
Proposed exercise

Extract N random numbers distributed as an 
exponential function with lifetime t

Fill an histogram

Write the likelihood L(t|t) in the binned and unbinned cases



Homework n.5
1) Simulation of an experiment:

Extract N=20 random numbers distributed as an 
exponential function with lifetime t=2
Starting from N=20 random numbers uniformly distributed in [0,1].

2) Suppose that the N=20 values generated at point 1) come from 
corresponding N measurements of the lifetime of a decaying particle.

a) Write the likelihood for the N measurements L(t|t) in the unbinned case

b) Fill an histogram with 4 bins in [0,4]

Write the likelihood L(t|t) in the binned case



N=100; x<-runif(N) ; x
[1] 0.405059710 0.028044254 0.758571449 0.382914253 0.231949128 0.457176317
[7] 0.736658152 0.038088207 0.104203774 0.513283288 0.742335360 0.368812945

[13] 0.898926650 0.884993284 0.029905424 0.510855547 0.976764989 0.163296696
[19] 0.312905139 0.172199152 0.789298260 0.518792378 0.076755612 0.187093519
[25] 0.613189997 0.007589616 0.476067148 0.091391122 0.254679165 0.642145047
[31] 0.068187724 0.213190998 0.284391620 0.652574104 0.375936000 0.938753973
[37] 0.768648992 0.934079373 0.576549295 0.822300084 0.963397188 0.677318145
[43] 0.804149516 0.278122875 0.918408046 0.161690666 0.816283114 0.219679127
[49] 0.247514679 0.144359027 0.238819577 0.499138632 0.801599954 0.882881265
[55] 0.817341159 0.484859340 0.865183191 0.866059658 0.375084123 0.287952191
[61] 0.832247817 0.392507337 0.292606502 0.018239798 0.980023583 0.892270450
[67] 0.843237637 0.927634800 0.204098272 0.763523759 0.545941953 0.600462520
[73] 0.078878091 0.445519178 0.375912647 0.614324038 0.194723071 0.839467755
[79] 0.265073122 0.870599505 0.696728359 0.085964346 0.004559065 0.710412472
[85] 0.824518329 0.868817609 0.730170102 0.016328960 0.087571226 0.173662371
[91] 0.367700928 0.491316323 0.085512807 0.738371863 0.977629644 0.378448315
[97] 0.194459494 0.754219429 0.376693783 0.939928670
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6. Fit examples

In this section few simple examples of fits are presented. The aim is to show ap-
plications of the methods discussed in the previous section. All examples are solved
analytically apart from the last one, where a general case encountered in EPP experi-
ments is discussed but not solved.

6.1. Rate measurement. A number N of counting measurements have been done all
in time intervals �t, the results of the countings being ni, i=1,...,N . We are interested
in giving the best estimate of the rate with its uncertainty.

First we define the unbinned likelihood:

(145) L(n/�) =
NY

i=1

e
��

�
ni

ni!

where � is the parameter we aim to estimate. We take the logarithm and evaluate first
and second derivatives:

lnL =
NX

i=1
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By equating to 0 the first derivative we get:

(149) �̂ =

P
N

i=1 ni

N

that is the arithmetic average of the single counts, and from the second derivative we
get:

(150) V ar[�̂] =
�̂
2

P
N

i=1 ni

=
�̂

N

that is essentially the variance of a single counting measurement, divided by the number
of measurement as expected. It is clearly a consistent estimator.

The best estimate of the rate r̂ is

(151) r̂ =
�̂

�t
±

p
�̂p

N�t

6.2. Lifetime measurement. In this case a number N of particles have been produced
and N decay times ti have been measured for this particle. We want to get the best
estimate of the lifetime ⌧ of the particle with its uncertainty. We proceed as in the
previous example, by evaluating the unbinned likelihood function and then by taking
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again the average of the measurements the variance of the single measurement divided
by N .

