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5. The most updated values of the parameter µ = �/�SM for the Higgs boson from
ATLAS for the three main decay channels (in 2014) were:

µ�� = 1.55± 0.30

µZZ = 1.43± 0.37

µWW = 0.99± 0.29

Evaluate the compatibility among the three independent ATLAS results and calculate
the best overall estimate of µ from ATLAS. Then evaluate the compatibility with the
SM expectation (µ=1).

6. In the 2011+2012 LHC dataset (corresponding to about 25 fb�1), a sample of 2.24⇥105

tt events has been collected. We know that �(pp ! tt+X) is 177 ± 5 pb. How large
was the e�ciency for tt events assuming no background ?

7. We perform a cross-section measurement and obtain the following values: Ncand

=128, Nb = 14 ± 2, ✏ = 0.523 ± 0.002, Lint = 2.43 pb�1 ± 1.8 %: calculate the
resulting cross-section with its uncertainty. In case this is a measurement of e+e� !
⇡+⇡� at

p
s = 1 GeV, determine the value of the pion time-like form factor with its

uncertainty. The formula relating the cross-section to the form factor F⇡(s) is the
following:

�(s) =
⇡↵2

3s
�3
⇡|F⇡(s)|2

8. The Higgs boson production at a linear collider happens mainly through the reac-
tion e+e� ! ZH. If MH = 125 GeV, and the cross-section �(e+e� ! ZH,

p
s =

300GeV)= 220 fb, which value of luminosity do we need to get O(106) events in 1
year of data taking ? How many final states with two muons and two photons from
the Z ! µ+µ� and H ! �� simultaneous decays do we get in the same period ?
Evaluate the maximum and minimum photon energies from the Higgs.

9. Consider the reaction e+e� ! K+K� at a �-factory. Which fraction of events have
at least one kaon decaying within a sphere of R = 20 cm ? In which fraction of events
both kaons decay within the same sphere ?

10. The SM expected semi-leptonicKS charge asymmetry is 3⇥10�3. At Dafne we expect
to produce a sample of 1.2⇥109 tagged KSs. If the BR(KS ! ⇡e⌫)=BR(KS !
⇡+e�⌫)+BR(KS ! ⇡�e+⌫)=6.95⇥10�4 which error can we reach on the asymmetry
?

11. Which average instantaneous luminosity is required to improve by a factor 3 such an
uncertainty in one year of data taking (assuming a duty cicle of 50% and a tagging
e�ciency of 30%) ? [�(e+e� ! �)= 5 µb at the � peak].
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The values of the parameter µ=s/sSM for the Higgs boson for the three main decay channels
measured in 2014 by ATLAS were:

Proposed exercise
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Proposed exercise

19. Consider the Higgs production (MH =125 GeV) at a pp collider at
p
s = 14 TeV.

Evaluate the interval in rapidity y and the minimum value of x for direct Higgs
production.

20. The VLHC program (Very Large Hadron Collider) proposes proton-proton collisions
at a center of mass energy between 40 and 50 TeV and a luminosity larger than
1035cm�2s�1, in a ring with a radius of 17.5 km. The project requires a time between
bunch crossings not smaller than 25 ns (as it is for LHC). How many bunches can be
put ? If we know that the total proton-proton cross-section at this energy is about 100
mb, evaluate the average value of the pile-up. Finally evaluate the minimum value
of x and the maximum value of y for the production of an Higgs boson (MH=125
GeV) and of a second exotic Higgs boson having a mass of 5 TeV.

21. Estimate the space resolution needed to discriminate the charge of 1 TeV muons with
3 detector layers in a B=1 T magnetic field with an overall lever arm of 5 m.

22. Estimate the time resolution needed to discriminate between muons and electrons of
the same momentum, 500 MeV/c with two detectors at a distance of 3 m.

23. Define the thickness (in cm) of a lead absorber for:

• E=10 GeV photons

• E=10 GeV muons

• E=10 GeV protons

24. Estimate the mass resolution required to observe a signal of J/ production if the
number of expected candidates is S=54 and the background per unit of mass is b =
13 MeV�1.

25. A high intensity pulsed proton beam is directed onto a target. Downstream the
target a magnet system sweeps away all the charged particles so that only neutral
particles reach the experimental region, namely photons and neutrons in the kinetic
energy range between 5 and 100 MeV. The detector is located 5 m from the target
and measures the Time of Flight of photons and neutrons. Draw schematically the
arrival time distribution of all the particles. If the repetition rate of the proton beam
is 10 MHz, determine the kinetic energy of the neutrons that can be confused with
the photons.

26. We study antiproton annihilations at rest in an hydrogen target and we want to dis-
criminate the two processes pp ! ⇡+⇡� and pp ! K+K� . Calculate the momenta
of the pions and of the kaons and estimate the ratio of the rates of the two processes
(assuming only phase-space). Compare two possible systems to discriminate between
the two final states: one based on 3 stations in a 0.3 T magnetic field and one based
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Figure 15. From the ATLAS experiment. Results of the fits of 3 di↵er-
ent Higgs decay channels (namely ��, ZZ and WW ) in a 2-dimensional
plane, mass vs. signal strength. For each fit, both 68% and 95% probabil-
ity regions are shown. Notice that in all the cases apart from the ��, we
are very far from the gaussian limit. (taken from ATLAS collaboration,
Phys.Lett. B716 (2012) 1-29).

For most of the problems that are normally encountered in data analysis, the two ap-
proaches give the same practical results. However for a certain number of applications,
like the analysis of small signals, or the analysis of parameters close to the physical limit,
(some of these problems will be considered below), di↵erent results can be obtained de-
pending on the approach used.

In this section we briefly outline the two approaches putting in evidence the main
di↵erences between the two.

