ! 0 for N ! 1.

(3) E�ciency: the estimator variance should be the minimum, any other estimator
of the same parameter should have a larger variance.

5.5. Interval estimation.

5.5.1. Introduction. Since every estimator is a random variable, an assessment on its
uncertainty is required. In general the result for the parameter has to be given as an
interval, typically ✓̂ ± �

✓̂
. Moreover to such an interval a probability content has to

be associated. The meaning of this probability content depends on the approach used,
either frequentist or bayesian, as it will be clarified in the next chapter. For the moment
we take this probability content as a statement about the probability that the true value
✓true of the parameter is contained in the interval.

Assume the data are characterized by a likelihood function L(x/✓), and suppose we
have determined the best values of the parameters by maximizing L, let’s call ✓̂ the
estimated values of the parameters. They are also called the ”central values” of the pa-
rameters. Now we are interested in the determination of the variances of the parameters
or, in a more general sense, the covariance matrix Vjk = cov[✓̂j , ✓̂k].

5.5.2. The Cramer-Rao inequality. An important result from the theory of estimators is
the so called Cramer-Rao inequality. We omit the proof that can be found in spe-
cialistic text-books. We enunciate the Cramer-Rao inequality first for a single parameter
case than for K parameters.

(K=1). The variance of an unbiassed estimator ✓̂ obeys the following inequality:
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each term of the covariance matrix Vjk obeys the following inequality

(126) Vjk � I
�1(✓)jk

The Fisher information matrix is also called Hessian matrix of the function L
24.

The Cramer-Rao inequality states that the inverse of the Fisher information is the
minimum variance attainable for an estimator. When the inequality becomes an equality,
the estimator is said to be fully e�cient.

A few theorems are valid for the ML estimators.

24Notice that I�1(✓)jk in eq.126 is the inverse matrix of the Hessian. So, it has to be evaluated using
the rules of matrix inversion.
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(1) Unbiasness: the mean of the estimator should be equal to the ”true” value of
the parameter E[✓̂] = ✓true.

(2) Consistency: the estimator should converge to the ”true” value once the num-
ber of measurements increases V ar[✓̂] ! 0 for N ! 1.

(3) E�ciency: the estimator variance should be the minimum, any other estimator
of the same parameter should have a larger variance.

5.5. Interval estimation.

5.5.1. Introduction. Since every estimator is a random variable, an assessment on its
uncertainty is required. In general the result for the parameter has to be given as an
interval, typically ✓̂ ± �

✓̂
. Moreover to such an interval a probability content has to

be associated. The meaning of this probability content depends on the approach used,
either frequentist or bayesian, as it will be clarified in the next chapter. For the moment
we take this probability content as a statement about the probability that the true value
✓true of the parameter is contained in the interval.

Assume the data are characterized by a likelihood function L(x/✓), and suppose we
have determined the best values of the parameters by maximizing L, let’s call ✓̂ the
estimated values of the parameters. They are also called the ”central values” of the pa-
rameters. Now we are interested in the determination of the variances of the parameters
or, in a more general sense, the covariance matrix Vjk = cov[✓̂j , ✓̂k].

5.5.2. The Cramer-Rao inequality. An important result from the theory of estimators is
the so called Cramer-Rao inequality. We omit the proof that can be found in spe-
cialistic text-books. We enunciate the Cramer-Rao inequality first for a single parameter
case than for K parameters.

(K=1). The variance of an unbiassed estimator ✓̂ obeys the following inequality:

(124) V ar[✓̂] � 1

E

h
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i

the denominator is also called Fisher information factor, and is usually indicated as
I(✓).

(K >1). Given the ”Fisher information” matrix

(125) I(✓)jk = E


�@

2 lnL

@✓j✓k

�

each term of the covariance matrix Vjk obeys the following inequality

(126) Vjk � I
�1(✓)jk

The Fisher information matrix is also called Hessian matrix of the function L
24.

The Cramer-Rao inequality states that the inverse of the Fisher information is the
minimum variance attainable for an estimator. When the inequality becomes an equality,
the estimator is said to be fully e�cient.

A few theorems are valid for the ML estimators.

24Notice that I�1(✓)jk in eq.126 is the inverse matrix of the Hessian. So, it has to be evaluated using
the rules of matrix inversion.
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the so called Cramer-Rao inequality. We omit the proof that can be found in spe-
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The Fisher information matrix is also called Hessian matrix of the function L
24.

The Cramer-Rao inequality states that the inverse of the Fisher information is the
minimum variance attainable for an estimator. When the inequality becomes an equality,
the estimator is said to be fully e�cient.

A few theorems are valid for the ML estimators.
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(1) Unbiasness: the mean of the estimator should be equal to the ”true” value of
the parameter E[✓̂] = ✓true.

(2) Consistency: the estimator should converge to the ”true” value once the num-
ber of measurements increases V ar[✓̂] ! 0 for N ! 1.

(3) E�ciency: the estimator variance should be the minimum, any other estimator
of the same parameter should have a larger variance.

5.5. Interval estimation.

5.5.1. Introduction. Since every estimator is a random variable, an assessment on its
uncertainty is required. In general the result for the parameter has to be given as an
interval, typically ✓̂ ± �

✓̂
. Moreover to such an interval a probability content has to

be associated. The meaning of this probability content depends on the approach used,
either frequentist or bayesian, as it will be clarified in the next chapter. For the moment
we take this probability content as a statement about the probability that the true value
✓true of the parameter is contained in the interval.

Assume the data are characterized by a likelihood function L(x/✓), and suppose we
have determined the best values of the parameters by maximizing L, let’s call ✓̂ the
estimated values of the parameters. They are also called the ”central values” of the pa-
rameters. Now we are interested in the determination of the variances of the parameters
or, in a more general sense, the covariance matrix Vjk = cov[✓̂j , ✓̂k].