6.3. Mean and Sigma of a guassian. A number N of measurements of a physical
quantity x have been done. The hypothesis is that all these measurements come from
a gaussian population of mean µ and variance �

2. We consider two situations: in the
first, we know the � of each measurement (possibly di↵erent among each other) and we
want to get the best estimate of µ; in the second we assume to know µ and we want to
estimate the � (assuming that all measurements have the same �). The likelihood is, in
both cases:
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the well known formulas of the weighted average and its uncertainty.

Lifetime measurement
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Estimate µ, known s
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For the second case:
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We notice here that, if in the evaluation of �̂ we use as µ the value estimated by the
data, µ̂, the estimator of � has a bias. Infact in that case the denominator requires N�1
rather than N to take into account the fact that µ̂ is determined by the same data. If,
on the other hand, µ is taken from an independent data sample or from a theory, the
estimator is unbiassed.

6.4. Slope and intercept measurement: the linear fit. N experimental points
have been taken. Each point is the measurement of a physical quantity yi, i=1,...,N for
N di↵erent values of another physical quantity xi. We make the following assumptions:

• each measurement of yi is characterized by a gaussian pdf with a known variance
�
2
i
;

• the xi values are assumed to be known with no or negligible uncertainty26;
• the yi measurements are not correlated;
• we make the hypothesis that the two physics quantities y and x are related by

(167) y = mx+ c

where m (the slope) and c (the intercept) are free parameters we want to measure
from the data.

According to these hypotheses, the likelihood of this measurements can be written as:
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by taking the negative logarithm (multiplied by 2) and neglecting all the terms not
explicitly depending on the parameters we get the well known ”least square” formula:
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that we have called �
2 since, within the hypotheses done and discussed above, it is a

test statistics with a �
2 pdf with N � 2 degrees of freedom. In this case, since we have 2

26The independent variable x of the linear fit has a negligible uncertainty when, if we call m̂ the
estimate of the slope between y and x, we have that �(xi) << �(yi)/m̂.

+



Linear fit
N measurements
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parameters, the minimization has to be done with respect to both parameters. So that
we get a linear system of 2 equations in 2 variables (m and c):

x2m+ xc = xy(170)

xm+ c = y(171)

where with the generic symbol z we mean a weighted average of any z
27:

(172) z =

P
N

i=1
zi
�
2
iP

N

i=1
1
�
2
i

Notice that in these weighted averages, the weights are always the � on the y, whatever
is z. The solutions of this system are:

m̂ =
xy � x · y
x2 � x

2
(173)

ĉ =
x2 · y � x · xy

x2 � x
2

(174)

The covariance matrix of the 2 parameters is determined evaluating first the Hessian
matrix (see eq.125), and by inverting it with the usual methods of matrix inversions.
The Fisher matrix is: 0
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where the variance of x is not the uncertainty on x but the lever arm of the fit, namely
the spread of the x values on the x axis.

The covariance matrix of the parameters gives us a complete view of the fit results.
The diagonal terms give us the uncertainties on the 2 parameters, and the o↵-diagonal
terms the covariance between the two parameters. Assuming for simplicity that all the
�i are equal we have:

�(m̂) =
�p

N

p
V ar[x]

(175)

�(ĉ) =

p
x2�p

N

p
V ar[x]

(176)

cov(m̂, ĉ) = �
p
x�p

N

p
V ar[x]

(177)

We see that the uncertainties on the parameters depend inversely on the number of
experimental points N and on the lever arm V ar[x], and directly on the uncertainty on

27Here by z we mean any of the quantity entering eq. 171, namely x, y, x2, xy. In all cases the
weights in the averages are based on the �i of the single yi.
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the single measurements. A negative correlation is expected in case the centroid of the
x values is not 0.

