Proposed exercise

The values of the parameter L=6/Gg,, for the Higgs boson for the three main decay channels
measured in 2014 by ATLAS were:

firy = 1.55 £ 0.30

wzz = 1.43 +£0.37
uww = 0.99 4+ 0.29

Evaluate the compatibility among the three independent ATLAS results and calculate
the best overall estimate of u from ATLAS. Then evaluate the compatibility with the

SM expectation (u=1).
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Proposed exercise

Consider the Higgs production (Mpy =125 GeV) at a pp collider at /s = 14 TeV.
Evaluate the interval in rapidity y and the minimum value of x for direct Higgs
production.
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Bayesian vs frequentist intervals (revisited)



Bayesian intervals

: prior
posterior /

L(fo/(gtrue)ﬂ(etrue)
9 rue —
P(Otrue/ o) [ dOrue L(x0/Otrue) T (Otrue)

02
Bayesian interval / p(etme/mo)d@true — 5
6

1

The interval |01, 05] is called credible interval.



The edges 0., 0, of the Bayesian intervals are not uniquely defined

02
/ p(etrue/xO)thrue — 6
0

1

Central intervals: the pdf integral is the same above and below the interval:

01 1 —
/ p(etrue/wO)detrue — TB
1-p

+00
/ p(et'rue/mO)det'rue = A
6 2

Upper limits: 040 1s below a certain value. In this case the interval is between
0 (if # is a non-negative quantity) and 6,,:

Oup
/ p(etrue/xO)detrue — 5
0

Lower limits: Op40 1S above a certain value 0;,,,:

+00
/ p(etrue/x())detrue — 6

Hlow



Comments:

Bayes:
- Non informative prior (does it exist?)
- Recursive Bayes estimation => Bayes filter

posterior o< prior X likelihood

v

revised o< current X new likelihood

Tnt1(0) < mp(6) X Lpt1(0) = 7a(0) F(Xna1 | Xn, 0)-

In this dynamic perspective we notice that at time n we only need
to keep a representation of m, and otherwise can ignore the past.

The current , contains all information needed to revise knowledge
when confronted with new information L,.1(6).

We sometimes refer to this way of updating as recursive.



Comments:

Bayes:
- Non informative prior (does it exist?)
- Recursive Bayes estimation => Bayes filter

Applications
e Ballistics
* Robotics
— Robot localization
e Tracking hands/cars/... |
* Econometrics
— Stock prediction
* Navigation | ;';"';":’ﬁ&?ﬁﬁ"?’w‘r
WD
* Many more... - T,
© Michael Rubinstein




Frequentist intervals

Neynman construction of the confidence intervals

x2(0)
/ L(x/0)dx =
x1(0)

4.5

3.5

2.5

2

1.5

0.5

Coverage:

p(01(z0) < Otrye < 02(z0)) = B




Neyman’s construction

Pay attention, in the following B=1-a:

x, (1)

[ et wydx = 1-0

xp (W)
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Neyman’s construction

3 3
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By construction the probability to measure x,’<xj if the true value W=p1,(x,) is 0t/ 2

'~ . — .
The determined C.1. is [t(xg) 5 H;(x0) . Xy X, if the true value L=,(x,) is 0./ 2

Check the correct coverage: suppose W* is the true value. I repeat N times the measurement and

determine each time the C.I. By construction in a fraction 1- of the cases x, is within x;(l*)
and x,(W*) and the corresponding C.I. provides coverage of LL*.

P(x,()<x,<x,(u))= 1-a

In @ cases x lies outside the interval [x;(W*), x,(LU*)] and the corresponding C.I. does not cover L*.
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Neyman’s construction
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By construction the probability to measure x,’<xj if the true value W=p1,(x,) is 0t/ 2

'~ . — .
The determined C.1. is [t(xg) 5 H;(x0) . Xy X, if the true value L=,(x,) is 0./ 2

Check the correct coverage: suppose W* is the true value. I repeat N times the measurement and

determine each time the C.I. By construction in a fraction 1- of the cases x, is within x;(l*)
and x,(W*) and the corresponding C.I. provides coverage of LL*.

P(x,()<x,<x,(u))= 1-a

In @ cases x lies outside the interval [x;(W*), x,(LU*)] and the corresponding C.I. does not cover L*.
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Neyman’s construction

3 3
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By construction the probability to measure x,’<xj if the true value W=p1,(x,) is 0t/ 2

Xy X, if the true value L=,(x,) is 0./ 2

XO %o

The determined C.1. is [W,(xg) , 1(X0) ]-
Check the correct coverage: suppose W* is the true value. I repeat N times the measurement and

determine each time the C.I. By construction in a fraction 1- of the cases x, is within x;(l*)
and x,(W*) and the corresponding C.I. provides coverage of LL*.