5.5.2. The Cramer-Rao inequality. An important result from the theory of estimators is
the so called Cramer-Rao inequality. We omit the proof that can be found in spe-
cialistic text-books. We enunciate the Cramer-Rao inequality first for a single parameter
case than for K parameters.

(K=1). The variance of an unbiassed estimator ✓̂ obeys the following inequality:

(124) V ar[✓̂] � 1

E

h
�@2 lnL

@✓2

i

the denominator is also called Fisher information factor, and is usually indicated as
I(✓).

(K >1). Given the ”Fisher information” matrix

(125) I(✓)jk = E


�@

2 lnL

@✓j✓k

�

each term of the covariance matrix Vjk obeys the following inequality

(126) Vjk � I
�1(✓)jk

The Fisher information matrix is also called Hessian matrix of the function L
24.

The Cramer-Rao inequality states that the inverse of the Fisher information is the
minimum variance attainable for an estimator. When the inequality becomes an equality,
the estimator is said to be fully e�cient.

A few theorems are valid for the ML estimators.

24Notice that I�1(✓)jk in eq.126 is the inverse matrix of the Hessian. So, it has to be evaluated using
the rules of matrix inversion.
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• If, for a given parameter, at least a fully e�cient estimators exists, such an
estimator is the ML estimator.

• For estimators based on a large number of observation N ! 1, ML estimators
are fully e�cient.

• In case of fully e�cient estimators, it is possible to replace the mean of the second
derivative with the second derivative evaluated at the estimator central value:

(127) E


�@

2 lnL

@✓2

�
= �@

2 lnL

@✓2

����
✓=✓̂

The last two theorems are particularly important in practice. Second derivatives evalu-
ated at the central values allow to get the covariance matrix for all ML estimators with
a reasonably large number of observations. This method is extensively used to get the
covariance matrix of the parameters.

A simple argument can be used to understand the relation between the inverse of
the second derivative and the parameter variance. We present it in the simple case of
K = 1. In this case the � lnL function is a simple function of the parameter ✓, f(✓)
with a minimum at ✓ = ✓̂. The Taylor expansion around the minimum truncated at the
2nd order is:

(128) f(✓) = f(✓̂) +
df

d✓

����
✓=✓̂

(✓ � ✓̂) +
1

2

d
2
f

d✓2

����
✓=✓̂

(✓ � ✓̂)2 + ...

that represents a parabolic shape around the minimum. The first order term vanishes,
while the coe�cient of the second order is inversely proportional to the ”width” of the
parabola. This is an analytic property of the parabola equation: the larger is the x

2

coe�cient, the narrower is the parabola. On the other hand, using eqs.124, 125 and 127,
we have:

(129)
d
2
f

d✓2
=

1

�
2
✓

In the following we’ll see how this feature of the likelihood shape around the minimum
can be used to assess graphically the variance of the estimator.

5.5.3. Profile Likelihood. The argument reported above suggests a graphical method to
assess the variance of the estimator. We refer here again at the case K = 1. Following
the plot shown in Fig.11 we report the function � lnL around the minimum that has a
parabolic shape if the terms of order larger than 2 can be neglected.

Then we draw horizontal lines at heights

(130) � lnLmax +
1

2
n
2

with n=1,2,... Each horizontal line intercepts the parabola defining ✓ intervals centered
in ✓̂. By equating eq.130 with eq.128, and assuming eq.129 we get

(131)
1

2
n
2 =

1

2

(✓ � ✓̂)2

�
2
✓

so that the intervals are delimited by

(132) ✓̂ ± n�✓
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1-dimensional example:

f(q)=-ln L(x|q)

Taylor expansion around the minimum
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In the following we’ll see how this feature of the likelihood shape around the minimum
can be used to assess graphically the variance of the estimator.

5.5.3. Profile Likelihood. The argument reported above suggests a graphical method to
assess the variance of the estimator. We refer here again at the case K = 1. Following
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The first order term vanishes, the second order coefficient (~ 1/width of the parabola), 
according to ML estimators and Cramer-Rao inequality:
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• If, for a given parameter, at least a fully e�cient estimators exists, such an
estimator is the ML estimator.

• For estimators based on a large number of observation N ! 1, ML estimators
are fully e�cient.

• In case of fully e�cient estimators, it is possible to replace the mean of the second
derivative with the second derivative evaluated at the estimator central value:
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The last two theorems are particularly important in practice. Second derivatives evalu-
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a reasonably large number of observations. This method is extensively used to get the
covariance matrix of the parameters.

A simple argument can be used to understand the relation between the inverse of
the second derivative and the parameter variance. We present it in the simple case of
K = 1. In this case the � lnL function is a simple function of the parameter ✓, f(✓)
with a minimum at ✓ = ✓̂. The Taylor expansion around the minimum truncated at the
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In the following we’ll see how this feature of the likelihood shape around the minimum
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(1) Unbiasness: the mean of the estimator should be equal to the ”true” value of
the parameter E[✓̂] = ✓true.

(2) Consistency: the estimator should converge to the ”true” value once the num-
ber of measurements increases V ar[✓̂] ! 0 for N ! 1.

(3) E�ciency: the estimator variance should be the minimum, any other estimator
of the same parameter should have a larger variance.

5.5. Interval estimation.

5.5.1. Introduction. Since every estimator is a random variable, an assessment on its
uncertainty is required. In general the result for the parameter has to be given as an
interval, typically ✓̂ ± �

✓̂
. Moreover to such an interval a probability content has to

be associated. The meaning of this probability content depends on the approach used,
either frequentist or bayesian, as it will be clarified in the next chapter. For the moment
we take this probability content as a statement about the probability that the true value
✓true of the parameter is contained in the interval.

Assume the data are characterized by a likelihood function L(x/✓), and suppose we
have determined the best values of the parameters by maximizing L, let’s call ✓̂ the
estimated values of the parameters. They are also called the ”central values” of the pa-
rameters. Now we are interested in the determination of the variances of the parameters
or, in a more general sense, the covariance matrix Vjk = cov[✓̂j , ✓̂k].