5.6.1. Bayesian intervals. We consider for simplicity the measurement of a physical
quantity x and a likelihood depending on a single parameter ✓, L(x/✓). x can be either
a single measurement or a set of measurement, and we call x0 the outcome of the mea-
surement. We aim to estimate ✓true with its uncertainty. The idea is to use directly the
Bayes theorem:

(137) p(✓true/x0) =
L(x0/✓true)⇡(✓true)R

d✓trueL(x0/✓true)⇡(✓true)

where ⇡(✓true) is the prior probability of ✓true. The Bayes theorem provides a pdf
of ✓true. Through the Bayes formula, the result of a measurement allows to update the

Bayesian intervals
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a-priori pdf, giving an a-posteriori pdf of ✓true. Notice the key-point of the bayesian
approach: the true value of the parameter is regarded as a random variable and the aim
of the analysis is to get informations on its pdf. Based on the pdf, it is possible to build
probability intervals for ✓true with content �:

(138)

Z
✓2

✓1

p(✓true/x0)d✓true = �

The interval [✓1, ✓2] is called credible interval. Eq.138 doesn’t define the edges of the
interval ✓1 and ✓2 in an unique way. For a given � several choices can be done to define
✓1 and ✓2. We quote here the most typical.

• Central intervals: the pdf integral is the same above and below the interval:
Z

✓1

�1
p(✓true/x0)d✓true =

1� �

2
(139)

Z +1

✓2

p(✓true/x0)d✓true =
1� �

2
(140)

• Upper limits: ✓true is below a certain value. In this case the interval is between
0 (if ✓ is a non-negative quantity) and ✓up:

(141)

Z
✓up

0
p(✓true/x0)d✓true = �

• Lower limits: ✓true is above a certain value ✓low:

(142)

Z +1

✓low

p(✓true/x0)d✓true = �

We insist that the key-point of this approach is that the true value of the parameter is
considered as a random variable, with a pdf, a mean and a variance.

5.6.2. Frequentist intervals. In order to define the frequentist confidence intervals we
use the so called Neyman construction. We start from the same experimental situa-
tion described above: a physical quantity, or a set of physical quantities x, a parameter
✓ and a likelihood function L(x/✓). For each value of ✓ it is possible to evaluate an
interval [x1(✓), x2(✓)] characterized by a probability content �:

(143)

Z
x2(✓)

x1(✓)
L(x/✓)dx = �

This interval is not unique, we can consider a central interval (see above), but the
argument applies to any specified kind of interval.

Eq.143 is expressed graphically in fig.16. The measured quantity x is on the horizontal
axis while the parameter ✓ is on the vertical axis. For each ✓ we draw the segment
[x1(✓), x2(✓)] according to eq.143. We have obtained in this way the so called confidence
belt. Now we perform the measurement of x and we get x0. We draw a vertical line
at x0 and the intercepts of this line with the confidence belt give rise to an interval
[✓1(x0), ✓2(x0)]. What is the meaning of such an interval? The position of ✓true is not
known, however we know, by construction, that if we repeat the measurement a certain
amount of times, in a fraction � of the experiments x0 will be in the [x1(✓true), x2(✓true)]

prior
posterior
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Bayes:
- Non informative prior (does it exist?)
- Recursive Bayes estimation => Bayes filter 

Fixed state

Evolving state

Kalman filter

Particle filters

We may summarize these facts by replacing the usual expression
for a Bayesian updating scheme

posterior / prior⇥ likelihood

with
revised / current⇥ new likelihood

represented by the formula

⇡n+1(✓) / ⇡n(✓)⇥ Ln+1(✓) = ⇡n(✓)f (xn+1 | xn, ✓).

In this dynamic perspective we notice that at time n we only need
to keep a representation of ⇡n and otherwise can ignore the past.

The current ⇡n contains all information needed to revise knowledge
when confronted with new information Ln+1(✓).

We sometimes refer to this way of updating as recursive.

Ste↵en Lauritzen, University of Oxford Sequential Bayesian Updating
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interval so that in the same fraction of experiments, [✓1(x0), ✓2(x0)] will contain ✓true.
How it is normally said, the interval defined in this way, covers the true value with a
probability �.

(144) p(✓1(x0) < ✓true < ✓2(x0)) = �

The frequentist interval is built in such a way that, by repeating several times the
experiment, in a fraction � of the experiments the interval covers the true value of the
parameter. This property of the frequentist confidence intervals is called coverage.

Figure 16. Neyman construction. A segment between x1(✓) and x2(✓) is
evaluated for each value of the parameter ✓ as described in the text. The
segments define the confidence belt. Once a value of x, x0 is obtained,
the interval [✓1(x0), ✓2(x0)] is built.

It is important to understand properly eq.144. The probability statement is not
relative to ✓true that, in this context, is not a random variable but a fixed parameter.
The probability statement is referred to the outcome of the experiment: the probability
that our interval covers ✓true is �.

5.6.3. Comparison of the approaches. At first view the bayesian method appears simpler
and more similar to the logic of our normal reasoning. However the main criticism to
the bayesian method, is the fact that it requires the prior pdf of the parameter. This is
considered by the frequentists a problem, since it means that intervals can be defined only
if one has a prejudice on the parameter. Several authors have addressed the problem
of defining the ”non-informative” prior pdf, that is that pdf that corresponds to no
prejudice at all. It can be shown that a uniform pdf is not necessarily non-informative.
Priors with dependence like 1/✓ or 1/

p
✓ can be considered for specific problems. But

there is not consensus on how a non-informative prior can be defined.
On the other hand the frequentist approach has problems in some specific cases, when

the confidence intervals under-covers or over-covers the true value, that is in other words

Coverage:
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Figura 3.1. Illustrazione della costruzione grafica di Neyman. L:area tratteggiata rappresenta la 
cintura di confidenza derivante dalla densità di probabilità di x per un dato livello di confidenza α. 
Nel grafico di destra, dato il valore sperimentale x0, viene illustrata la costruzione dell:intervallo 
frequentista per µ. Nel grafico di sinistra di mostra il concetto di copertura: in una frazione α degli 
esperimenti ottengo un valore compreso tra x0(inf) e x0(sup) 