P(x,()<x,<x,(u))= 1-a

In @ cases x lies outside the interval [x;(W*), x,(LU*)] and the corresponding C.I. does not cover L*.
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Neyman’s construction
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By construction the probability to measure x,’<xj if the true value W=p1,(x,) is 0t/ 2

'~ . — .
The determined C.1. is [t(xg) 5 H;(x0) . Xy X, if the true value L=,(x,) is 0./ 2

Check the correct coverage: suppose W* is the true value. I repeat N times the measurement and

determine each time the C.I. By construction in a fraction 1- of the cases x, is within x;(l*)
and x,(W*) and the corresponding C.I. provides coverage of LL*.

P(x,()<x,<x,(u))= 1-a

In @ cases x lies outside the interval [x;(W*), x,(LU*)] and the corresponding C.I. does not cover L*.
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Confidence Interv-al & Coverage

oYou claim, Cl,=[p,,K,] at the 95% CL

i.e. In an ensemble of experiments CL (95%) of the
obtained confidence interv-als will contain the true

Vvalue of p.

off your statement is accurate, you hav-e full
cov-erage

off the true CL is>95%, your interv-al has an ov-er
coverage

off the true CL is <95%, your interv-al has an
undercov-erage



Signal searches: upper and lower limits

(consider the simple example of counting experiment)

e Discovery: the Null Hypothesis Hy, based on the Standard Model is falsified
by a goodness-of-fit test. This means that new physics should be included to
account for the data. This is an important discovery.

e Exclusion: the Alternative Hypothesis H;, based on an extension of the Stan-
dard Model (or on a new theory at all), doesn’t pass the goodness-of-fit test. H;
is excluded by data.

Exclusion means that the search has given a negative result. However a negative result
is not a complete failure of the experiment, but it gives important informations that have
to be expressed in a quantitative way so that theorists or other experimentalists can use
them for further searches. These quantitative statements about negative results of a
search for new phenomena are normally the ”upper limits” or the ”lower limits”.

By upper limit we mean a statement like the following: such a particle, if it exists,
is produced with a rate (or cross-section) below this quantity, with a certain probability.
On the other hand, by lower limit statements like: this decay, if exists, takes place
with a lifetime larger than this quantity, with a certain probability. Both statements
concern an exclusion.



Bayes limits

eS8 gno
L(ng/s) =
(no/s) -~
Assume background b=0
If we count ny=0
L(0/s)=¢e"?

Let’s consider Bayes theorem and assume uniform prior (n=cost for s>0 and ©=0 for s<0)

p(s/0) = ff((g//j)):((z)) - =L(0/s) =€

Given a probability content a (e.g. «=95%) the upper limit s,, will be such that:

/:Op(s/())ds _1-a

up

o0
/ e ’ds=e " =1 —q«
S

up

We easily find s,,=2.3 for «=90% and s,,=3 for a=95%.




Bayes limits

Assume background b # 0 with negligible uncertainty and same prior as before

If we count ny=0
e~ (51T0) (5 4 p)m0
TLQ!

oo ,—(s+b) b\ 1o
/ ‘ (s +b) ds=1—«

no!

p(s/m0) =

up



Bayes limits

Figure 2

0 ] A ] ]
0 S 10 15 20 B

FIGURE 18. 90% limit s,;, (A in the figure) vs. b (B in the figure) for
different values of ng. These are the upper limits resulting from a bayesian
treatment with uniform prior. (taken from O.Helene, Nucl.Instr. and
Meth. 212 (1983) 319)



Poisson
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Fig. 9.9 Upper limits voP at a confidence level of 1 — 3 = 0.95 for different numbers of events
observed n,p; and as a function of the expected number of background events vy,. (a) The
classical limit. (b) The Bayesian limit based on a uniform prior density for v;.



Bayes limits

Assume background b # 0 with uncertainty described by a pdf f(b) within interval bmin, bmax

e~ (510) (5 4 p)no
TLQ!

p(s/m0) =

l Convolution with the resolution f(b)

brmax 6—(s—|—b’)(8 _I_b/)no

pls/ro) = | N v

In general the width of f(b) affects the limit, large uncertainty on b => increase of S,
The result in general depends on the prior (n(s)= cost, 1/s, 1/Vs) (not in the case ny=b=0)

F(b—b)db



Bayes limits

The General result for any ny, is the pdf
p(s/no)

If nO significantly larger than b => observation of the signal
=> transition from upper limit to central interval:

S=ng—b=x \/n0—|—02(b)

Depending on the observed value and somewhat arbitrary =>
flip-flop problem (see next)



Neyman’s construction

3 3

) ()
Mi(Xg) #ohemmaaass 5
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0 = y xe{Inf) . x;(SJp )(.

" Xi(x) X0 x,(IF)
J @l wyax= B

xy (1)

By construction the probability to measure x,’<xq if the true value p=p,(x) is (1-)/2

S . — . )
The determined C.1. is [t(xg) 5 H;(x0) . Xy >X, if the true value U=p,(x,) is (1-B)/2

Check the correct coverage: suppose W* is the true value. I repeat N times the measurement and
determine each time the C.I. By construction in a fraction 3 of the cases x is within x; (*)
and x,(W*) and the corresponding C.I. provides coverage of LL*.