5.5.2. The Cramer-Rao inequality. An important result from the theory of estimators is
the so called Cramer-Rao inequality. We omit the proof that can be found in spe-
cialistic text-books. We enunciate the Cramer-Rao inequality first for a single parameter
case than for K parameters.

(K=1). The variance of an unbiassed estimator ✓̂ obeys the following inequality:

(124) V ar[✓̂] � 1
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the denominator is also called Fisher information factor, and is usually indicated as
I(✓).

(K >1). Given the ”Fisher information” matrix

(125) I(✓)jk = E
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each term of the covariance matrix Vjk obeys the following inequality

(126) Vjk � I
�1(✓)jk

The Fisher information matrix is also called Hessian matrix of the function L
24.

The Cramer-Rao inequality states that the inverse of the Fisher information is the
minimum variance attainable for an estimator. When the inequality becomes an equality,
the estimator is said to be fully e�cient.

A few theorems are valid for the ML estimators.

24Notice that I�1(✓)jk in eq.126 is the inverse matrix of the Hessian. So, it has to be evaluated using
the rules of matrix inversion.
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• For estimators based on a large number of observation N ! 1, ML estimators
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that represents a parabolic shape around the minimum. The first order term vanishes,
while the coe�cient of the second order is inversely proportional to the ”width” of the
parabola. This is an analytic property of the parabola equation: the larger is the x
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In the following we’ll see how this feature of the likelihood shape around the minimum
can be used to assess graphically the variance of the estimator.

5.5.3. Profile Likelihood. The argument reported above suggests a graphical method to
assess the variance of the estimator. We refer here again at the case K = 1. Following
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ML Parameter estimators:   profile likelihood method

1-dimensional example:

f(q)=-ln L(x|q)
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• If, for a given parameter, at least a fully e�cient estimators exists, such an
estimator is the ML estimator.

• For estimators based on a large number of observation N ! 1, ML estimators
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Figure 11. Scheme of principle of a profile likelihood method. A � lnL
with parabolic shape is shown for a given variable X. Horizontal lines
are shown for � lnLmax +

1
2n

2 for n = 0, 1, 2, 3 and a ± 1 � is shown for
the X variable.

If the terms of order larger than the 2nd can be neglected, we are essentially in the
gaussian limit25. So these intervals have gaussian probability contents: 68% (n=1), 95%
(n=2) and 99.7% (n=3). This graphical method is said profile likelihood method
and is widely used in the fit procedures to get intervals for the parameters with a given
probability content.

If we are not in the gaussian limit, the profile likelihood method can be used as well,
and the probability content remains to a good approximation the same of the gaussian
case. In this case, as shown in the example of fig.12, the intervals can be asymmetric
and the result will be written as

(133) ✓̂
+�

+
✓

��
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✓

A classical example of a profile likelihood analysis, is the estimate of the Higgs boson
mass before its discovery, based on a Standard Model fit. The so called ”blue-band”
plot is shown in fig.13.

In general a minimization program will provide both parabolic intervals through es-
timate of the second derivatives matrix, and non parabolic intervals through profile
likelihood methods. The MINUIT program output provides both kind of intervals. If

25Notice infact that the logarithm of a gaussian function is essentially a parabola.
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The last two theorems are particularly important in practice. Second derivatives evalu-
ated at the central values allow to get the covariance matrix for all ML estimators with
a reasonably large number of observations. This method is extensively used to get the
covariance matrix of the parameters.

A simple argument can be used to understand the relation between the inverse of
the second derivative and the parameter variance. We present it in the simple case of
K = 1. In this case the � lnL function is a simple function of the parameter ✓, f(✓)
with a minimum at ✓ = ✓̂. The Taylor expansion around the minimum truncated at the
2nd order is:
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that represents a parabolic shape around the minimum. The first order term vanishes,
while the coe�cient of the second order is inversely proportional to the ”width” of the
parabola. This is an analytic property of the parabola equation: the larger is the x
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coe�cient, the narrower is the parabola. On the other hand, using eqs.124, 125 and 127,
we have:
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In the following we’ll see how this feature of the likelihood shape around the minimum
can be used to assess graphically the variance of the estimator.

5.5.3. Profile Likelihood. The argument reported above suggests a graphical method to
assess the variance of the estimator. We refer here again at the case K = 1. Following
the plot shown in Fig.11 we report the function � lnL around the minimum that has a
parabolic shape if the terms of order larger than 2 can be neglected.

Then we draw horizontal lines at heights

(130) � lnLmax +
1

2
n
2

with n=1,2,... Each horizontal line intercepts the parabola defining ✓ intervals centered
in ✓̂. By equating eq.130 with eq.128, and assuming eq.129 we get