È istruttivo utilizzare la cosiddetta costruzione grafica di Neyman per comprendere al me-

glio il significato della copertura frequentista. Ci riferiamo ai grafici illustrati in Fig. 3.1 

relativi ad una densità di probabilità qualsiasi, nei quali la variabile x è in ascissa ed il valo-

re atteso del misurando µ è in ordinata. Stabilita la modalità di costruzione dell1intervallo 

di confidenza, la conoscenza della densità di probabilità f(x/µ) consente di individuare, per 

ogni valore di µ, i due estremi dell1intervallo in x. Si tratta infatti dei valori x1 e x2 entrambi 

funzione di µ, per i quali: 
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I luoghi geometrici rispettivamente degli estremi inferiori e degli estremi superiori di tali inter-

valli costituiscono due curve nel piano x k µ che delimitano una zona detta cintura di confiden-
za. Si tratta dell1area tratteggiata di Fig. 3.1. A questo punto, dato il risultato x0 dell1espe-

rimento, traccio una retta verticale per x0 che intercetta le due curve in due punti. Le ordinate di 

tali punti costituiscono gli estremi µ1 e µ2 dell1intervallo cercato (Fig. 3.1 di sinistra). 

La costruzione grafica permette di apprezzare il significato dell1intervallo. I suoi 

due estremi sono rispettivamente quei valori di µ, µ1 e µ2, tali che, se il valor vero fos-

se pari a µ1, la probabilità di misurare un valore più piccolo di x0 sarebbe pari a (1 k
 α) / 2, se invece fosse µ2, la probabilità di misurare un valore più grande di x0 sarebbe 

pure di (1 k α) / 2. 

Che l1intervallo trovato abbia copertura α lo si vede osservando che, detto µ* il valore at-

teso della popolazione del misurando, per qualsiasi valore di x ed in particolare per x0 vale la: 
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1-a
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The determined C.I. is  [µ2(x0) , µ1(x0) ].
Check the correct coverage: suppose µ* is the true value. I repeat N times the measurement and 
determine each time the C.I. By construction in a fraction 1-a of the cases x0 is within x1(µ*)
and x2(µ*) and the corresponding C.I. provides coverage of µ*. 

In a cases x0 lies outside the interval [x1(µ*), x2(µ*)] and the corresponding C.I. does not cover µ*. 
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Figura 3.1. Illustrazione della costruzione grafica di Neyman. L:area tratteggiata rappresenta la 
cintura di confidenza derivante dalla densità di probabilità di x per un dato livello di confidenza α. 
Nel grafico di destra, dato il valore sperimentale x0, viene illustrata la costruzione dell:intervallo 
frequentista per µ. Nel grafico di sinistra di mostra il concetto di copertura: in una frazione α degli 
esperimenti ottengo un valore compreso tra x0(inf) e x0(sup) 

È istruttivo utilizzare la cosiddetta costruzione grafica di Neyman per comprendere al me-

glio il significato della copertura frequentista. Ci riferiamo ai grafici illustrati in Fig. 3.1 
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valli costituiscono due curve nel piano x k µ che delimitano una zona detta cintura di confiden-
za. Si tratta dell1area tratteggiata di Fig. 3.1. A questo punto, dato il risultato x0 dell1espe-

rimento, traccio una retta verticale per x0 che intercetta le due curve in due punti. Le ordinate di 

tali punti costituiscono gli estremi µ1 e µ2 dell1intervallo cercato (Fig. 3.1 di sinistra). 

La costruzione grafica permette di apprezzare il significato dell1intervallo. I suoi 

due estremi sono rispettivamente quei valori di µ, µ1 e µ2, tali che, se il valor vero fos-

se pari a µ1, la probabilità di misurare un valore più piccolo di x0 sarebbe pari a (1 k
 α) / 2, se invece fosse µ2, la probabilità di misurare un valore più grande di x0 sarebbe 

pure di (1 k α) / 2. 

Che l1intervallo trovato abbia copertura α lo si vede osservando che, detto µ* il valore at-

teso della popolazione del misurando, per qualsiasi valore di x ed in particolare per x0 vale la: 
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P(x1(µ*) < x0 < x2 (µ* )) = α  (3.11) 
 

Dunque, se ripeto N volte l1esperimento e ogni volta determino il mio intervallo con la co-
struzione di Neyman, tutte e sole le volte in cui x0 si trova tra x1(µ*) e x2(µ*) (i valori 
x0(inf) e x0(sup) della Fig. 3.1 di destra) io sto GcoprendoH µ*. Questo accade in una frazio-
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x0(inf) e x0(sup), io non sto GcoprendoH µ* e questo accade in una frazione 1 k α dei casi. 
La copertura è dunque α come previsto. 

Nel caso semplice ma molto comune in cui la f(x/µ) sia una distribuzione normale, la 
cintura di confidenza si riduce allo spazio tra due rette parallele come illustrato in Fig. 3.2. 
Nel caso in cui α = 68.3% gli estremi µ1 e µ2 saranno semplicemente x0

 ± σ come riportato 
nelle considerazioni all1inizio del paragrafo (equazione (3.4)). 

 

 
 

Figura 3.2. Costruzione grafica di Neyman per il caso gaussiano con α = 68.3% 

3.1.3. L<inferenza bayesiana 

Un secondo approccio al problema dell1inferenza è dato dal metodo dell<inferenza baye-
siana al quale accenniamo ora brevemente. L1aspetto concettualmente importante di questo 
metodo è dato dal fatto che il valor vero µ viene qui considerato, a differenza dell1approc-
cio frequentista, a tutti gli effetti una variabile casuale. Il problema dell1inferenza è dunque 
quello di determinare al meglio la funzione di distribuzione di tale variabile casuale. 

