The Poisson counting experiment
Suppose we do a counting experiment and observe n events.

Events could be from signal process or from background —
we only count the total number.

Poisson model:

P(n|s,b) = (s +0) e~ (s19)

n!

s = mean (1.e., expected) # of signal events
b = mean # of background events
Goal 1s to make inference about s, e.g.,
test s = 0 (rejecting H, = “discovery of signal process”)
test all non-zero s (values not rejected = confidence interval)

In both cases need to ask what 1s relevant alternative hypothesis.



Poisson counting experiment: discovery p-value
Suppose b = 0.5 (known), and we observe n = 5.
Should we claim evidence for a new discovery?
Give p-value for hypothesis s = 0:
p-value = P(n>5;b=0.5,s=0)
= 1.7x107% # P(s=0)!
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Poisson counting experiment: discovery significance

Equivalent significance forp=1.7x10* Z =&"1(1 —p) = 3.6

Often claim discovery if Z>5 (p <2.9 X 1077, i.e., a “5-sigma effect”)

significance

@)
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In fact this tradition should be
revisited: p-value intended to
quantify probability of a signal-
like fluctuation assuming
background only; not intended to
cover, €.g., hidden systematics,
plausibility signal model,
compatibility of data with signal,
“look-elsewhere effect”
(~multiple testing), etc.



Significance from p-value

Often define significance Z as the number of standard deviations
that a Gaussian variable would fluctuate in one direction
to give the same p-value.
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The significance of a peak

o)
=, —— data

Suppose we measure a value

T cted back d
x for each event and find: ° eXpeictaid erckgran

Each bin (observed) 1s a 41
Poisson r.v., means are
given by dashed lines.

In the two bins with the peak, 11 entries found with b = 3.2.
The p-value for the s = 0 hypothesis 1s:

P(n>11;b=32,s=0)=5.0x 1074



The significance of a peak (2)

But... did we know where to look for the peak?

— “look-elsewhere effect™;
want probability to find peak at least as significant
as the one seen anywhere in the histogram.

How many bins X distributions have we looked at?
— look at a thousand of them, you’ll find a 103 effect
Is the observed width consistent with the expected x resolution?
— take x window several times the expected resolution
Did we adjust the cuts to ‘enhance’ the peak?

— freeze cuts, repeat analysis with new data

Should we publish????



But one should also consider the degree to which the data are
compatible with the new phenomenon, not only the level of
disagreement with the null hypothesis; p-value 1s only first step!

The primary role of the p-value is to quantify the probability
that the background-only model gives a statistical fluctuation

as big as the one seen or bigger.

It 1s not intended as a means to protect against hidden systematics
or the high standard required for a claim of an important discovery.

In the processes of establishing a discovery there comes a point
where it is clear that the observation 1s not simply a fluctuation,
but an “effect”, and the focus shifts to whether this is new physics
or a systematic.



Proposed exercise

Extract N random numbers distributed as an
exponential function with lifetime 1

Fill an histogram

Write the likelihood L(t]|t) in the binned and unbinned cases



N=100; x<-runif(N) ; x

[1] 0.405059710 0.028044254 0.758571449 0.382914253 0.231949128 0.457176317

[7] 0.736658152 0.038088207 0.104203774 0.513283288 0.742335360 0.368812945
[13] 0.898926650 0.884993284 0.029905424 0.510855547 0.976764989 0.163296696
[19] 0.312905139 0.172199152 0.789298260 0.518792378 0.076755612 0.187093519
[25] 0.613189997 0.007589616 0.476067148 0.091391122 0.254679165 0.642145047
[31] 0.068187724 0.213190998 0.284391620 0.652574104 0.375936000 0.938753973
[37] 0.768648992 0.934079373 0.576549295 0.822300084 0.963397188 0.677318145
[43] 0.804149516 0.278122875 0.918408046 0.161690666 0.816283114 0.219679127
[49] 0.247514679 0.144359027 0.238819577 0.499138632 0.801599954 0.882881265
[55] 0.817341159 0.484859340 0.865183191 0.866059658 0.375084123 0.287952191
[61] 0.832247817 0.392507337 0.292606502 0.018239798 0.980023583 0.892270450
[67] 0.843237637 0.927634800 0.204098272 0.763523759 0.545941953 0.600462520
[73] 0.078878091 0.445519178 0.375912647 0.614324038 0.194723071 0.839467755
[79] 0.265073122 0.870599505 0.696728359 0.085964346 0.004559065 0.710412472
[85] 0.824518329 0.868817609 0.730170102 0.016328960 0.087571226 0.173662371
[91] 0.367700928 0.491316323 0.085512807 0.738371863 0.977629644 0.378448315
[97] 0.194459494 0.754219429 0.376693783 0.939928670
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Likelihood is NOT a PDF