(131)
1

2
n
2 =

1

2

(✓ � ✓̂)2

�
2
✓

so that the intervals are delimited by

(132) ✓̂ ± n�✓

f(q)=

✓
<latexit sha1_base64="OegTgzXExpHRaDge+AkNKHTp0a8=">AAAB8HicbZA9TwJBEIbn8AvxC7W0uQgmVuSORkuijSUm8mHgQvaWPdiwu3fZnTMhhF9hY6Extv4cO/+Ne3CFgm+yyZN3ZrIzb5gIbtDzvp3CxubW9k5xt7S3f3B4VD4+aZs41ZS1aCxi3Q2JYYIr1kKOgnUTzYgMBeuEk9us3nli2vBYPeA0YYEkI8UjTgla67HaxzFDUi0NyhWv5i3kroOfQwVyNQflr/4wpqlkCqkgxvR8L8FgRjRyKti81E8NSwidkBHrWVREMhPMFgvP3QvrDN0o1vYpdBfu74kZkcZMZWg7JcGxWa1l5n+1XorRdTDjKkmRKbr8KEqFi7GbXe8OuWYUxdQCoZrbXV06JppQtBllIfirJ69Du17zLd/XK42bPI4inME5XIIPV9CAO2hCCyhIeIZXeHO08+K8Ox/L1oKTz5zCHzmfP5Soj5Y=</latexit><latexit sha1_base64="OegTgzXExpHRaDge+AkNKHTp0a8=">AAAB8HicbZA9TwJBEIbn8AvxC7W0uQgmVuSORkuijSUm8mHgQvaWPdiwu3fZnTMhhF9hY6Extv4cO/+Ne3CFgm+yyZN3ZrIzb5gIbtDzvp3CxubW9k5xt7S3f3B4VD4+aZs41ZS1aCxi3Q2JYYIr1kKOgnUTzYgMBeuEk9us3nli2vBYPeA0YYEkI8UjTgla67HaxzFDUi0NyhWv5i3kroOfQwVyNQflr/4wpqlkCqkgxvR8L8FgRjRyKti81E8NSwidkBHrWVREMhPMFgvP3QvrDN0o1vYpdBfu74kZkcZMZWg7JcGxWa1l5n+1XorRdTDjKkmRKbr8KEqFi7GbXe8OuWYUxdQCoZrbXV06JppQtBllIfirJ69Du17zLd/XK42bPI4inME5XIIPV9CAO2hCCyhIeIZXeHO08+K8Ox/L1oKTz5zCHzmfP5Soj5Y=</latexit><latexit sha1_base64="OegTgzXExpHRaDge+AkNKHTp0a8=">AAAB8HicbZA9TwJBEIbn8AvxC7W0uQgmVuSORkuijSUm8mHgQvaWPdiwu3fZnTMhhF9hY6Extv4cO/+Ne3CFgm+yyZN3ZrIzb5gIbtDzvp3CxubW9k5xt7S3f3B4VD4+aZs41ZS1aCxi3Q2JYYIr1kKOgnUTzYgMBeuEk9us3nli2vBYPeA0YYEkI8UjTgla67HaxzFDUi0NyhWv5i3kroOfQwVyNQflr/4wpqlkCqkgxvR8L8FgRjRyKti81E8NSwidkBHrWVREMhPMFgvP3QvrDN0o1vYpdBfu74kZkcZMZWg7JcGxWa1l5n+1XorRdTDjKkmRKbr8KEqFi7GbXe8OuWYUxdQCoZrbXV06JppQtBllIfirJ69Du17zLd/XK42bPI4inME5XIIPV9CAO2hCCyhIeIZXeHO08+K8Ox/L1oKTz5zCHzmfP5Soj5Y=</latexit><latexit sha1_base64="OegTgzXExpHRaDge+AkNKHTp0a8=">AAAB8HicbZA9TwJBEIbn8AvxC7W0uQgmVuSORkuijSUm8mHgQvaWPdiwu3fZnTMhhF9hY6Extv4cO/+Ne3CFgm+yyZN3ZrIzb5gIbtDzvp3CxubW9k5xt7S3f3B4VD4+aZs41ZS1aCxi3Q2JYYIr1kKOgnUTzYgMBeuEk9us3nli2vBYPeA0YYEkI8UjTgla67HaxzFDUi0NyhWv5i3kroOfQwVyNQflr/4wpqlkCqkgxvR8L8FgRjRyKti81E8NSwidkBHrWVREMhPMFgvP3QvrDN0o1vYpdBfu74kZkcZMZWg7JcGxWa1l5n+1XorRdTDjKkmRKbr8KEqFi7GbXe8OuWYUxdQCoZrbXV06JppQtBllIfirJ69Du17zLd/XK42bPI4inME5XIIPV9CAO2hCCyhIeIZXeHO08+K8Ox/L1oKTz5zCHzmfP5Soj5Y=</latexit>

41

• If, for a given parameter, at least a fully e�cient estimators exists, such an
estimator is the ML estimator.

• For estimators based on a large number of observation N ! 1, ML estimators
are fully e�cient.

• In case of fully e�cient estimators, it is possible to replace the mean of the second
derivative with the second derivative evaluated at the estimator central value:

(127) E


�@

2 lnL

@✓2

�
= �@

2 lnL

@✓2

����
✓=✓̂

The last two theorems are particularly important in practice. Second derivatives evalu-
ated at the central values allow to get the covariance matrix for all ML estimators with
a reasonably large number of observations. This method is extensively used to get the
covariance matrix of the parameters.

A simple argument can be used to understand the relation between the inverse of
the second derivative and the parameter variance. We present it in the simple case of
K = 1. In this case the � lnL function is a simple function of the parameter ✓, f(✓)
with a minimum at ✓ = ✓̂. The Taylor expansion around the minimum truncated at the
2nd order is:
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that represents a parabolic shape around the minimum. The first order term vanishes,
while the coe�cient of the second order is inversely proportional to the ”width” of the
parabola. This is an analytic property of the parabola equation: the larger is the x
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coe�cient, the narrower is the parabola. On the other hand, using eqs.124, 125 and 127,
we have:
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In the following we’ll see how this feature of the likelihood shape around the minimum
can be used to assess graphically the variance of the estimator.

5.5.3. Profile Likelihood. The argument reported above suggests a graphical method to
assess the variance of the estimator. We refer here again at the case K = 1. Following
the plot shown in Fig.11 we report the function � lnL around the minimum that has a
parabolic shape if the terms of order larger than 2 can be neglected.

Then we draw horizontal lines at heights
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with n=1,2,... Each horizontal line intercepts the parabola defining ✓ intervals centered
in ✓̂. By equating eq.130 with eq.128, and assuming eq.129 we get

(131)
1

2
n
2 =

1

2

(✓ � ✓̂)2

�
2
✓

so that the intervals are delimited by

(132) ✓̂ ± n�✓

41

• If, for a given parameter, at least a fully e�cient estimators exists, such an
estimator is the ML estimator.

• For estimators based on a large number of observation N ! 1, ML estimators
are fully e�cient.