P(x, (@) <x,<x,(u))=B

In 1-P cases x, lies outside the interval [x,(1*), x,(1*)] and the corresponding C.I. does not cover p*.
@ Methods in Experimental Particle Physics 5/24/20



Neyman’s construction

3 3
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20 . %o(Inf)

xp (u)
By construction the probability to measure x,’<xq if the true value p=p,(x) is (1-)/2

S . — . )
The determined C.1. is [t(xg) 5 H;(x0) . Xy >X, if the true value U=p,(x,) is (1-B)/2

Check the correct coverage: suppose W* is the true value. I repeat N times the measurement and
determine each time the C.I. By construction in a fraction 3 of the cases x is within x; (*)
and x,(W*) and the corresponding C.I. provides coverage of LL*.

P () <xg<x,()) =
@ In 1-P cases x, lies outside the interval [x,(1*), x,(1*)] and the corresponding C.I. does not cover p*.

o
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Neyman’s construction

3 3
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Ho(xo) e

% inf) xisup
X (L% X0 x *3 !
% () (LL*) (K
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By construction the probability to measure x,’<xq if the true value p=p,(x) is (1-)/2

X >X, if the true value L=L,(x,) is (1-3)/2

The determined C.1. is [W,(xg) , 1(X0) ]-
Check the correct coverage: suppose W* is the true value. I repeat N times the measurement and
determine each time the C.I. By construction in a fraction 3 of the cases x is within x; (*)

and x,(W*) and the corresponding C.I. provides coverage of LL*.

P(x, (@) <x,<x,(u))=B

In 1-P cases x, lies outside the interval [x,(1*), x,(1*)] and the corresponding C.I. does not cover p*.
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Neyman’s construction
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By construction the probability to measure x,’<xq if the true value p=p,(x) is (1-)/2

S . — . )
The determined C.1. is [t(xg) 5 H;(x0) . Xy >X, if the true value U=p,(x,) is (1-B)/2

Check the correct coverage: suppose W* is the true value. I repeat N times the measurement and
determine each time the C.I. By construction in a fraction 3 of the cases x is within x; (*)
and x,(W*) and the corresponding C.I. provides coverage of LL*.

P(x, (@) <x,<x,(u))=B

In 1-P cases x, lies outside the interval [x,(1*), x,(1*)] and the corresponding C.I. does not cover p*.
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frequentist limits

The belt is limited on one side only, and for any result of a measurement
no we identify s, in such a way that if sy.4e = sup, the probability to get a counting
smaller than ng is 1 — 8°'. By considering the Poisson statistics without background
(b=0) we get:

2 =l

n=0

If ng = 0 we have
e v =1-0
1
1-p

from which we get the same numbers for s,, obtained in the bayesian case.

Sup = In



frequentist limits

By construction the probability to measure n,’ <ny if the true value s=s,(n) is (1 -B) (only one limit)

or the probability to measure ny’> ny if the true value s=s,,(n) is B

4.5

3.5

o
ARNRARLNRRRRNRRLY

2.5

1.5

0.5

o

u IIIiIIIIiIIIIiIIIIiIIIIiIIEIiIIIIiIIIIiIIIIiIIII

0o 05 1 15 2 25 3 35 4 45 5
n, n

FIGURE 19. Neyman construction for the case of an upper limit. In
this case a segment between n1(#) and oo is drawn for each value of the
parameter . The segments define the confidence region. Once a value
of n, ng is obtained, the upper limit s,, is found. (For simplicity the
discrete variable n is considered as a real number here).



frequentist limits

If b is not equal to 0 but is known,

201 E up —1—
(201) ~ n! b

and from this equation upper limits can be evaluated for the different situations.

It has been pointed out that the use of eq.201 gives rise to some problems. In particular
negative values of s,, can be obtained using directly the formula®?. This doesn’t happen
in the bayesian context where the condition s > 0 is put directly by using the proper
prior.

32A rate is a positive-definite quantity. However, if a rate is 0 or very small with respect to the
experimental sensitivity, the probability that ng is larger than b is exactly equal to the probability that
no is lower than b. This implies that a negative rate naturally comes out from an experimental analysis
based on a difference between two counts. The acceptance of such results is a sort of ”philosophical”
question and is controversial.
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Fig. 9.9 Upper limits voP at a confidence level of 1 — 3 = 0.95 for different numbers of events
observed n,p; and as a function of the expected number of background events vy,. (a) The
classical limit. (b) The Bayesian limit based on a uniform prior density for v;.



Poisson
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Fig. 9.9 Upper limits voP at a confidence level of 1 — 3 = 0.95 for different numbers of events
observed n,p; and as a function of the expected number of background events vy,. (a) The
classical limit. (b) The Bayesian limit based on a uniform prior density for v;.

What if vb=4 and 0 events observed?



Flip-flop problem

Another general problem affecting both bayesian and frequentist approach is the so
called flip-flop problem. When ng is larger than b, at a given point the experimentalist
decides to present the result as a number 4 an uncertainty rather than an upper limit.