6.5. Generic linear fit. The case considered in the previous section can be easily
generalized to the linear fit, that is when the relation between the two physical quantities
is linear in the parameters. If we call ✓ the M parameters, a linear function in the
parameters, is any expression like:

(178) y = f(x/✓) =
MX

k=1

✓kfk(x)

where fk(x) are generic functions of x. Assuming the same hypotheses of the previous
sections on the measured quantities, the �

2 is:
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from which we get, by equating to 0 the M derivatives, the M equations:
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The linear system of equations can be written as (equation j):
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The solution of this system gives the best estimates of the M parameters:
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where the matrix Vkj is the inverse of the coe�cient matrix of the linear system
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The matrix Vkj is also the covariance matrix of the parameters. Infact the second term
of 183 is equal to the second derivative of the �

2 with respect to ✓i✓j that, based on the
Fisher recipe described above, corresponds to the covariance matrix of the parameters.

It is important to notice that these kinds of linear fits can be resolved analytically.
Typical examples of these fits are the polynomial fits that are used in several contexts.

6.6. Fit of a signal+background data sample. A typical situation encountered in
EPP is the analysis of a mass distribution like the one shown in fig. 17. A sample
of events has been selected and for each event an invariant mass has been evaluated.
The invariant mass distribution shows one or more peaks (2 in the case of the figure)
over a continuum background. The aim of the analysis is to evaluate the masses of the
particles corresponding to the peaks, and the number of events in the peaks. The latter
information can be used to extract the cross-section for the inclusive production of the
observed particles.
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the single measurements. A negative correlation is expected in case the centroid of the
x values is not 0.

6.5. Generic linear fit. The case considered in the previous section can be easily
generalized to the linear fit, that is when the relation between the two physical quantities
is linear in the parameters. If we call ✓ the M parameters, a linear function in the
parameters, is any expression like:
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The matrix Vkj is also the covariance matrix of the parameters. Infact the second term
of 183 is equal to the second derivative of the �

2 with respect to ✓i✓j that, based on the
Fisher recipe described above, corresponds to the covariance matrix of the parameters.

It is important to notice that these kinds of linear fits can be resolved analytically.
Typical examples of these fits are the polynomial fits that are used in several contexts.

6.6. Fit of a signal+background data sample. A typical situation encountered in
EPP is the analysis of a mass distribution like the one shown in fig. 17. A sample
of events has been selected and for each event an invariant mass has been evaluated.
The invariant mass distribution shows one or more peaks (2 in the case of the figure)
over a continuum background. The aim of the analysis is to evaluate the masses of the
particles corresponding to the peaks, and the number of events in the peaks. The latter
information can be used to extract the cross-section for the inclusive production of the
observed particles.
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of events has been selected and for each event an invariant mass has been evaluated.
The invariant mass distribution shows one or more peaks (2 in the case of the figure)
over a continuum background. The aim of the analysis is to evaluate the masses of the
particles corresponding to the peaks, and the number of events in the peaks. The latter
information can be used to extract the cross-section for the inclusive production of the
observed particles.
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the single measurements. A negative correlation is expected in case the centroid of the
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The matrix Vkj is also the covariance matrix of the parameters. Infact the second term
of 183 is equal to the second derivative of the �
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Fisher recipe described above, corresponds to the covariance matrix of the parameters.

It is important to notice that these kinds of linear fits can be resolved analytically.
Typical examples of these fits are the polynomial fits that are used in several contexts.

6.6. Fit of a signal+background data sample. A typical situation encountered in
EPP is the analysis of a mass distribution like the one shown in fig. 17. A sample
of events has been selected and for each event an invariant mass has been evaluated.
The invariant mass distribution shows one or more peaks (2 in the case of the figure)
over a continuum background. The aim of the analysis is to evaluate the masses of the
particles corresponding to the peaks, and the number of events in the peaks. The latter
information can be used to extract the cross-section for the inclusive production of the
observed particles.
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The matrix Vkj is also the covariance matrix of the parameters. Infact the second term
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Fisher recipe described above, corresponds to the covariance matrix of the parameters.

It is important to notice that these kinds of linear fits can be resolved analytically.
Typical examples of these fits are the polynomial fits that are used in several contexts.