• In case of fully e�cient estimators, it is possible to replace the mean of the second
derivative with the second derivative evaluated at the estimator central value:

(127) E


�@

2 lnL

@✓2

�
= �@

2 lnL

@✓2

����
✓=✓̂

The last two theorems are particularly important in practice. Second derivatives evalu-
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a reasonably large number of observations. This method is extensively used to get the
covariance matrix of the parameters.

A simple argument can be used to understand the relation between the inverse of
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In the following we’ll see how this feature of the likelihood shape around the minimum
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• If, for a given parameter, at least a fully e�cient estimators exists, such an
estimator is the ML estimator.

• For estimators based on a large number of observation N ! 1, ML estimators
are fully e�cient.

• In case of fully e�cient estimators, it is possible to replace the mean of the second
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ated at the central values allow to get the covariance matrix for all ML estimators with
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In the following we’ll see how this feature of the likelihood shape around the minimum
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5.5.3. Profile Likelihood. The argument reported above suggests a graphical method to
assess the variance of the estimator. We refer here again at the case K = 1. Following
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Figure 11. Scheme of principle of a profile likelihood method. A � lnL
with parabolic shape is shown for a given variable X. Horizontal lines
are shown for � lnLmax +

1
2n

2 for n = 0, 1, 2, 3 and a ± 1 � is shown for
the X variable.

If the terms of order larger than the 2nd can be neglected, we are essentially in the
gaussian limit25. So these intervals have gaussian probability contents: 68% (n=1), 95%
(n=2) and 99.7% (n=3). This graphical method is said profile likelihood method
and is widely used in the fit procedures to get intervals for the parameters with a given
probability content.

If we are not in the gaussian limit, the profile likelihood method can be used as well,
and the probability content remains to a good approximation the same of the gaussian
case. In this case, as shown in the example of fig.12, the intervals can be asymmetric
and the result will be written as
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+
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��
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A classical example of a profile likelihood analysis, is the estimate of the Higgs boson
mass before its discovery, based on a Standard Model fit. The so called ”blue-band”
plot is shown in fig.13.

In general a minimization program will provide both parabolic intervals through es-
timate of the second derivatives matrix, and non parabolic intervals through profile
likelihood methods. The MINUIT program output provides both kind of intervals. If

25Notice infact that the logarithm of a gaussian function is essentially a parabola.
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• If, for a given parameter, at least a fully e�cient estimators exists, such an
estimator is the ML estimator.

• For estimators based on a large number of observation N ! 1, ML estimators
are fully e�cient.

• In case of fully e�cient estimators, it is possible to replace the mean of the second
derivative with the second derivative evaluated at the estimator central value:
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The last two theorems are particularly important in practice. Second derivatives evalu-
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a reasonably large number of observations. This method is extensively used to get the
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A simple argument can be used to understand the relation between the inverse of
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parabola. This is an analytic property of the parabola equation: the larger is the x
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we have:
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In the following we’ll see how this feature of the likelihood shape around the minimum
can be used to assess graphically the variance of the estimator.

5.5.3. Profile Likelihood. The argument reported above suggests a graphical method to
assess the variance of the estimator. We refer here again at the case K = 1. Following
the plot shown in Fig.11 we report the function � lnL around the minimum that has a
parabolic shape if the terms of order larger than 2 can be neglected.
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The last two theorems are particularly important in practice. Second derivatives evalu-
ated at the central values allow to get the covariance matrix for all ML estimators with
a reasonably large number of observations. This method is extensively used to get the
covariance matrix of the parameters.
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the second derivative and the parameter variance. We present it in the simple case of
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In the following we’ll see how this feature of the likelihood shape around the minimum
can be used to assess graphically the variance of the estimator.

5.5.3. Profile Likelihood. The argument reported above suggests a graphical method to
assess the variance of the estimator. We refer here again at the case K = 1. Following
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• If, for a given parameter, at least a fully e�cient estimators exists, such an
estimator is the ML estimator.

• For estimators based on a large number of observation N ! 1, ML estimators
are fully e�cient.

• In case of fully e�cient estimators, it is possible to replace the mean of the second
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The last two theorems are particularly important in practice. Second derivatives evalu-
ated at the central values allow to get the covariance matrix for all ML estimators with
a reasonably large number of observations. This method is extensively used to get the
covariance matrix of the parameters.

A simple argument can be used to understand the relation between the inverse of
the second derivative and the parameter variance. We present it in the simple case of
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• If, for a given parameter, at least a fully e�cient estimators exists, such an
estimator is the ML estimator.

• For estimators based on a large number of observation N ! 1, ML estimators
are fully e�cient.

• In case of fully e�cient estimators, it is possible to replace the mean of the second
derivative with the second derivative evaluated at the estimator central value:
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2 lnL
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�
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����
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The last two theorems are particularly important in practice. Second derivatives evalu-
ated at the central values allow to get the covariance matrix for all ML estimators with
a reasonably large number of observations. This method is extensively used to get the
covariance matrix of the parameters.

A simple argument can be used to understand the relation between the inverse of
the second derivative and the parameter variance. We present it in the simple case of
K = 1. In this case the � lnL function is a simple function of the parameter ✓, f(✓)
with a minimum at ✓ = ✓̂. The Taylor expansion around the minimum truncated at the
2nd order is:

(128) f(✓) = f(✓̂) +
df
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that represents a parabolic shape around the minimum. The first order term vanishes,
while the coe�cient of the second order is inversely proportional to the ”width” of the
parabola. This is an analytic property of the parabola equation: the larger is the x

2

coe�cient, the narrower is the parabola. On the other hand, using eqs.124, 125 and 127,
we have:
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In the following we’ll see how this feature of the likelihood shape around the minimum
can be used to assess graphically the variance of the estimator.

5.5.3. Profile Likelihood. The argument reported above suggests a graphical method to
assess the variance of the estimator. We refer here again at the case K = 1. Following
the plot shown in Fig.11 we report the function � lnL around the minimum that has a
parabolic shape if the terms of order larger than 2 can be neglected.