Such a decision is somehow arbitrary. A method to avoid this problem is the so called
unified approach due to Feldman and Cousins, developed in the frequentist context.

(see next)



Example of discrepancy between frequentist and Bayesian approaches. (data available in “90s)

Results from fits; __9 5
PDG weighted average: m- = —5b4 + 30 eV

How can this result be converted into an upper limit for the neutrino mass?



Example of discrepancy between frequentist and Bayesian approaches. (data available in “90s)

Results from fits; __9 5
PDG weighted average: m- = —5b4 + 30 eV

How can this result be converted into an upper limit for the neutrino mass?
In the frequentist approach, Neyman’s construction

At97.5% CL => m2 < 4.6 eV?2

Neutrino mass square - Frequentist

[f(m?)

0.012—

0.01:
0.008:
0.006:
0.004:

0.002

0
-200



Example of discrepancy between frequentist and Bayesian approaches. (data available in “90s)

Results from fits; __9 5
PDG weighted average: m- = —5b4 + 30 eV

How can this result be converted into an upper limit for the neutrino mass?
In the frequentist approach, Neyman’s construction

At97.5% CL => m2 < 4.6 eV?2

Neutrino mass square - Frequentist

At 90% CL => m?2 < —16 eV? ?7? f(m?)

0.012—

0.01:
0.008:
0.006:
0.004:

0.002

0
-200



Example of discrepancy between frequentist and Bayesian approaches. (data available in “90s)

Results from fits; __9 5
PDG weighted average: m- = —5b4 + 30 eV

How can this result be converted into an upper limit for the neutrino mass?

In the Bayesian approach, using a prior forcing m,? to be positive
(m=cost for m?>>0 and ©=0 for m,?<0)

Neutrino mass square - Bayesian

2 /2 L(m?/ m% )7 (my) “Fewma
plo i) =

0.06
0.05

At95% CL => m? < 34 eV? 0_04;_

At90% CL=>  mj < 27 eV?

0.02

0.01




Example of discrepancy between frequentist and Bayesian approaches. (data available in “90s)

0.012

0.01

0.008|

0.006

0.004

m? < 4.6 eV?*"}

0 = |
-200 -150

Neutrino mass square - Frequentist

[f(m?)

-100

N

-50

0

50

100

0.08

0.071

0.06

0.05

0.04

0.03

0.02

0.01F

Neutrino mass square - Bayesian

- p(m)

(=)
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2
m;

100

m7 < 34 eV?

F1GURE 21. Example of the square neutrino mass. Construction of the
upper limit in the frequentist approach (left plot) and in the bayesian
approach (right plot). (left) The red gaussian is the experimental like-
lihood, the blue gaussian corresponds to the 95% CL upper limit that
leaves 5% of possible the experiment outcomes below the present experi-
mental average. (right) The blue curve is the result of the Bayes theorem
when a prior forcing to positive values is applied (eq.202).



The frequentist unified approach

(Feldman and Cousins PRD 57 3873 (1998) )

« Scan an unknown
parameter 0 over its range

« Given 0, compute the
interval [x,, x,] that contain x
with a probaéility CL=1-a

* Ordering rule is needed!

— Central interval? Asymmetric?
Other?

« Invert the confidence belt,
and find the interval [0, 6, ]
for a given experimental
outcome of x

« Afraction 1-a of the
experiments will produce x
such that the corresponding
interval
[0,, 6,] contains the true
value of u (coverage
probability)

 Note that the random
variables are [0, 0,], not 0

parameter 0

— %0y %(0)

Possible experimental values x

From PDG statistics review

RooStats: :NeymanConstruction




The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )
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FIG. 1. A generic confidence belt construction and its use. For
each value of u, one draws a horizontal acceptance interval [ x; ,x, ]
such that P(x €[x; ,x,]|s)= a. Upon performing an experiment to
measure x and obtaining the value x,, one draws the dashed verti-
cal line through x,. The confidence interval [ u,,u,] is the union
of all values of u for which the corresponding acceptance interval is
intercepted by the vertical line.

P(xel[x;.x]|u)=a.

P(xe[x;.x]|p)=a. (2.4)

Such intervals are drawn as horizontal line segments in Fig.
1, at representative values of u. We refer to the interval
[x;.,x,] as the ‘‘acceptance region’’ or the ‘‘acceptance in-
terval’’ for that u. In order to specify uniquely the accep-
tance region, one must choose auxiliary criteria. One has
total freedom to make this choice, if the choice is not influ-
enced by the data x,. The most common choices are

P(x<x|p)=1-«, (2.5)

which leads to “‘upper confidence limits’’ (which satisfy
P(u>u,)=1—a), and

P(x<x;|u)=P(x>x;)|pu)=(1-a)/2, (2.6)

which leads to “‘central confidence intervals’’ [which satisfy
P(u<wm)=P(u>pmy)=(1—a)/2]. For these choices, the



The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

Ordering rule INFN

» For a fixed 6 = 0, we can have different
possible choices of intervals giving the same
probability 1-a are possible

A A

f(x(8) J(x18)

ol 1-o

Upper limit choice X Central interval X



The frequentist unified approach

(Feldman and Cousins PRD 57 3873 (1998) )
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Measured Mean x

Measured Mean x

FIG. 3. Standard confidence belt for 90% C.L. central confi-
dence intervals for the mean of a Gaussian, in units of the rms
deviation.