6.6. Fit of a signal+background data sample. A typical situation encountered in
EPP is the analysis of a mass distribution like the one shown in fig. 17. A sample
of events has been selected and for each event an invariant mass has been evaluated.
The invariant mass distribution shows one or more peaks (2 in the case of the figure)
over a continuum background. The aim of the analysis is to evaluate the masses of the
particles corresponding to the peaks, and the number of events in the peaks. The latter
information can be used to extract the cross-section for the inclusive production of the
observed particles.



Generic linear fit

i runs on events
j,k on coefficients

54

the single measurements. A negative correlation is expected in case the centroid of the
x values is not 0.

6.5. Generic linear fit. The case considered in the previous section can be easily
generalized to the linear fit, that is when the relation between the two physical quantities
is linear in the parameters. If we call ✓ the M parameters, a linear function in the
parameters, is any expression like:
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The matrix Vkj is also the covariance matrix of the parameters. Infact the second term
of 183 is equal to the second derivative of the �

2 with respect to ✓i✓j that, based on the
Fisher recipe described above, corresponds to the covariance matrix of the parameters.

It is important to notice that these kinds of linear fits can be resolved analytically.
Typical examples of these fits are the polynomial fits that are used in several contexts.

6.6. Fit of a signal+background data sample. A typical situation encountered in
EPP is the analysis of a mass distribution like the one shown in fig. 17. A sample
of events has been selected and for each event an invariant mass has been evaluated.
The invariant mass distribution shows one or more peaks (2 in the case of the figure)
over a continuum background. The aim of the analysis is to evaluate the masses of the
particles corresponding to the peaks, and the number of events in the peaks. The latter
information can be used to extract the cross-section for the inclusive production of the
observed particles.
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6.5. Generic linear fit. The case considered in the previous section can be easily
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is linear in the parameters. If we call ✓ the M parameters, a linear function in the
parameters, is any expression like:
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The matrix Vkj is also the covariance matrix of the parameters. Infact the second term
of 183 is equal to the second derivative of the �

2 with respect to ✓i✓j that, based on the
Fisher recipe described above, corresponds to the covariance matrix of the parameters.

It is important to notice that these kinds of linear fits can be resolved analytically.
Typical examples of these fits are the polynomial fits that are used in several contexts.

6.6. Fit of a signal+background data sample. A typical situation encountered in
EPP is the analysis of a mass distribution like the one shown in fig. 17. A sample
of events has been selected and for each event an invariant mass has been evaluated.
The invariant mass distribution shows one or more peaks (2 in the case of the figure)
over a continuum background. The aim of the analysis is to evaluate the masses of the
particles corresponding to the peaks, and the number of events in the peaks. The latter
information can be used to extract the cross-section for the inclusive production of the
observed particles.
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Figure 17. Invariant mass spectrum of the combination ⇤0
b
⇡
+
⇡
� ob-

tained by the LHCb experiment at CERN. The two peaks observed are
interpreted as the discovery of 2 new excited states of the ⇤b family. The
histogram is described by a signal + background fit. (taken from LHCb
collaboration, Phys.Rev.Lett. 109 (2012) 172003)

The fit can be either an histogram fit or an unbinned fit. We see how the test statistics
can be defined in the two cases.

We define28 Ns and Nb the total number of signal and background events respectively,
fs(x/M) and fb(x/↵) the two functions of the mass x describing the signal and back-
ground respectively. fs is assumed to be gaussian with mean M and a width � assumed
to be known29:

(184) fs(x/M) =
1p
2⇡�

e
� (x�M)2

2�2

fb is assumed to be a polynomial function30, ↵ being the vector of parameters describing
the polynomial background (together with Nb). Both functions are normalized to 1. The
parameters describing the background are free parameters and have to be evaluated by
the fit or have to be known independently (e.g. from Montecarlo). However, since they

28We consider, for simplicity the case of a single signal, that is a peak over a continuum background.
29The gaussian assumption means that the particle width � is negligible with respect to the mass

resolution of the experiment. This is the case in many situations, e.g. J/ production but also in the
case of the Higgs boson.