Then we draw horizontal lines at heights

(130) � lnLmax +
1

2
n
2

with n=1,2,... Each horizontal line intercepts the parabola defining ✓ intervals centered
in ✓̂. By equating eq.130 with eq.128, and assuming eq.129 we get
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so that the intervals are delimited by

(132) ✓̂ ± n�✓
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Figure 11. Scheme of principle of a profile likelihood method. A � lnL
with parabolic shape is shown for a given variable X. Horizontal lines
are shown for � lnLmax +

1
2n

2 for n = 0, 1, 2, 3 and a ± 1 � is shown for
the X variable.

If the terms of order larger than the 2nd can be neglected, we are essentially in the
gaussian limit25. So these intervals have gaussian probability contents: 68% (n=1), 95%
(n=2) and 99.7% (n=3). This graphical method is said profile likelihood method
and is widely used in the fit procedures to get intervals for the parameters with a given
probability content.

If we are not in the gaussian limit, the profile likelihood method can be used as well,
and the probability content remains to a good approximation the same of the gaussian
case. In this case, as shown in the example of fig.12, the intervals can be asymmetric
and the result will be written as

(133) ✓̂
+�

+
✓

��
�
✓

A classical example of a profile likelihood analysis, is the estimate of the Higgs boson
mass before its discovery, based on a Standard Model fit. The so called ”blue-band”
plot is shown in fig.13.

In general a minimization program will provide both parabolic intervals through es-
timate of the second derivatives matrix, and non parabolic intervals through profile
likelihood methods. The MINUIT program output provides both kind of intervals. If

25Notice infact that the logarithm of a gaussian function is essentially a parabola.
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If 2nd order terms can be neglected => gaussian limit => confidence intervals with 
gaussian probability content (n=1,2,3 =>  68%, 95%, 99.7%)
(Notice that log of a gaussian function -> parabola)
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If the terms of order larger than the 2nd can be neglected, we are essentially in the
gaussian limit25. So these intervals have gaussian probability contents: 68% (n=1), 95%
(n=2) and 99.7% (n=3). This graphical method is said profile likelihood method
and is widely used in the fit procedures to get intervals for the parameters with a given
probability content.

If we are not in the gaussian limit, the profile likelihood method can be used as well,
and the probability content remains to a good approximation the same of the gaussian
case. In this case, as shown in the example of fig.12, the intervals can be asymmetric
and the result will be written as
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A classical example of a profile likelihood analysis, is the estimate of the Higgs boson
mass before its discovery, based on a Standard Model fit. The so called ”blue-band”
plot is shown in fig.13.

In general a minimization program will provide both parabolic intervals through es-
timate of the second derivatives matrix, and non parabolic intervals through profile
likelihood methods. The MINUIT program output provides both kind of intervals. If

25Notice infact that the logarithm of a gaussian function is essentially a parabola.
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Figure 12. Example of a profile likelihood method when � lnL has not
a parabolic shape. As in fig.11, horizontal lines are shown for � lnLmax+
1
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2 for n = 0, 1, 2, 3. A ”2sigma” interval is shown for X clearly asym-
metric.

the two kinds of intervals coincide, it means that we are in a gaussian parabolic situa-
tion. If there is a large discrepancy, it means that the minimum of the likelihood is not
parabolic and we are far from the gaussian limit.

5.5.4. Contour Likelihood. The Profile Likelihood method described above can be ap-
plied to the single parameter case only. However when K = 2 a graphical method is
also available providing an interesting insight into the fit result: the so called contour
likelihood method. The function � lnL is, in this case, a 2D function f(✓1, ✓2) that,
around the minimum ✓̂1, ✓̂2 has a 2-D paraboloid shape. For a given probability content
�, regions S� can be defined in the ✓1 � ✓2 plane with the property:

(134) p([✓1, ✓2] ⇢ S�) = �

that is regions containing the point ✓1, ✓2 with probability �. Such regions can be
obtained by intersecting the surface f(✓1, ✓2), with planes of constant � lnL at values
(compare to eq.130)

(135) � lnLmax +� lnL�

The equivalent of eq.128 for the two parameters case, is, in the gaussian limit

(136) � lnL = � lnLmax +
1

2
(✓ � ✓̂)TV �1(✓ � ✓̂)

✓
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Figure 13. 1-dimensional �2 of the Standard Model fit to get an interval
for the unknown Higgs boson mass. Notice that the horizontal axis is in
logarithmic scale, so that the minimum is strongly asymmetric. (very
”popular” plot, taken e.g. from www.zfitter.com).

where we have used directly the matrix formalism (T means transposed). By comparing
eq.136 with eq.117 we see that � lnL+ lnLmax has a �

2 distribution with 2 degrees of
freedom. This allows to evaluate the values of � lnL� of eq.135. Table 2 gives the values
of � lnL� for K = 1, 2 and 3 for three di↵erent values of �. For K = 3 or more, the
graphical contour representation is not available, but regions S� can be built with the
same method.

The regions in the 2D case have in general an elliptical shape as shown in fig.14, the
inclination of the two axis being a measure of the correlation between ✓1 and ✓2.

An important point to notice is the following: the probability content � of an ellipse,
corresponds to the probability that both parameters are in the region. On the other side,
the projection of the ellipse on each single axis (e.g. on the ✓1 axis see fig.14) corresponds
to the probability that ✓1 is in the range whatever is the value of ✓2. Such probability is
of course larger than �. To give the size of this e↵ect we quote the following numbers:
an interval for ✓1 built as a projection from a 2D ellipse with �=68.3% has a probability

If the likelihood profile
is far from the parabolic shape
=> far from the gaussian limit
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Figure 13. 1-dimensional �2 of the Standard Model fit to get an interval
for the unknown Higgs boson mass. Notice that the horizontal axis is in
logarithmic scale, so that the minimum is strongly asymmetric. (very
”popular” plot, taken e.g. from www.zfitter.com).

where we have used directly the matrix formalism (T means transposed). By comparing
eq.136 with eq.117 we see that � lnL+ lnLmax has a �

2 distribution with 2 degrees of
freedom. This allows to evaluate the values of � lnL� of eq.135. Table 2 gives the values
of � lnL� for K = 1, 2 and 3 for three di↵erent values of �. For K = 3 or more, the
graphical contour representation is not available, but regions S� can be built with the
same method.