Mettendo da parte anche in questo caso gli eventuali effetti sistematici, ed utilizzando le 
definizioni date in (3.1.1), possiamo chiamare f(µ/xm) la funzione di distribuzione di µ dato xm, 
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By construction the probability to measure  x0’<x0 if the true value µ=µ1(x0) is a/2
x0’>x0 if the true value µ=µ2(x0) is a/2

1-a

1-a



The determined C.I. is  [µ2(x0) , µ1(x0) ].
Check the correct coverage: suppose µ* is the true value. I repeat N times the measurement and 
determine each time the C.I. By construction in a fraction 1-a of the cases x0 is within x1(µ*)
and x2(µ*) and the corresponding C.I. provides coverage of µ*. 

In a cases x0 lies outside the interval [x1(µ*), x2(µ*)] and the corresponding C.I. does not cover µ*. 
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valli costituiscono due curve nel piano x k µ che delimitano una zona detta cintura di confiden-
za. Si tratta dell1area tratteggiata di Fig. 3.1. A questo punto, dato il risultato x0 dell1espe-

rimento, traccio una retta verticale per x0 che intercetta le due curve in due punti. Le ordinate di 
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 α) / 2, se invece fosse µ2, la probabilità di misurare un valore più grande di x0 sarebbe 

pure di (1 k α) / 2. 
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I luoghi geometrici rispettivamente degli estremi inferiori e degli estremi superiori di tali inter-

valli costituiscono due curve nel piano x k µ che delimitano una zona detta cintura di confiden-
za. Si tratta dell1area tratteggiata di Fig. 3.1. A questo punto, dato il risultato x0 dell1espe-

rimento, traccio una retta verticale per x0 che intercetta le due curve in due punti. Le ordinate di 

tali punti costituiscono gli estremi µ1 e µ2 dell1intervallo cercato (Fig. 3.1 di sinistra). 

La costruzione grafica permette di apprezzare il significato dell1intervallo. I suoi 

due estremi sono rispettivamente quei valori di µ, µ1 e µ2, tali che, se il valor vero fos-

se pari a µ1, la probabilità di misurare un valore più piccolo di x0 sarebbe pari a (1 k
 α) / 2, se invece fosse µ2, la probabilità di misurare un valore più grande di x0 sarebbe 

pure di (1 k α) / 2. 

Che l1intervallo trovato abbia copertura α lo si vede osservando che, detto µ* il valore at-

teso della popolazione del misurando, per qualsiasi valore di x ed in particolare per x0 vale la: 
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Mettendo da parte anche in questo caso gli eventuali effetti sistematici, ed utilizzando le 
definizioni date in (3.1.1), possiamo chiamare f(µ/xm) la funzione di distribuzione di µ dato xm, 

Neyman’s construction

µ1(x0)

µ2(x0)

x1(µ)

x2(µ)

x0 

µ*

x1(µ*) x2(µ*)x0 

By construction the probability to measure  x0’<x0 if the true value µ=µ1(x0) is a/2
x0’>x0 if the true value µ=µ2(x0) is a/2

1-a

1-a
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Figura 3.1. Illustrazione della costruzione grafica di Neyman. L:area tratteggiata rappresenta la 
cintura di confidenza derivante dalla densità di probabilità di x per un dato livello di confidenza α. 
Nel grafico di destra, dato il valore sperimentale x0, viene illustrata la costruzione dell:intervallo 
frequentista per µ. Nel grafico di sinistra di mostra il concetto di copertura: in una frazione α degli 
esperimenti ottengo un valore compreso tra x0(inf) e x0(sup) 

È istruttivo utilizzare la cosiddetta costruzione grafica di Neyman per comprendere al me-

glio il significato della copertura frequentista. Ci riferiamo ai grafici illustrati in Fig. 3.1 

relativi ad una densità di probabilità qualsiasi, nei quali la variabile x è in ascissa ed il valo-

re atteso del misurando µ è in ordinata. Stabilita la modalità di costruzione dell1intervallo 

di confidenza, la conoscenza della densità di probabilità f(x/µ) consente di individuare, per 

ogni valore di µ, i due estremi dell1intervallo in x. Si tratta infatti dei valori x1 e x2 entrambi 

funzione di µ, per i quali: 
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I luoghi geometrici rispettivamente degli estremi inferiori e degli estremi superiori di tali inter-

valli costituiscono due curve nel piano x k µ che delimitano una zona detta cintura di confiden-
za. Si tratta dell1area tratteggiata di Fig. 3.1. A questo punto, dato il risultato x0 dell1espe-

rimento, traccio una retta verticale per x0 che intercetta le due curve in due punti. Le ordinate di 

tali punti costituiscono gli estremi µ1 e µ2 dell1intervallo cercato (Fig. 3.1 di sinistra). 

La costruzione grafica permette di apprezzare il significato dell1intervallo. I suoi 

due estremi sono rispettivamente quei valori di µ, µ1 e µ2, tali che, se il valor vero fos-

se pari a µ1, la probabilità di misurare un valore più piccolo di x0 sarebbe pari a (1 k
 α) / 2, se invece fosse µ2, la probabilità di misurare un valore più grande di x0 sarebbe 

pure di (1 k α) / 2. 

Che l1intervallo trovato abbia copertura α lo si vede osservando che, detto µ* il valore at-

teso della popolazione del misurando, per qualsiasi valore di x ed in particolare per x0 vale la: 

Neyman’s construction

µ1(x0)

µ2(x0)

x1(µ)

x2(µ)

x0 

µ*

x1(µ*) x2(µ*)
x0 

The determined C.I. is  [µ2(x0) , µ1(x0) ].
Check the correct coverage: suppose µ* is the true value. I repeat N times the measurement and 
determine each time the C.I. By construction in a fraction 1-a of the cases x0 is within x1(µ*)
and x2(µ*) and the corresponding C.I. provides coverage of µ*. 