FIG. 2. Standard confidence belt for 90% C.L. upper limits for
the mean of a Gaussian, in units of the rms deviation. The second
line in the belt is at x= + .



The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

2 N /T 4
R L e 90%
A N T A "
5% 5%
90% ;
10% < > X
R w=x=x1.645
X
w<x+1.282
X o=1

Fig. 7.6 Illustration of the flip-flopping problem. The plot shows the quoted central value of u as
a function of the measured x (dashed line), and the 90% confidence interval corresponding to the
choice of quoting a central interval for x/oc > 3 and an upper limit for x/o0 < 3. The coverage
decreases from 90 to 85% for a value of pu corresponding to the horizontal lines with arrows



The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

In order to avoid the flip-flopping problem and to ensure the correct coverage, the
ordering rule proposed by Feldman and Cousins [3] provides a Neyman confidence
belt, following the procedure described in Sect. 7.2, that smoothly changes from a
central or quasi-central interval to an upper limit, in the case of low observed signal
yield.

The proposed ordering rule is based on a likelihood ratio whose properties will
be further discussed in Sect. 9.5. Given a value 6, of the unknown parameter 6, the
chosen interval of the variable x used for the Neyman belt construction is defined
by the ratio of two PDFs of x, one under the hypothesis that 6 is equal to the
considered fixed value 6y, the other under the hypothesis that 6 is equal to the

maximum likelihood estimate value é(x), corresponding to the given measurement



The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

The likelihood ratio must be greater than a constant k, whose value depends on
the chosen confidence level 1 — «. In a formula:

flx |A90)
fx]0(x))

The constant k, should be taken such that the integral of the PDF in the confidence
interval R, 1s equal to 1 — «:

Ax ]| 6p) = > ky . (7.11)

/f(xl%)dx=1—oz. (7.12)
Ry

The confidence interval R,, for a given value 6 = 0, is defined by Eq. (7.11):

Ry(60) = fx: A(x|60) > ky} . (7.13)



The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

Fig. 7.7 Ordering rule in the A A
Feldman—Cousins approach, J(x[6)) S (x[6o)

based on the likelihood ratio f(x|é(x))
Ax|6o) =f(x|60)/f(x]|6(x))




The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

Two examples

1) Gaussian errors with a bounded physical region
2) Poisson processes with background

In contrast with the usual classical construction for upper limits,
the unified construction “naturally” avoids the flip-flop problem
and unphysical confidence intervals



The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

P(xe[x;.x]lpn)=a.

Rank x in the acceptance interval [x4,%,] by the ratio

P(x|p) ut

P(x| /'Lbest) symmetric errors

R(x)=

where . is the physically allowed
value of u for which P(x| ) is maximum.

asymmetric errors

upper limit

- >
X

Fig. 7.8 Neyman confidence belt constructed using the Feldman—Cousins ordering



Flip-flop problem: the frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

TABLE X. Our confidence intervals for the mean u of a Gaussian, constrained to be non-negative, as a function of the measured mean
Xg , for commonly used confidence levels. Italicized intervals correspond to cases where the goodness-of-fit probability (Sec. IV C) is less

6 TTTT

W&
VA
RN A
jERVany
£ //;

-2 -1 0 1 2 3
Measured Mean x

FIG. 10. Plot of our 90% confidence intervals for the mean of a
Gaussian, constrained to be non-negative, described in the text.

than 1%. All numbers are in units of o.