The regions in the 2D case have in general an elliptical shape as shown in fig.14, the
inclination of the two axis being a measure of the correlation between ✓1 and ✓2.

An important point to notice is the following: the probability content � of an ellipse,
corresponds to the probability that both parameters are in the region. On the other side,
the projection of the ellipse on each single axis (e.g. on the ✓1 axis see fig.14) corresponds
to the probability that ✓1 is in the range whatever is the value of ✓2. Such probability is
of course larger than �. To give the size of this e↵ect we quote the following numbers:
an interval for ✓1 built as a projection from a 2D ellipse with �=68.3% has a probability
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is far from the parabolic shape
=> far from the gaussian limit
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Figure 12. Example of a profile likelihood method when � lnL has not
a parabolic shape. As in fig.11, horizontal lines are shown for � lnLmax+
1
2n

2 for n = 0, 1, 2, 3. A ”2sigma” interval is shown for X clearly asym-
metric.

the two kinds of intervals coincide, it means that we are in a gaussian parabolic situa-
tion. If there is a large discrepancy, it means that the minimum of the likelihood is not
parabolic and we are far from the gaussian limit.

5.5.4. Contour Likelihood. The Profile Likelihood method described above can be ap-
plied to the single parameter case only. However when K = 2 a graphical method is
also available providing an interesting insight into the fit result: the so called contour
likelihood method. The function � lnL is, in this case, a 2D function f(✓1, ✓2) that,
around the minimum ✓̂1, ✓̂2 has a 2-D paraboloid shape. For a given probability content
�, regions S� can be defined in the ✓1 � ✓2 plane with the property:

(134) p([✓1, ✓2] ⇢ S�) = �

that is regions containing the point ✓1, ✓2 with probability �. Such regions can be
obtained by intersecting the surface f(✓1, ✓2), with planes of constant � lnL at values
(compare to eq.130)

(135) � lnLmax +� lnL�

The equivalent of eq.128 for the two parameters case, is, in the gaussian limit

(136) � lnL = � lnLmax +
1

2
(✓ � ✓̂)TV �1(✓ � ✓̂)
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where we have used directly the matrix formalism (T means transposed). By comparing
eq.136 with eq.117 we see that � lnL+ lnLmax has a �

2 distribution with 2 degrees of
freedom. This allows to evaluate the values of � lnL� of eq.135. Table 2 gives the values
of � lnL� for K = 1, 2 and 3 for three di↵erent values of �. For K = 3 or more, the
graphical contour representation is not available, but regions S� can be built with the
same method.

The regions in the 2D case have in general an elliptical shape as shown in fig.14, the
inclination of the two axis being a measure of the correlation between ✓1 and ✓2.

An important point to notice is the following: the probability content � of an ellipse,
corresponds to the probability that both parameters are in the region. On the other side,
the projection of the ellipse on each single axis (e.g. on the ✓1 axis see fig.14) corresponds
to the probability that ✓1 is in the range whatever is the value of ✓2. Such probability is
of course larger than �. To give the size of this e↵ect we quote the following numbers:
an interval for ✓1 built as a projection from a 2D ellipse with �=68.3% has a probability
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Table 2. For 3 di↵erent values of probability levels (corresponding to
the usual 1,2 and 3 gaussian std.deviations) the values of � lnL� are
given for one-parameter (K=1) and two or three-parameters fits.

� (%) 2� lnL� (K=1) 2� lnL� (K=2) 2� lnL� (K=3)
68.3 1 2.30 3.53
95.4 4 6.18 8.03
99.7 9 11.83 14.16
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Figure 14. Contour plot of two correlated parameters in the gaussian
limit. The ellipse shown in yellow, is the S� region described in the text.
The horizontal and vertical bands allow to get 1-dimensional intervals for
the two variables. The probability contents of these intervals is di↵erent
from �.

content of 97%. On the other hand if the projection has a probability content of 68.3%,
the � of the corresponding ellipse is 39.3%.

Finally, non-elliptical contours are built when the gaussian limit is not reached. Ex-
amples of highly non-elliptical 2D contours are shown in fig.15.

5.6. Frequentist vs. bayesian intervals. In the previous sections, methods to ex-
tract estimators of the parameters characterized by an uncertainty from data samples
have been presented and discussed. However we have not yet defined the meaning of
the uncertainty intervals. In order to define the conceptual scheme within which these
intervals acquire a well defined meaning we have to distinguish between two alternative
approaches: the frequentist (also said classical) approach, and the bayesian approach.

Multidimensional confidence regions 135 

constructed according to (9.37) includes the true parameter by means of a Monte 
Carlo calculation. 

Quantiles of the X2 distribution Q/ = p-l (1 - ,; n) for several confidence 
levels 1 - , and n = 1,2,3,4,5 parameters are given in Table 9.4. Values of the 
confidence level are shown for various values of the quantile Q1 in Table 9.5. 

Table 9.4 The values of the confidence level 1 - r for different values of Q-y and for 
n = 1,2,3,4,5 fitted parameters. 

Q1 
1-, 

n=l n=2 n=3 n=4 n=5 
1.0 0.683 0.393 0.199 0.090 0.037 
2.0 0.843 0.632 0.428 0.264 0.151 
4.0 0.954 0.865 0.739 0.594 0.451 
9.0 0.997 0.989 0.971 0.939 0.891 

Table 9.5 The values of the quantile Q-y for different values of the confidence level 1 - r for 
n = 1,2,3,4,5 fitted parameters. 