In a cases x0 lies outside the interval [x1(µ*), x2(µ*)] and the corresponding C.I. does not cover µ*. 
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Che l1intervallo trovato abbia copertura α lo si vede osservando che, detto µ* il valore at-
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P(x1(µ*) < x0 < x2 (µ* )) = α  (3.11) 
 

Dunque, se ripeto N volte l1esperimento e ogni volta determino il mio intervallo con la co-
struzione di Neyman, tutte e sole le volte in cui x0 si trova tra x1(µ*) e x2(µ*) (i valori 
x0(inf) e x0(sup) della Fig. 3.1 di destra) io sto GcoprendoH µ*. Questo accade in una frazio-
ne α dei casi. Viceversa, le volte in cui x0 si trova al di fuori dell1intervallo compreso tra 
x0(inf) e x0(sup), io non sto GcoprendoH µ* e questo accade in una frazione 1 k α dei casi. 
La copertura è dunque α come previsto. 

Nel caso semplice ma molto comune in cui la f(x/µ) sia una distribuzione normale, la 
cintura di confidenza si riduce allo spazio tra due rette parallele come illustrato in Fig. 3.2. 
Nel caso in cui α = 68.3% gli estremi µ1 e µ2 saranno semplicemente x0

 ± σ come riportato 
nelle considerazioni all1inizio del paragrafo (equazione (3.4)). 

 

 
 

Figura 3.2. Costruzione grafica di Neyman per il caso gaussiano con α = 68.3% 

3.1.3. L<inferenza bayesiana 

Un secondo approccio al problema dell1inferenza è dato dal metodo dell<inferenza baye-
siana al quale accenniamo ora brevemente. L1aspetto concettualmente importante di questo 
metodo è dato dal fatto che il valor vero µ viene qui considerato, a differenza dell1approc-
cio frequentista, a tutti gli effetti una variabile casuale. Il problema dell1inferenza è dunque 
quello di determinare al meglio la funzione di distribuzione di tale variabile casuale. 

Mettendo da parte anche in questo caso gli eventuali effetti sistematici, ed utilizzando le 
definizioni date in (3.1.1), possiamo chiamare f(µ/xm) la funzione di distribuzione di µ dato xm, 

By construction the probability to measure  x0’<x0 if the true value µ=µ1(x0) is a/2
x0’>x0 if the true value µ=µ2(x0) is a/2

1-a

1-a
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Signal searches:   upper and lower limits

(consider the simple example of counting experiment)
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7. Search for ”new physics”: upper/lower limits

7.1. Introduction. Several analyses of experimental data in Elementary Particle Physics
concern the search for new physics. This means to set-up an experiment to identify
new phenomena that cannot be accounted for by the Standard Model. Common ex-
amples are all the searches for new particles where one has to find a ”signal” out of a
known background, or the detection of unpredicted decays.

In general a distinction is done between ”discovery” and ”exclusion”.

• Discovery: the Null Hypothesis H0, based on the Standard Model is falsified
by a goodness-of-fit test. This means that new physics should be included to
account for the data. This is an important discovery.

• Exclusion: the Alternative Hypothesis H1, based on an extension of the Stan-
dard Model (or on a new theory at all), doesn’t pass the goodness-of-fit test. H1

is excluded by data.

Both require goodness-of-fit tests as discussed in the previous section.
Exclusion means that the search has given a negative result. However a negative result

is not a complete failure of the experiment, but it gives important informations that have
to be expressed in a quantitative way so that theorists or other experimentalists can use
them for further searches. These quantitative statements about negative results of a
search for new phenomena are normally the ”upper limits” or the ”lower limits”.

By upper limit we mean a statement like the following: such a particle, if it exists,
is produced with a rate (or cross-section) below this quantity, with a certain probability.
On the other hand, by lower limit statements like: this decay, if exists, takes place
with a lifetime larger than this quantity, with a certain probability. Both statements
concern an exclusion.

We have already seen above how, in the context of the interval estimation, upper/lower
limits can be defined together with central intervals. In this Section we outline the meth-
ods to evaluate upper/lower limits in present experiments. We refer to the most common
case, namely the case of a counting experiment, where we want to make statements about
the rate of signal events out of a background.

First, the bayesian and frequentist approaches to the problem are briefly presented
and compared. Then the so called ”modified frequentist” CLs method will be described,
based on the profile likelihood ratio, and finally the case of the search for the Higgs
boson in the LHC experiments is discussed with some detail.

7.2. Bayesian limits. In the bayesian context, the result of the search is given as the
pdf of the variable we are looking for, that can be s (signal rate), or ⌧ (particle lifetime).
We define first the Likelihood function for the problem, and then we evaluate the pdf of
the signal rate using the Bayes theorem.

Let’s start with the simple case of a search where b = 0, b being the expected back-
ground. We call s the number of signal events. In this case the likelihood is:

(189) L(n0/s) =
e
�s

s
n0

n0!

If we count n0 = 0 in a certain amount of time, the likelihood is:

(190) L(0/s) = e
�s
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7. Search for ”new physics”: upper/lower limits

7.1. Introduction. Several analyses of experimental data in Elementary Particle Physics
concern the search for new physics. This means to set-up an experiment to identify
new phenomena that cannot be accounted for by the Standard Model. Common ex-
amples are all the searches for new particles where one has to find a ”signal” out of a
known background, or the detection of unpredicted decays.

In general a distinction is done between ”discovery” and ”exclusion”.

• Discovery: the Null Hypothesis H0, based on the Standard Model is falsified
by a goodness-of-fit test. This means that new physics should be included to
account for the data. This is an important discovery.

• Exclusion: the Alternative Hypothesis H1, based on an extension of the Stan-
dard Model (or on a new theory at all), doesn’t pass the goodness-of-fit test. H1

is excluded by data.

Both require goodness-of-fit tests as discussed in the previous section.
Exclusion means that the search has given a negative result. However a negative result

is not a complete failure of the experiment, but it gives important informations that have
to be expressed in a quantitative way so that theorists or other experimentalists can use
them for further searches. These quantitative statements about negative results of a
search for new phenomena are normally the ”upper limits” or the ”lower limits”.