A Poisson distribution describes
a discrete event count n for
a real valued Megu.
, | e H
Pois(n|p) = pu"™ ——
n!
Say, we observe n_ events

What is the likelihood of u?
The likelihood of u is given by
L(u)= Foign,|u)

[t is a continues function
of u butitis NOT a PDF

as a function of u it is not a pdf
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Figure from R. Cousins,
Am. J. Phys. 63 398 (1995)



Testing an Hypothesis (ikipedia...)

o The first step in any hypothesis test is to state the relev-ant
null, H, and alternativ-e hypotheses, say, H,

o The next step is to define a test statistic, q, under the null
hypothesis

« Compute from the observ-ations the observ-ed v-alue q ,  of the
test statistic q.

» Decide (based on q ,_)to either
fail to reject the null hypothesis or
reject it in fav-or of an alternativ-e hypothesis

o next: How to construct a test statistic, how to decide?



Basic Definitions: type I-ll errors

o By defining ot you determine your
tolerance towards mistakes...
(accepted mistakes frequency) » Thepdfofgq..

o type-lerror: the probability to /o
reject the tested (null) hypothesi: A
(Ho) when it is true b

. o =Prob(reject H,| H,) [
o = typel error L

« Type ll: The probability to accept f \

null hypothesis when It is wrong | \
B =Prob(accept H, | H)) — ;! ]
B =typell error S 4 hhm. :

o=significance 1-B



Basic Definitions: POWER

* o =Prob(reject H,| H,)

° The POWER of an hy.POtheSiS }iOWERzProb(rejectH0|H0)
test is the probability to reject - oSt
the null hypothesis when it is indeed a
wrong foA
(the alternate analysis is true) fo

. POWER =Prob(reject H, | H,) [
B = Prob(accept H, | H,)
1- B = Prob(reject H,| H,) | \
A=t .

1— B = Prob(reject H,| H,) 3

/
o The power of a test increases as i é hhln,,
the rate of typell error decreases <o 30 10 4 30 @\ 7w w0

o=significance 1-B



Basic Definitions: POWER

o a=Prob(reject Hy| H,)

¢ The POWER of an hypothesis test is the probability to reject the
null hypothesis when the alternate analysis is true!

« POWER = Prob(reject H, | H))
B =Prob(reject H| H)=
1- B =Prob(acceptH | H) =
1- B =Prob(reject H,| H)=
POWER=1-3

e The power of a test increases as the rate of type II error decreases



p-Value

« The observ-ed p-value is a measure of the
compatibility of the data with the tested
hy.pothesis.

o It is the probability, under assumption of the null
hypothesis H,,, of finding data of equal or

greater incompatibility with the predictions of H

null

o An important property of a test statistic is that its
sampling distribution under the null hypothesis be
calculable, either exactly or approximately, which
allows p-vralues to be calculated. wu



PDF of a test statistic
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PDF of a test statistic

If p<a reject null
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PDF of a test statistic

If p<o reject null
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PDF of a test statistic

If p<a reject null
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Spin O \rs Spin 1 Hy.potheses

N events
150 Null Hypothesis H = Spin 0
Alt Hypothesis H, = Spin 1

100




The Neyman-Pearson Lemma
L(H,)
L(H,)
o When performing a hypothesis test between two
simple hypotheses, H, and H,, LH)
the Likelihood Ratio test, ) = L(Hl)

which rejects H, in fav-or of H,,

is the most powerful test
for a given significance lev-el o= prob(A<mn)
with a threshold n

o Define a test statistic A\ =




Building PDF

Build the pdf of the test statistic
L(H, |x)

Anp = qNP(‘x) =—2In

N experiments
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Building PDF

Build the pdf of the test statistic

L(H, |x)
f— X :—21n—0
Ayp = 9pp(X) LH |5
N experiments ': ::ents
100 [
80 rl T
60
40} ‘
20 ‘
. _1‘|_1° r— h;” o35 ~2Log(LONL{1)
i