X 68.27% C.L. 90% C.L. 95% C.L. 99% C.L. Xo 68.27% C.L. 90% C.L. 95% C.L. 99% C.L.
—-30 000,004 000,026 0.00, 042 0.00, 08 0.1 0.00,1.10 0.00,1.74 0.00,2.06 0.00, 2.68
—29 000,004 000,027 0.00, 044 0.00,0.82 0.2 000,120 0.00,1.84 0.00,2.16 0.00,2.78
—28 000,004 000,028 0.00, 045 0.00,084 03 0.00,130 0.00,194 0.00,226 0.00,2.88
—27 000,004 000,029 000, 047 0.00, 087 04 0.00,140 0.00,2.04 0.00,236 0.00,2.98
—2.6 000,005 000,030 0.00, 048 0.00,089 05 002,150 0.00,2.14 0.00,246 0.00,3.08
—25 000,005 0.00, 032 0.00 050 0.00, 092 0.6 007,160 0.00,2.24 0.00,256 0.00,3.18
—-24 000,005 0.00, 033 000,052 000,095 07 0.11,1.70  0.00,2.34 0.00,2.66 0.00,3.28
—23 000,005 000,034 0.00,054 000,09 08 0.15,180 0.00,244 0.00,2.76 0.00, 3.38
—22 000,006 000,036 0.00,056 000,102 09 0.19,190 0.00,2.54 0.00,2.86 0.00,3.48
—2.1 0.00,006 000,038 0.00,0.59 0.00,1.06 1.0 0.24,200 0.00,2.64 0.00,296 0.00,3.58
—2.0 0.00,007 000,040 0.00,062 0.00,1.10 1.1 0.30,2.10 0.00,2.74 0.00,3.06 0.0, 3.68
—-19 0.00,008 000,043 0.00,065 0.00,1.14 1.2 035,220 0.00,2.84 0.00,3.16 0.00,3.78
—-18 0.00,009 000,045 0.00,0.68 0.00,1.19 1.3 042,230 002,294 0.00,326 0.00,3.88
—-17 0.00,010 0.00,048 0.00,0.72 0.00, 1.24 14 049,240 0.12,304 0.00,3.36 0.00, 398
—-16 0.00,0.11 000,052 0.00,076 0.00,1.29 1.5 056,250 0.22,3.14 0.00,346 0.00, 4.08
—-15 0.00,0.13 000,056 0.00,0.81 0.00, 135 1.6 0.64,2.60 031,324 0.00,356 0.00,4.18
—14 0.00,0.15 0.00,0.60 0.00,0.86 0.00,1.41 1.7 072,270 038,334 0.06,3.66 0.00, 4.28
—13 0.00,0.17 000,064 0.00,091 0.00, 147 1.8 081,280 045,344 0.16,3.76 0.00, 4.38
—-12 0.00,020 0.00,0.70 0.00,0.97 0.00, 1.54 1.9 090,290 051,354 026,386 0.00,4.48
—-11 0.00,023 000,075 0.00,104 0.00,1.61 20 1.00,3.00 058,364 035,396 0.00,4.58
—-10 0.00,027 000,081 0.00,1.10 0.00,1.68 2.1 1.10,3.10 0.65,3.74 045,406 0.00,4.68
—-09 000,032 000,088 0.00,1.17 0.00,1.76 22 120,320 072,384 0.53,4.16 0.00,4.78
—08 0.00,037 000,095 0.00,125 0.00,1.84 23 130,330 0.79,394 0.61,426 0.00,4.88
—0.7 0.00,043 000,102 0.00,133 0.00,193 24 140,340 087,404 0.69,436 0.07,4.98
—06 000,049 0.00,1.10 0.00,141 0.00,201 25 1.50,3.50 095,4.14 076,446 0.17,5.08
—-05 0.00,056 000,1.18 0.00,149 0.00,2.10 2.6 1.60,3.60 102,424 084,456 027,5.18
—04 0.00,064 0.00,127 0.00,1.58 0.00,2.19 27 170,370 1.11,434 091,466 037,528
—-03 000,072 000,136 0.00,1.67 0.00,2.28 2.8 1.80,3.80 1.19,444 099,476 047,538
—02 000,081 000,145 0.00,1.77 0.00,2.38 29 190,390 128,454 106,486 057,548
—0.1 0.00,090 000,155 0.00,1.86 0.00,248 30 200,400 137,464 1.14,496 0.67,5.58
00 000,100 000,164 0.00,196 0.00,2.58 3.1 2.10,4.10 146,474 122,506 0.77,5.68




The frequentist unified approach

In case of a Poisson variable ng (Feldman and Cousins PRD 57 3873 (1998) )

in presence of background

“standard” confidence belt

b=3 case
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In case of a Poisson variable n,
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The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )
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In case of a Poisson variable n,
in presence of background

Feldman Cousins approach
(ordering criteria) for confidence belt

b=3 case

Let the known mean background be »=3.0, and consider
the construction of the horizontal acceptance interval at sig-
nal mean u=0.5. Then P(n|w) is given by Eq. (3.2), and is
given in the second column of Table I.

Now consider, for example, n =0. For the assumed »=3.,
the probability of obtaining 0 events is 0.03 if x=0.5, which
is quite low on an absolute scale. However, it is not so low
when compared to the probability (0.05) of obtaining O
events with »=3.0 and w=0.0, which is the alternate hy-
pothesis with the greatest likelihood. A ratio of likelihoods,
in this case 0.03/0.05, is what we use as our ordering prin-
ciple when selecting those values of n to place in the accep-
tance interval.

That is, for each n, we let u. be that value of the mean
signal w which maximizes P(n|u); we require e to be
physically allowed, i.e., non-negative in this case. Then
Mpest—=max(0,n—>b), and is given in the third column of
Table 1. We then compute P(7|@yey), Which is given in the
fourth column. The fifth column contains the ratio

R:P(nlluv)/P(nllU“best)’ 4.1)

and is the quantity on which our ordering principle is based.
R is a ratio of two likelihoods: the likelihood of obtaining n
given the actual mean u, and the likelihood of obtaining n
given the best-fit physically allowed mean. Values of n are
added to the acceptance region for a given w in decreasing
order of R, until the sum of P(n|,u) meets or exceeds the
desired C.L. This ordering, for values of n necessary to ob-
tain total probability of 90%, is shown in the column labeled
“‘rank.”” Thus, the acceptance region for ©=0.5 (analogous

The frequentist unified approach
(Feldman and Cousins PRD 57 3873 (1998) )

to a horizontal line segment in Fig. 1) is the interval
n=[0,6]. Because of the discreteness of n, the acceptance
region contains a summed probability greater than 90%; this
is unavoidable no matter what the ordering principle, and
leads to confidence intervals which are conservative.