30In general a polynomial background can be considered, in the case of the figure a linear function is
almost su�cient to describe the background. The expected distribution based on phase space kinematics
can also be used.
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have not a deep physical meaning they are called generically nuisance parameters.
On the other hand Ns and M are the parameters we are interested in.

Let’s consider first the unbinned case. The test statistics can be written as an extended
likelihood (N is the number of events entering the histogram):

(185) L(x/Ns, Nb,M,↵) =
e
�(Ns+Nb)(Ns +Nb)N

N !

NY

i=1

[Nsfs(xi/M) +Nbfb(xi/↵)]

For the histogram fit we have to define the signal and background contents si and bi

in each of the M bins of width �x:

si = Ns

Z
xi+�x/2

xi��x/2
fs(x/M)dx(186)

bi = Nb

Z
xi+�x/2

xi��x/2
fb(x/↵)dx(187)

so that:

(188) L(n/Ns, Nb,M,↵) =
MY

i=1

e
�(si+bi)(si + bi)ni

ni!

where ni is the experimental content in the bin i.
In both cases the minimization and the evaluation of the hessian matrix of this like-

lihood will be done numerically. As a result we’ll have estimates of the 2 relevant
parameters Ns and M and of the nuisance parameters. Moreover the value of L at the
minimum will be used for hypothesis test.

The possibility to move the nuisance parameters in the fit, allows to obtain a better
agreement between data and theory at the expense of having larger uncertainties on
the relevant parameters Ns and M . Any knowledge of the nuisance parameters can
be added in the likelihood as additional constraint. For example if Nb is known to be
Nb ± �(Nb) with a gaussian shape, an additional gaussian factor can be added to the
likelihood forcing Nb to stay within its gaussian limits. The lower is �(Nb) the lower will
be its impact on the final uncertainties on Ns and M . From this example we see that the
method of the nuisance parameters can be used to include the evaluation of systematic
uncertainties directly in the fit. In the following more examples will be given.
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interpreted as the discovery of 2 new excited states of the ⇤b family. The
histogram is described by a signal + background fit. (taken from LHCb
collaboration, Phys.Rev.Lett. 109 (2012) 172003)

The fit can be either an histogram fit or an unbinned fit. We see how the test statistics
can be defined in the two cases.

We define28 Ns and Nb the total number of signal and background events respectively,
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have not a deep physical meaning they are called generically nuisance parameters.
On the other hand Ns and M are the parameters we are interested in.

Let’s consider first the unbinned case. The test statistics can be written as an extended
likelihood (N is the number of events entering the histogram):

(185) L(x/Ns, Nb,M,↵) =
e
�(Ns+Nb)(Ns +Nb)N

N !

NY

i=1

[Nsfs(xi/M) +Nbfb(xi/↵)]

For the histogram fit we have to define the signal and background contents si and bi

in each of the M bins of width �x:

si = Ns

Z
xi+�x/2

xi��x/2
fs(x/M)dx(186)

bi = Nb

Z
xi+�x/2

xi��x/2
fb(x/↵)dx(187)

so that:

(188) L(n/Ns, Nb,M,↵) =
MY

i=1

e
�(si+bi)(si + bi)ni

ni!

where ni is the experimental content in the bin i.
In both cases the minimization and the evaluation of the hessian matrix of this like-

lihood will be done numerically. As a result we’ll have estimates of the 2 relevant
parameters Ns and M and of the nuisance parameters. Moreover the value of L at the
minimum will be used for hypothesis test.

The possibility to move the nuisance parameters in the fit, allows to obtain a better
agreement between data and theory at the expense of having larger uncertainties on
the relevant parameters Ns and M . Any knowledge of the nuisance parameters can
be added in the likelihood as additional constraint. For example if Nb is known to be
Nb ± �(Nb) with a gaussian shape, an additional gaussian factor can be added to the
likelihood forcing Nb to stay within its gaussian limits. The lower is �(Nb) the lower will
be its impact on the final uncertainties on Ns and M . From this example we see that the
method of the nuisance parameters can be used to include the evaluation of systematic
uncertainties directly in the fit. In the following more examples will be given.
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