By upper limit we mean a statement like the following: such a particle, if it exists,
is produced with a rate (or cross-section) below this quantity, with a certain probability.
On the other hand, by lower limit statements like: this decay, if exists, takes place
with a lifetime larger than this quantity, with a certain probability. Both statements
concern an exclusion.

We have already seen above how, in the context of the interval estimation, upper/lower
limits can be defined together with central intervals. In this Section we outline the meth-
ods to evaluate upper/lower limits in present experiments. We refer to the most common
case, namely the case of a counting experiment, where we want to make statements about
the rate of signal events out of a background.

First, the bayesian and frequentist approaches to the problem are briefly presented
and compared. Then the so called ”modified frequentist” CLs method will be described,
based on the profile likelihood ratio, and finally the case of the search for the Higgs
boson in the LHC experiments is discussed with some detail.

7.2. Bayesian limits. In the bayesian context, the result of the search is given as the
pdf of the variable we are looking for, that can be s (signal rate), or ⌧ (particle lifetime).
We define first the Likelihood function for the problem, and then we evaluate the pdf of
the signal rate using the Bayes theorem.

Let’s start with the simple case of a search where b = 0, b being the expected back-
ground. We call s the number of signal events. In this case the likelihood is:

(189) L(n0/s) =
e
�s
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n0!

If we count n0 = 0 in a certain amount of time, the likelihood is:

(190) L(0/s) = e
�s
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7. Search for ”new physics”: upper/lower limits

7.1. Introduction. Several analyses of experimental data in Elementary Particle Physics
concern the search for new physics. This means to set-up an experiment to identify
new phenomena that cannot be accounted for by the Standard Model. Common ex-
amples are all the searches for new particles where one has to find a ”signal” out of a
known background, or the detection of unpredicted decays.

In general a distinction is done between ”discovery” and ”exclusion”.

• Discovery: the Null Hypothesis H0, based on the Standard Model is falsified
by a goodness-of-fit test. This means that new physics should be included to
account for the data. This is an important discovery.

• Exclusion: the Alternative Hypothesis H1, based on an extension of the Stan-
dard Model (or on a new theory at all), doesn’t pass the goodness-of-fit test. H1

is excluded by data.

Both require goodness-of-fit tests as discussed in the previous section.
Exclusion means that the search has given a negative result. However a negative result

is not a complete failure of the experiment, but it gives important informations that have
to be expressed in a quantitative way so that theorists or other experimentalists can use
them for further searches. These quantitative statements about negative results of a
search for new phenomena are normally the ”upper limits” or the ”lower limits”.

By upper limit we mean a statement like the following: such a particle, if it exists,
is produced with a rate (or cross-section) below this quantity, with a certain probability.
On the other hand, by lower limit statements like: this decay, if exists, takes place
with a lifetime larger than this quantity, with a certain probability. Both statements
concern an exclusion.

We have already seen above how, in the context of the interval estimation, upper/lower
limits can be defined together with central intervals. In this Section we outline the meth-
ods to evaluate upper/lower limits in present experiments. We refer to the most common
case, namely the case of a counting experiment, where we want to make statements about
the rate of signal events out of a background.

First, the bayesian and frequentist approaches to the problem are briefly presented
and compared. Then the so called ”modified frequentist” CLs method will be described,
based on the profile likelihood ratio, and finally the case of the search for the Higgs
boson in the LHC experiments is discussed with some detail.

7.2. Bayesian limits. In the bayesian context, the result of the search is given as the
pdf of the variable we are looking for, that can be s (signal rate), or ⌧ (particle lifetime).
We define first the Likelihood function for the problem, and then we evaluate the pdf of
the signal rate using the Bayes theorem.

Let’s start with the simple case of a search where b = 0, b being the expected back-
ground. We call s the number of signal events. In this case the likelihood is:

(189) L(n0/s) =
e
�s

s
n0

n0!

If we count n0 = 0 in a certain amount of time, the likelihood is:

(190) L(0/s) = e
�s

Assume background b=0

If we count n0=0
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• Exclusion: the Alternative Hypothesis H1, based on an extension of the Stan-
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is excluded by data.

Both require goodness-of-fit tests as discussed in the previous section.
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is not a complete failure of the experiment, but it gives important informations that have
to be expressed in a quantitative way so that theorists or other experimentalists can use
them for further searches. These quantitative statements about negative results of a
search for new phenomena are normally the ”upper limits” or the ”lower limits”.

By upper limit we mean a statement like the following: such a particle, if it exists,
is produced with a rate (or cross-section) below this quantity, with a certain probability.
On the other hand, by lower limit statements like: this decay, if exists, takes place
with a lifetime larger than this quantity, with a certain probability. Both statements
concern an exclusion.

We have already seen above how, in the context of the interval estimation, upper/lower
limits can be defined together with central intervals. In this Section we outline the meth-
ods to evaluate upper/lower limits in present experiments. We refer to the most common
case, namely the case of a counting experiment, where we want to make statements about
the rate of signal events out of a background.

First, the bayesian and frequentist approaches to the problem are briefly presented
and compared. Then the so called ”modified frequentist” CLs method will be described,
based on the profile likelihood ratio, and finally the case of the search for the Higgs
boson in the LHC experiments is discussed with some detail.

7.2. Bayesian limits. In the bayesian context, the result of the search is given as the
pdf of the variable we are looking for, that can be s (signal rate), or ⌧ (particle lifetime).
We define first the Likelihood function for the problem, and then we evaluate the pdf of
the signal rate using the Bayes theorem.

Let’s start with the simple case of a search where b = 0, b being the expected back-
ground. We call s the number of signal events. In this case the likelihood is:

(189) L(n0/s) =
e
�s

s
n0

n0!