For comparison, in the column of Table I labeled ‘‘U.L.,”
we place check marks at the values of n which are in the
acceptance region of standard 90% C.L. upper limits for this
example, and in the column labeled ‘‘central,”” we place
check marks at the values of n which are in the acceptance
region of standard 90% C.L central confidence intervals.

The construction proceeds by finding the acceptance re-
gion for all values of u, for the given value of . With a
computer, we perform the construction on a grid of discrete
values of w, in the interval [0, 50] in steps of 0.005. This
suffices for the precision desired (0.01) in the end points of
confidence intervals. We find that a mild pathology arises as
a result of the fact that the observable n is discrete. When the
vertical dashed line is drawn at some n (in analogy with in
Fig. 1), it can happen that the set of intersected horizontal
line segments is not simply connected. When this occurs we
naturally take the confidence interval to have w; correspond-
ing to the bottommost segment intersected, and to have w,
corresponding to the topmost segment intersected.

We then repeat the construction for a selection of fixed
values of b. We find an additional mild pathology, again
caused by the discreteness in n: when we compare the results
for different values of b for fixed ng, the upper end point u,
is not always a decreasing function of b, as would be ex-
pected. When this happens, we force the function to be non-
increasing, by lengthening selected confidence intervals as
necessary. We have investigated this behavior, and compen-
sated for it, over a fine grid of b in the range [0, 25] in
increments of 0.001 (with some additional searching to even
finer precision).

Our compensation for the two pathologies mentioned in
the previous paragraphs adds slightly to our intervals’ con-
servatism, which however remains dominated by the un-
avoidable effects due to the discreteness in n.



The frequentist unified approach

In case of a Poisson variable ng (Feldman and Cousins PRD 57 3873 (1998) )

in presence of background

Feldman Cousins approach
(ordering criteria) for confidence belt
b=3 case

15
TABLE 1. Illustrative calculations in the confidence belt con- 14
struction for signal mean u in the presence of known mean back- 13 -
ground b=3.0. Here we find the acceptance interval for ©=0.5. 12 —
11
n o Pnlu) Mpes P(n|ppe) R rank UL. central =10
0 0.030 00 0.050 0.607 6 % Z |
1 0.106 00 0.149 0.708 5 \/ \/ E 7
2 0.185 0.0 0.224 0.826 3 \/ \/ gﬂ 6 —]
3 0216 0.0 0.224 0.963 2 \/ \/ B 5 [ -
4 0.189 1.0 0.195 0.966 1 \/ \/ 4 - —
5 0132 20 0.175 0753 4 \/ \/ 3
6 0077 30 0.161 0480 7 \/ \/ 2 - -
7 0.039 40 0.149 0.259 \/ \/ 1
§ 001750 0140 0121 N O 01 2345678 9101112131415
9 0.007 6.0 0.132 0.050 \/ Measured n
10 0.002 7.0 0.125 0018 \/ FIG. 7. Confid belt based deri nciole. f
. 7. Confidence belt based on our ordering principle, for
11 0.001 8.0 0.119 0.006 . . .
\/ 90% C.L. confidence intervals for unknown Poisson signal mean u

in the presence of a Poisson background with known mean b=3.0.
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In case of a Poisson variable ng (Feldman and Cousins PRD 57 3873 (1998) )

in presence of background
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FIG. 8. Upper end w, of our 90% C.L. confidence intervals
[ ,m,], for unknown Poisson signal mean w in the presence of an
expected Poisson background with known mean 5. The curves for
the cases n from O through 10 are plotted. Dotted portions on the
upper left indicate regions where w, is non-zero (and shown in the
following figure). Dashed portions in the lower right indicate re-
gions where the probability of obtaining the number of events ob-
served or fewer is less than 1%, even if u=0.



The frequentist unified approach

In case of a Poisson variable ng (Feldman and Cousins PRD 57 3873 (1998) )

in presence of background

classical v,ur (1-B=0.95)
Bayesian vue (1-$=0.95)

Fig. 9.9 Upper limits v, ¥ at a confidence level of 1 — 8 = 0.95 for different numbers of events
observed nops and as a function of the expected number of background events vy,. (a) The
classical limit. (b) The Bayesian limit based on a uniform prior density for v;.
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in presence of background
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FIG. 8. Upper end u, of our 90% C.L. confidence intervals
[ g ,m,], for unknown Poisson signal mean w in the presence of an
expected Poisson background with known mean . The curves for
the cases n, from 0 through 10 are plotted. Dotted portions on the
upper left indicate regions where w, is non-zero (and shown in the
following figure). Dashed portions in the lower right indicate re-
gions where the probability of obtaining the number of events ob-
served or fewer is less than 1%, even if ©=0.
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FIG. 9. Lower end u; of our 90% C.L. confidence intervals
[ ,m7], for unknown Poisson signal mean u in the presence of an
expected Poisson background with known mean b. The curves cor-
respond to the dotted regions in the plots of w, of the previous
figure, with again ny= 10 for the upper right curve, etc.



