Proposed exercise

Extract N random numbers distributed as an
exponential function with lifetime 1

Fill an histogram

Write the likelihood L(t]|t) in the binned and unbinned cases



Homework n.5
1) Simulation of an experiment:

Extract N=20 random numbers distributed as an

exponential function with lifetime t=2
Starting from N=20 random numbers uniformly distributed in [0,1].

2) Suppose that the N=20 values generated at point 1) come from
corresponding N measurements of the lifetime of a decaying particle.

a) Write the likelihood for the N measurements L(t|t) in the unbinned case
b) Fill an histogram with 4 bins in [0,4]

Write the likelihood L(t|t) in the binned case



N=100; x<-runif(N) ; x

[1] 0.405059710 0.028044254 0.758571449 0.382914253 0.231949128 0.457176317

[7] 0.736658152 0.038088207 0.104203774 0.513283288 0.742335360 0.368812945
[13] 0.898926650 0.884993284 0.029905424 0.510855547 0.976764989 0.163296696
[19] 0.312905139 0.172199152 0.789298260 0.518792378 0.076755612 0.187093519
[25] 0.613189997 0.007589616 0.476067148 0.091391122 0.254679165 0.642145047
[31] 0.068187724 0.213190998 0.284391620 0.652574104 0.375936000 0.938753973
[37] 0.768648992 0.934079373 0.576549295 0.822300084 0.963397188 0.677318145
[43] 0.804149516 0.278122875 0.918408046 0.161690666 0.816283114 0.219679127
[49] 0.247514679 0.144359027 0.238819577 0.499138632 0.801599954 0.882881265
[55] 0.817341159 0.484859340 0.865183191 0.866059658 0.375084123 0.287952191
[61] 0.832247817 0.392507337 0.292606502 0.018239798 0.980023583 0.892270450
[67] 0.843237637 0.927634800 0.204098272 0.763523759 0.545941953 0.600462520
[73] 0.078878091 0.445519178 0.375912647 0.614324038 0.194723071 0.839467755
[79] 0.265073122 0.870599505 0.696728359 0.085964346 0.004559065 0.710412472
[85] 0.824518329 0.868817609 0.730170102 0.016328960 0.087571226 0.173662371
[91] 0.367700928 0.491316323 0.085512807 0.738371863 0.977629644 0.378448315
[97] 0.194459494 0.754219429 0.376693783 0.939928670
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6.1. Rate measurement. A number N of counting measurements have been done all
in time intervals At, the results of the countings being n;, 1=1,...,IN. We are interested
in giving the best estimate of the rate with its uncertainty.
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Lifetime measurement




Gaussian measurement

X1...Xy Measurements

Estimate u, known o
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Gaussian measurement
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Linear fit

N measurements
e cach measurement of y; is characterized by a gaussian pdf with a known variance
o?;
e the z; values are assumed to be known with no or negligible uncertainty?>°
e the y; measurements are not correlated; (o(z:) << a(yl) /)

e we make the hypothesis that the two physics quantities y and x are related by
Yy =mx +c

where m (the slope) and ¢ (the intercept) are free parameters we want to measure
from the data.
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that we have called X% since, within the hypotheses done and discussed above, it is a
test statistics with a y? pdf with N — 2 degrees of freedom.



Linear fit

Minimizing X2
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Linear fit
The covariance matrix of the 2 parameters is determined evaluating first the Hessian
matrix (see eq.125), and by inverting it with the usual methods of matrix inversions.

The Fisher matrix is:
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and the covariance matrix is:
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where the variance of x is not the uncertainty on x but the lever arm of the fit, namely
the spread of the x values on the x axis.
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Generic linear fit
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Generic linear fit
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Analytical solution
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We define?® N, and N, the total number of signal and background events respectively,
fs(x/M) and fp(z/c) the two functions of the mass x describing the signal and back-
ground respectively. fs is assumed to be gaussian with mean M and a width o assumed
to be known?":
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fy is assumed to be a polynomial function®’, a being the vector of parameters describing

the polynomial background (together with N3). Both functions are normalized to 1. The

parameters describing the background are free parameters and have to be evaluated by

the fit or have to be known independently (e.g. from Montecarlo). However, since they

have not a deep physical meaning they are called generically nuisance parameters.
On the other hand Ng; and M are the parameters we are interested in.



Nuisance parameters

Let’s consider first the unbinned case. The test statistics can be written as an extended
likelihood (IV is the number of events entering the histogram):
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For the histogram fit we have to define the signal and background contents s; and b;
in each of the M bins of width dx:
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where n; is the experimental content in the bin 1.



Nuisance parameters

In both cases the minimization and the evaluation of the hessian matrix of this like-
lihood will be done numerically. As a result we’ll have estimates of the 2 relevant
parameters Ny, and M and of the nuisance parameters. Moreover the value of L at the
minimum will be used for hypothesis test.

The possibility to move the nuisance parameters in the fit, allows to obtain a better
agreement between data and theory at the expense of having larger uncertainties on
the relevant parameters Ng; and M. Any knowledge of the nuisance parameters can
be added in the likelihood as additional constraint. For example if NV, is known to be
Ny, &+ 0(N,) with a gaussian shape, an additional gaussian factor can be added to the
likelihood forcing Nj, to stay within its gaussian limits. The lower is o (V) the lower will
be its impact on the final uncertainties on Ng and M. From this example we see that the
method of the nuisance parameters can be used to include the evaluation of systematic
uncertainties directly in the fit.