If we count n0 = 0 in a certain amount of time, the likelihood is:

(190) L(0/s) = e
�s
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In order to use the Bayes theorem we need to have the prior probability ⇡(s). We have
already discussed this point above and we have seen that it is di�cult to define in a
general sense a non-informative prior. However in this case we assume a prior that is
flat for positive values of s and 0 for negative values of s. In this case the Bayes theorem
simplifies to:

(191) p(s/0) =
L(0/s)⇡(s)R
L(0/s)⇡(s)ds

= L(0/s) = e
�s

Given a probability content ↵ (e.g. ↵=95%) the upper limit sup will be such that:

(192)

Z 1

sup

p(s/0)ds = 1� ↵

that gives:

(193)

Z 1

sup

e
�s

ds = e
�sup = 1� ↵

We easily find sup=2.3 for ↵=90% and sup=3 for ↵=95%.
In case b is not equal to 0 (but is known with negligible uncertainty), and n0 is any

value, assuming the same prior for s, the Bayes theorem gives

(194) p(s/n0) =
e
�(s+b)(s+ b)n0

n0!

The upper limit sup will be in this case such that:

(195)

Z 1

sup

e
�(s+b)(s+ b)n0

n0!
ds = 1� ↵

Numerical solutions of sup are given as a function of b for di↵erent values of n0 in fig.18.
In case n0 = 0 the results given above are still valid even if b is larger than 0.

If b is known with a given uncertainty (e.g. we know that b is defined between bmin

and bmax and has a pdf f(b)), eq.194 can be modified by including a convolution with
f(b):

(196) p(s/n0) =

Z
bmax

bmin

e
�(s+b

0)(s+ b
0)n0

n0!
f(b� b

0)db0

The width of the function f(b) a↵ects the limit. A large uncertainty on the background
increases sup for any given value of b and n0. If b is a Poisson variable, �(b) =

p
b, an

increase in sup of about 10% for a given n0-b point is expected.
If a di↵erent prior is used (e.g. 1/s or 1/

p
s) di↵erent numerical results are obtained

for the same n0, b point. Only in case n0 = 0, b = 0, the result doesn’t depend on the
prior.

We remind that the result of this analysis is essentially the pdf p(s/n0). When n0

is significantly larger than b, it means that we are observing a signal, so that a central
interval for s should be given rather than an upper limit. In general a good interval will
be

(197) ŝ = n0 � b±
p

n0 + �2(b)

Let’s consider Bayes theorem and assume uniform prior (p=cost for s>0 and p=0 for s<0)
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Figure 18. 90% limit sup (A in the figure) vs. b (B in the figure) for
di↵erent values of n0. These are the upper limits resulting from a bayesian
treatment with uniform prior. (taken from O.Helene, Nucl.Instr. and
Meth. 212 (1983) 319)

The transition between an upper limit statement and a central interval statement de-
pends on the problem we are considering and is arbitrary (see below).

7.3. Frequentist limits. We go back here to the Neyman construction presented in
sect. 5.6. Another way to consider the meaning of eq.144 is the following. The two
extremes ✓1(x0) and ✓2(x0) of a central interval have the following properties: if ✓true =
✓1(x0) the probability of obtaining a value of x larger than x0 is (1��)/2; if ✓true = ✓2(x0)
the probability of obtaining a value of x smaller than x0 is also (1� �)/2.

Now let’s consider the Neyman construction for the case of an upper limit and apply
the same considerations given here. We call s the parameter (namely the amount of sig-
nal) and n0 the result of the measurement (a counting experiment). The construction is
shown in fig.19. The belt is limited on one side only, and for any result of a measurement
n0 we identify sup in such a way that if strue = sup, the probability to get a counting
smaller than n0 is 1 � �

31. By considering the Poisson statistics without background
(b=0) we get:

(198)
n0X

n=0

e
�sups

n
up

n!
= 1� �

31Since we are dealing with upper limits we have to omit here the 1/2, see for instance eqs.141 even
if these equations refer to the bayesian case.
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Fig. 9.9 Upper limits at a confidence level of 1 - f3 = 0.95 for different numbers of events 
observed nabs and as a function of the expected number of background events Vb. (a) The 
classical limit. (b) The Bayesian limit based on a uniform prior density for Vs' 

Taking rr(vs ) to be constant for Vs 2:: 0 and zero for Vs < 0, the upper limit 
at a confidence level of 1 - j3 is given by 

1- j3 = 

= 

f;:P L( nobs Ivs ) dvs 

fooo 
L(nobslvs)dvs 

(9.53) 

The integrals can be related to incomplete gamma functions (see e.g. [Arf95]), 
or since nobs is a positive integer, they can be solved by making the substitution 
x = Vs + Vb and integrating by parts nobs times. Equation (9.53) then becomes 

(9.54) 

This can be solved numerically for the upper limit The upper limit as a 
function of Vb is shown in Fig. 9.9(b) for various values of nobs. For the case 
without background, setting Vb = 0 gives 

nob. ( Up)n 
j3 _vup L Vs -e' ---- n! ' 

n=O 
(9.55) 

which is identical to the equation for the classical upper limit (9.16). This can 
be seen by comparing Figs 9.9(a) and (b). The Bayesian limit is always greater 
than or equal to the corresponding classical one, with the two agreeing only for 
Vb = O. 

Poisson
frequentist Bayes



Bayes limits

Assume background b ≠ 0  with uncertainty described by a pdf f(b) within interval bmin, bmax
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In order to use the Bayes theorem we need to have the prior probability ⇡(s). We have
already discussed this point above and we have seen that it is di�cult to define in a
general sense a non-informative prior. However in this case we assume a prior that is
flat for positive values of s and 0 for negative values of s. In this case the Bayes theorem
simplifies to:

(191) p(s/0) =
L(0/s)⇡(s)R
L(0/s)⇡(s)ds

= L(0/s) = e
�s

Given a probability content ↵ (e.g. ↵=95%) the upper limit sup will be such that:
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p(s/0)ds = 1� ↵

that gives:
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e
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ds = e
�sup = 1� ↵

We easily find sup=2.3 for ↵=90% and sup=3 for ↵=95%.
In case b is not equal to 0 (but is known with negligible uncertainty), and n0 is any

value, assuming the same prior for s, the Bayes theorem gives

(194) p(s/n0) =
e
�(s+b)(s+ b)n0

n0!