In case of a Poisson variable n,
in presence of background

The frequentist unified approach

(Feldman and Cousins PRD 57 3873 (1998) )

TABLE IV. 90% C.L. intervals for the Poisson signal mean wu, for total events observed n( , for known mean background b ranging from

0to 5.

no\b 0.0 05 1.0 1.5 2.0 2.5 30 35 4.0 50
0 000,244 000,194 000,161 000,133 000,126 0.00, 1.18 0.00, 1.08 0.00, 1.06 0.00, 1.01 0.00, 0.98
1 0.11, 436 0.00, 3.86 0.00, 3.36 0.00, 291 0.00, 253 0.00, 2.19 0.00, 1.88 0.00, 1.59 0.00, 1.39 0.00, 1.22
2 053,591 003,541 0.00,491 0.00,441 000,391 0.00, 345 0.00,3.04 0.00, 267 0.00, 2.33 0.00, 1.73
3 1.10, 742 0.60, 692 0.10, 642 0.00, 592 0.00, 542 0.00, 492 0.00, 442 0.00, 395 0.00, 3.53 0.00, 2.78
4 147, 860 1.17, 8.10 0.74, 7.60 0.24, 7.10 0.00, 6.60 0.00, 6.10 0.00, 560 0.00, 5.10 0.00, 4.60 0.00, 3.60
5 1.84,999 153,949 125,899 093,849 043,799 0.00, 749 0.00, 699 0.00, 649 0.00, 599 0.00, 4.99
6 221,1147 190,1097 1.61,1047 133,997 1.08, 947 0.65, 897 0.15, 847 0.00, 797 0.00, 747 0.00, 6.47
7 3.56,12.53 3.06,1203 2.56,11.53 2.09,11.03 1.59,10.53 1.18,10.03 0.89, 953 0.39, 9.03 0.00, 8.53 0.00, 7.53
8 396,1399 346,1349 2.96,1299 251,1249 2.14,1199 181,1149 1.51,1099 1.06,1049 0.66, 999 0.00, 8.99
9 436,1530 3.86,1480 3.36,14.30 291,13.80 2.53,13.30 2.19,12.80 1.88,12.30 1.59,11.80 1.33,11.30 0.43,10.30
10 5.50,16.50 5.00,16.00 4.50,1550 4.00,1500 3.50,14.50 3.04,1400 2.63,13.50 2.27,13.00 1.94,12.50 1.19,11.50
11 591,17.81 541,17.31 491,1681 441,16.31 391,1581 345,1531 3.04,1481 2.67,14.31 2.33,13.81 1.73,12.81
12 7.01,19.00 6.51,1850 6.01,18.00 5.51,17.50 5.01,17.00 4.51,16.50 4.01,16.00 3.54,15.50 3.12,15.00 2.38,14.00
13 7422005 692,19.55 642,19.05 592,18.55 542,1805 492,17.55 442,1705 3.95,16.55 3.53,16.05 2.78,15.05
14 8.50,21.50 8.00,21.00 7.50,20.50 7.00,20.00 6.50,19.50 6.00,19.00 5.50,18.50 5.00,18.00 4.50,17.50 3.59,16.50
15 0482252 8982202 8482152 7982102 7482052 6982002 648,1952 598,19.02 548,18.52 4.48,17.52
16 9992399 9492349 8992299 8492249 7992199 7492149 6992099 6492049 599,1999 4.99,18.99
17 11.0425.02 10.54,24.52 10.0424.02 9542352 9042302 8542252 8042202 7542152 7.0421.02 6.04,20.02
18 11.4726.16 1097,25.66 104725.16 99724.66 94724.16 89723.66 84723.16 7.9722.66 74722.16 64721.16
19 12512751 12012701 11512651 11.01,2601 10.51,25.51 10.01,2501 95122451 9.01,2401 8.51,23.51 7.51,22.51
20 13552852 13.0528.02 12.5527.52 12.0527.02 11552652 11.0526.02 10.55,25.52 10.05,25.02 9.5524.52 8.55,23.52




The frequentist unified approach

In case of a Poisson variable n
0 (Feldman and Cousins PRD 57 3873 (1998) )

in presence of background
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Homework n.6

The squared energy and momentum of a particle are independently measured:

E2=1010+ 17 eV?
P2 =1064 + 25 eV?

Put an upper limit on the squared mass

m?2 = E2- P?

of the particle using:

- The classical frequentist approach

- The unified approach (Feldman Cousins) with the mean of the Gaussian
constrained to be non-negative
(see Feldman and Cousins Phys.Rev.D 57 3873 (1998) )

- The Bayesian approach (briefly comment the choice of the prior)