Power and Luminosity

For a givren significance the power increases with increased luminosity

Luminosity ~ Total number of events in an experiment



Power and Luminosity

For a givren significance the power increases with increased luminosity

Luminosity ~ Total number of events in an experiment

N events
150

100




N experiments
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250 95% HO & = 5%
200 H] asimov
150,
100/ N per exp = 100
; power = 0.155
50"
o—— =/ L ~2Log(L(0)/L(1))



N experiments
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N experiments
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N experiments
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N experiments
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Parameter estimation: Maximum likelihood method

o\

Best estimate of parameters to fit theory to data 6,-

It is obtained maximizing the likelihood L(QT/Q) = L(Q)
We get  * (QA)

Problem of finding the maxima of a K-dimensional function

e Analytically, by doing the derivatives of the function (of the logarithm of the
function to simplify the calculations) with respect to the parameters and putting
them equal to 0.

OlnL
00,

system of M equations with M unknowns

e Numerically, in all cases. The ”hystorical” program MINUIT developed at CERN
in the ’70s is still now the most used package for this kind of problems.



Parameter estimation: Maximum likelihood method

ML estimators properties:

(1) Unbiasness: the mean of the estimator should be equal to the "true” value of

A

the parameter E[0] = Opye-
(2) Consistency: the estimator should converge to the ”true” value once the num-

A

ber of measurements increases Var[f] — 0 for N — oo.
(3) Efficiency: the estimator variance should be the minimum, any other estimator
of the same parameter should have a larger variance.



Parameter estimation: Maximum likelihood method

A A
A\

6 Is a random variable with its own pdf’s: E[@] Var[@]

Central values of the parameter estimation é + o~
and interval estimation 0
(for the moment with probability content in the frequentist approach)

In general maximizing : L (CE ‘Q)

A

We get central values : 9

A A

Vi = cov|0;, 0]

with covariance matrix :



Parameter estimation: Maximum likelihood method

A A
A\

6 Is a random variable with its own pdf’s: E[@] Var[@]

Central values of the parameter estimation é + o~
and interval estimation 0
(for the moment with probability content in the frequentist approach)

In general maximizing : L (CE ‘Q)

A

We get central values : 9

A A

Vi = cov|0;, 0]

with covariance matrix :



Parameter estimation: Cramer-Rao inequality

(K=1). The variance of an unbiassed estimator 0 obeys the following inequality:
1

B [_821nL}

Va,r[é] >

062
the denominator is also called Fisher information factor, and is usually indicated as
1(6).
(K >1). Given the ”Fisher information” matrix
0%1n L
00,04,
each term of the covariance matrix Vj;, obeys the following inequality

Vie > IT71(0) jx

The Fisher information matrix is also called Hessian matrix of the function L

The Cramer-Rao inequality states that the inverse of the Fisher information is the
minimum variance attainable for an estimator. When the inequality becomes an equality,
the estimator is said to be fully efficient.

10~ E|

I71(0),x isthe inverse of the Hessian matrix.



ML Parameter estimators:

Theorems:

o If, for a given parameter, at least a fully efficient estimators exists, such an
estimator is the ML estimator.

e For estimators based on a large number of observation N — oo, ML estimators
are fully efficient.

e In case of fully efficient estimators, it is possible to replace the mean of the second
derivative with the second derivative evaluated at the estimator central value:

> _8211’1[) B _821nL
002 | 002

A

0=0

The last two theorems are particularly important in practice. Second derivatives evalu-
ated at the central values allow to get the covariance matrix for all ML estimators with
a reasonably large number of observations. This method is extensively used to get the
covariance matrix of the parameters.



ML Parameter estimators:

1-dimensional example:

£(0)=-In L(x|0)

Taylor expansion around the minimum § — é
X df A 1 d2f 1\ 2
9 — £(d aj 0_ 6 - J 0 — 0
f(0) f()+d99:é( )+2d‘929:é( ot

The first order term vanishes, the second order coefficient (~ 1/width of the parabola),
according to ML estimators and Cramer-Rao inequality:

A 1
Varl] > -
= ’

do?