1-, Q1 
n=l n=2 n=3 n=4 n=5 

0.683 1.00 2.30 3.53 4.72 5.89 
0.90 2.71 4.61 6.25 7.78 9.24 
0.95 3.84 5.99 7.82 9.49 11.1 
0.99 6.63 '9.21 11.3 13.3 15.1 

For n = 1 the expression (9.36) for Q1 can be shown to imply 

(9.38) 

where cI>-1 is the inverse function of the standard normal distribution. The pro-
cedure here thus reduces to that for a single parameter given in Section 9.6, 
where N = vr:r; is the half-width of the interval in standard deviations (see 
equations (9.28), (9.29)). The values for n = 1 in Tables 9.4 and 9.5 are thus 
related to those in Tables 9.1 and 9.2 by equation (9.38). 

For increasing n, the confidence level for a given Q1 decreases. For example, 
in the single-parameter case, Q/ = 1 corresponds to 1 - , = 0.683. For n = 2, 
Q/ = 1 gives a confidence level of only 0.393, and in order to obtain 1-, = 0.683 
one needs Q/ = 2.30. 

We should emphasize that, as in the single-parameter case, the confidence 
region Q(8, 6) Q1 is a random region in 8-space. The confidence region varies 
upon repetition of the experiment, since {j is a random variable. The true pa-
rameters, on the other hand, are unknown constants. 

From Cowan:
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Table 2. For 3 di↵erent values of probability levels (corresponding to
the usual 1,2 and 3 gaussian std.deviations) the values of � lnL� are
given for one-parameter (K=1) and two or three-parameters fits.
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Figure 14. Contour plot of two correlated parameters in the gaussian
limit. The ellipse shown in yellow, is the S� region described in the text.
The horizontal and vertical bands allow to get 1-dimensional intervals for
the two variables. The probability contents of these intervals is di↵erent
from �.

content of 97%. On the other hand if the projection has a probability content of 68.3%,
the � of the corresponding ellipse is 39.3%.

Finally, non-elliptical contours are built when the gaussian limit is not reached. Ex-
amples of highly non-elliptical 2D contours are shown in fig.15.

5.6. Frequentist vs. bayesian intervals. In the previous sections, methods to ex-
tract estimators of the parameters characterized by an uncertainty from data samples
have been presented and discussed. However we have not yet defined the meaning of
the uncertainty intervals. In order to define the conceptual scheme within which these
intervals acquire a well defined meaning we have to distinguish between two alternative
approaches: the frequentist (also said classical) approach, and the bayesian approach.
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where we have used directly the matrix formalism (T means transposed). By comparing
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2 distribution with 2 degrees of
freedom. This allows to evaluate the values of � lnL� of eq.135. Table 2 gives the values
of � lnL� for K = 1, 2 and 3 for three di↵erent values of �. For K = 3 or more, the
graphical contour representation is not available, but regions S� can be built with the
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The regions in the 2D case have in general an elliptical shape as shown in fig.14, the
inclination of the two axis being a measure of the correlation between ✓1 and ✓2.

An important point to notice is the following: the probability content � of an ellipse,
corresponds to the probability that both parameters are in the region. On the other side,
the projection of the ellipse on each single axis (e.g. on the ✓1 axis see fig.14) corresponds
to the probability that ✓1 is in the range whatever is the value of ✓2. Such probability is
of course larger than �. To give the size of this e↵ect we quote the following numbers:
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content of 97%. On the other hand if the projection has a probability content of 68.3%,
the � of the corresponding ellipse is 39.3%.

Finally, non-elliptical contours are built when the gaussian limit is not reached. Ex-
amples of highly non-elliptical 2D contours are shown in fig.15.

5.6. Frequentist vs. bayesian intervals. In the previous sections, methods to ex-
tract estimators of the parameters characterized by an uncertainty from data samples
have been presented and discussed. However we have not yet defined the meaning of
the uncertainty intervals. In order to define the conceptual scheme within which these
intervals acquire a well defined meaning we have to distinguish between two alternative
approaches: the frequentist (also said classical) approach, and the bayesian approach.
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Figure 15. From the ATLAS experiment. Results of the fits of 3 di↵er-
ent Higgs decay channels (namely ��, ZZ and WW ) in a 2-dimensional
plane, mass vs. signal strength. For each fit, both 68% and 95% probabil-
ity regions are shown. Notice that in all the cases apart from the ��, we
are very far from the gaussian limit. (taken from ATLAS collaboration,
Phys.Lett. B716 (2012) 1-29).

For most of the problems that are normally encountered in data analysis, the two ap-
proaches give the same practical results. However for a certain number of applications,
like the analysis of small signals, or the analysis of parameters close to the physical limit,
(some of these problems will be considered below), di↵erent results can be obtained de-
pending on the approach used.

In this section we briefly outline the two approaches putting in evidence the main
di↵erences between the two.

5.6.1. Bayesian intervals. We consider for simplicity the measurement of a physical
quantity x and a likelihood depending on a single parameter ✓, L(x/✓). x can be either
a single measurement or a set of measurement, and we call x0 the outcome of the mea-
surement. We aim to estimate ✓true with its uncertainty. The idea is to use directly the
Bayes theorem:

(137) p(✓true/x0) =
L(x0/✓true)⇡(✓true)R

d✓trueL(x0/✓true)⇡(✓true)

where ⇡(✓true) is the prior probability of ✓true. The Bayes theorem provides a pdf
of ✓true. Through the Bayes formula, the result of a measurement allows to update the
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the � of the corresponding ellipse is 39.3%.

Finally, non-elliptical contours are built when the gaussian limit is not reached. Ex-
amples of highly non-elliptical 2D contours are shown in fig.15.

5.6. Frequentist vs. bayesian intervals. In the previous sections, methods to ex-
tract estimators of the parameters characterized by an uncertainty from data samples
have been presented and discussed. However we have not yet defined the meaning of
the uncertainty intervals. In order to define the conceptual scheme within which these
intervals acquire a well defined meaning we have to distinguish between two alternative
approaches: the frequentist (also said classical) approach, and the bayesian approach.