1
2
0=0 Op

_82 In L B _32 In L
002 N 062

9=0



ML Parameter estimators: profile likelihood method
(graphical method)

1-dimensional example:

- df - 1d2f A
f(0)=-In L(x|0) f(0) = f(0) + -5 Q_A(H —0)+ 57 02&(9 —0)% + ...

Profile Likelihood

2 = [
d_f i BRRTIE
2 . 2 -
ao< |,_; o X
+3SIGMA f- - -\ m e oo m o e e e e e m e fe e
n=1 -
f(0)= — In Lypae + L o
- mar-too T PO NSRS
A ?gma‘_— --------------------- ngmreeeennneeenses TR T
1 5 1(0—0)* e o s S
i S .
o !
OO_ 0|5 | i l1|5 | 2I 2|5 3
=> Detemination of | Xe-isigma | ' X 0

A FIGURE 11. Scheme of principle of a profile likelihood method. A —1In L

9 :I: na'e with parabolic shape is shown for a given variable X. Horizontal lines
are shown for —1In L4, + %nQ forn=0,1,2,3 and a + 1 ¢ is shown for
the X wvariable.



ML Parameter estimators: profile likelihood method
(graphical method)

1-dimensional example:

. 1d*f .
0—0)+——= 0 —0) + ...

Profile Likelihood

£(0)=-In L(x|0) 16) = 16)+ 2
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d_f i T 10
2 ~ 2 Z
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— — 6—
f(0)=—In Lz + 2” : n?ﬂsigma ool
A n:]_ —Lm__ """"""""""" = LTI
1, 1(6-6)? B B e AR
ol = 5T 3 2l
2 oy -
Oo_ ols | j1 | '1|5' 2I 2|5 3
=> Detemination of | Xe-isigma | ' X 0

A FIGURE 11. Scheme of principle of a profile likelihood method. A —1In L

9 :I: no'e with parabolic shape is shown for a given variable X. Horizontal lines
are shown for —1In L4, + %nQ forn=0,1,2,3 and a + 1 ¢ is shown for
the X wvariable.



ML Parameter estimators: profile likelihood method
Profile Likelihood

-inL

1-dimensional example: 0
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FIGURE 11. Scheme of principle of a profile likelihood method. A —In L
with parabolic shape is shown for a given variable X. Horizontal lines
are shown for —In L4, + %nQ forn=0,1,2,3 and a + 1 ¢ is shown for
the X variable.

é:l:nag 14

If 2"d order terms can be neglected => gaussian limit => confidence intervals with
gaussian probability content (n=1,2,3 => 68%, 95%, 99.7%)
(Notice that log of a gaussian function -> parabola)



ML Parameter estimators: profile likelihood method
1-dimensional example:

If we are not in the gaussian limit, the profile likelihood method can be used as well,
and the probability content remains to a good approximation the same of the gaussian
case. In this case, as shown in the example of fig.12, the intervals can be asymmetric
and the result will be written as

N -+
Al
—
=
- 14_—
12:—
10—
al

+3sigma oo e e

6
+2sigma p----------% i L L L LR L LR LR EEEEE L R R EEEEEEEEE

+1sigma
-In Lmax e L L L L LR T T m e m e mm e LR E TP PEEEEEP PR

2

OO

) 1 1.5 2
| X+2sigma(+)-2sigma() | X 9

FiGUrE 12. Example of a profile likelihood method when — In L has not
a parabolic shape. As in fig.11, horizontal lines are shown for — In L,,,q. +
%nz for n = 0,1,2,3. A ”2sigma” interval is shown for X clearly asym-
metric.



ML Parameter estimators: profile likelihood method

1-dimensional example:

6 T
.,__ 2 .-'
5 : — 0.02758+0.00035 § N
= 0274840 00012 f 7

4 == incl. low G° data —
e
<]

2 — ]

1 - -

0 Excluded w F’relimiﬂary-

30 100 300

m_ [GeV]

FIGURE 13. 1-dimensional x? of the Standard Model fit to get an interval
for the unknown Higgs boson mass. Notice that the horizontal axis is in
logarithmic scale, so that the minimum is strongly asymmetric. (very
"popular” plot, taken e.g. from www.zfitter.com).

If the likelihood profile
is far from the parabolic shape
=> far from the gaussian limit
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ML Parameter estimators: contour likelihood method
2-dimensional example:

5.5.4. Contour Likelihood. The Profile Likelihood method described above can be ap-
plied to the single parameter case only. However when K = 2 a graphical method is
also available providing an interesting insight into the fit result: the so called contour
likelihood method. The function —In L is, in this case, a 2D function f(61,62) that,
around the minimum él, 05 has a 2-D paraboloid shape. For a given probability content
B, regions Sg can be defined in the 61 — 62 plane with the property:

(134) p([6h,02] C Sp) =B

that is regions containing the point 61,60> with probability 5. Such regions can be
obtained by intersecting the surface f(61,62), with planes of constant —In L at values
(compare to eq.130)

(135) —1In Lypeg + Aln Lg

The equivalent of eq.128 for the two parameters case, is, in the gaussian limit

(136) —InL=—1nLmay + %(9 —OHTv1o -0

where we have used directly the matrix formalism (7" means transposed). By comparing
eq.136 with eq.117 we see that —In L + In L,,,, has a x? distribution with 2 degrees of
freedom. This allows to evaluate the values of Aln Lg of eq.135. Table 2 gives the values
of AlnLg for K =1, 2 and 3 for three different values of 3. For K = 3 or more, the
graphical contour representation is not available, but regions Sg can be built with the
same method.



ML Parameter estimators: contour likelihood method

2-dimensional example:

TABLE 2. For 3 different values of probability levels (corresponding to
the usual 1,2 and 3 gaussian std.deviations) the values of AlnLg are

given for one-parameter (K=1) and two or three-parameters fits.

B (%) [2AInLs (K=1) | 2AInLs (K=2) | 2AInLs (K=3)
68.3 1 2.30 3.53
95.4 4 6.18 8.03
99.7 9 11.83 14.16

. Table 9.4 The values of the confidence level 1 — <y for different values of and for
From Cowan n=1,2,3,4,5 fitted parameters. ! @
1—+
@ n=1 n=2 n=3 n=4 n=5
1.0 | 0.683 0.393 0.199 0.090 0.037
2.0 1 0843 0.632 0428 0.264 0.151
4.0 | 0.954 0.865 0.739 0.594 0.451
9.0 1 0.997 0.989 0.971 0.939 0.891

Table 9.5 The values of the quantile Q for different values of the confidence level 1 — « for
n=1,2,3,4,5 fitted parameters.

@y
1= n=1 n=2 n=3 n=4 n=5
0.683 | 1.00 230 3.53 472  5.89
090 | 271 461 625 778  9.24
095 | 384 599 7.82 949 111
0.99 | 6.63 921 11.3 133 15.1




ML Parameter estimators:
2-dimensional example:

The regions in the 2D case have in general an elliptical shape as shown in fig.14, the

contour likelihood method

inclination of the two axis being a measure of the correlation between #; and 6.

An important point to notice is the following: the probability content 5 of an ellipse,
corresponds to the probability that both parameters are in the region. On the other side,
the projection of the ellipse on each single axis (e.g. on the 0 axis see fig.14) corresponds
to the probability that 6 is in the range whatever is the value of 5. Such probability is
of course larger than (3. To give the size of this effect we quote the following numbers:
an interval for #; built as a projection from a 2D ellipse with 8=68.3% has a probability
content of 97%. On the other hand if the projection has a probability content of 68.3%,

the 3 of the corresponding ellipse is 39.3%.

contour

a1
I|IIII|IIII|IIII|IIII|I

o
-
N
w

4

5 6 7 8 9 10

[ 1-dimensional 0, interval I 0,

FiGURE 14. Contour plot of two correlated parameters in the gaussian
limit. The ellipse shown in yellow, is the S region described in the text.
The horizontal and vertical bands allow to get 1-dimensional intervals for
the two variables. The probability contents of these intervals is different

from S.



Finally, non-elliptical contours are built when the gaussian limit is not reached. Ex-
amples of highly non-elliptical 2D contours are shown in fig.15.
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FIGURE 15. From the ATLAS experiment. Results of the fits of 3 differ-
ent Higgs decay channels (namely v, ZZ and WW) in a 2-dimensional
plane, mass vs. signal strength. For each fit, both 68% and 95% probabil-
ity regions are shown. Notice that in all the cases apart from the v, we

are very far from the gaussian limit. (taken from ATLAS collaboration,
Phys.Lett. B716 (2012) 1-29).