The upper limit sup will be in this case such that:

(195)

Z 1

sup

e
�(s+b)(s+ b)n0

n0!
ds = 1� ↵

Numerical solutions of sup are given as a function of b for di↵erent values of n0 in fig.18.
In case n0 = 0 the results given above are still valid even if b is larger than 0.

If b is known with a given uncertainty (e.g. we know that b is defined between bmin

and bmax and has a pdf f(b)), eq.194 can be modified by including a convolution with
f(b):

(196) p(s/n0) =

Z
bmax

bmin

e
�(s+b

0)(s+ b
0)n0

n0!
f(b� b

0)db0

The width of the function f(b) a↵ects the limit. A large uncertainty on the background
increases sup for any given value of b and n0. If b is a Poisson variable, �(b) =

p
b, an

increase in sup of about 10% for a given n0-b point is expected.
If a di↵erent prior is used (e.g. 1/s or 1/

p
s) di↵erent numerical results are obtained

for the same n0, b point. Only in case n0 = 0, b = 0, the result doesn’t depend on the
prior.

We remind that the result of this analysis is essentially the pdf p(s/n0). When n0

is significantly larger than b, it means that we are observing a signal, so that a central
interval for s should be given rather than an upper limit. In general a good interval will
be

(197) ŝ = n0 � b±
p

n0 + �2(b)
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In general the width of f(b) affects the limit, large uncertainty on b => increase of Sup
The result in general depends on the prior (p(s)= cost, 1/s, 1/√s )  (not in the case n0=b=0)

Convolution with the resolution f(b)



Bayes limits

The General result for any n0, is the pdf

If n0 significantly larger than b => observation of the signal 
=> transition from upper limit to central interval: 

Depending on the observed value and somewhat arbitrary =>
flip-flop problem (see next)
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In order to use the Bayes theorem we need to have the prior probability ⇡(s). We have
already discussed this point above and we have seen that it is di�cult to define in a
general sense a non-informative prior. However in this case we assume a prior that is
flat for positive values of s and 0 for negative values of s. In this case the Bayes theorem
simplifies to:

(191) p(s/0) =
L(0/s)⇡(s)R
L(0/s)⇡(s)ds

= L(0/s) = e
�s

Given a probability content ↵ (e.g. ↵=95%) the upper limit sup will be such that:

(192)

Z 1

sup

p(s/0)ds = 1� ↵

that gives:

(193)

Z 1

sup

e
�s

ds = e
�sup = 1� ↵

We easily find sup=2.3 for ↵=90% and sup=3 for ↵=95%.
In case b is not equal to 0 (but is known with negligible uncertainty), and n0 is any

value, assuming the same prior for s, the Bayes theorem gives

(194) p(s/n0) =
e
�(s+b)(s+ b)n0

n0!

The upper limit sup will be in this case such that:

(195)

Z 1

sup

e
�(s+b)(s+ b)n0

n0!
ds = 1� ↵

Numerical solutions of sup are given as a function of b for di↵erent values of n0 in fig.18.
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Z
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bmin

e
�(s+b

0)(s+ b
0)n0

n0!
f(b� b

0)db0

The width of the function f(b) a↵ects the limit. A large uncertainty on the background
increases sup for any given value of b and n0. If b is a Poisson variable, �(b) =

p
b, an

increase in sup of about 10% for a given n0-b point is expected.
If a di↵erent prior is used (e.g. 1/s or 1/

p
s) di↵erent numerical results are obtained

for the same n0, b point. Only in case n0 = 0, b = 0, the result doesn’t depend on the
prior.

We remind that the result of this analysis is essentially the pdf p(s/n0). When n0

is significantly larger than b, it means that we are observing a signal, so that a central
interval for s should be given rather than an upper limit. In general a good interval will
be

(197) ŝ = n0 � b±
p

n0 + �2(b)



The determined C.I. is  [µ2(x0) , µ1(x0) ].
Check the correct coverage: suppose µ* is the true value. I repeat N times the measurement and 
determine each time the C.I. By construction in a fraction b of the cases x0 is within x1(µ*)
and x2(µ*) and the corresponding C.I. provides coverage of µ*. 

In 1-b cases x0 lies outside the interval [x1(µ*), x2(µ*)] and the corresponding C.I. does not cover µ*. 
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Figura 3.1. Illustrazione della costruzione grafica di Neyman. L:area tratteggiata rappresenta la 
cintura di confidenza derivante dalla densità di probabilità di x per un dato livello di confidenza α. 
Nel grafico di destra, dato il valore sperimentale x0, viene illustrata la costruzione dell:intervallo 
frequentista per µ. Nel grafico di sinistra di mostra il concetto di copertura: in una frazione α degli 
esperimenti ottengo un valore compreso tra x0(inf) e x0(sup) 

È istruttivo utilizzare la cosiddetta costruzione grafica di Neyman per comprendere al me-

glio il significato della copertura frequentista. Ci riferiamo ai grafici illustrati in Fig. 3.1 

relativi ad una densità di probabilità qualsiasi, nei quali la variabile x è in ascissa ed il valo-

re atteso del misurando µ è in ordinata. Stabilita la modalità di costruzione dell1intervallo 

di confidenza, la conoscenza della densità di probabilità f(x/µ) consente di individuare, per 

ogni valore di µ, i due estremi dell1intervallo in x. Si tratta infatti dei valori x1 e x2 entrambi 

funzione di µ, per i quali: 
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I luoghi geometrici rispettivamente degli estremi inferiori e degli estremi superiori di tali inter-

valli costituiscono due curve nel piano x k µ che delimitano una zona detta cintura di confiden-
za. Si tratta dell1area tratteggiata di Fig. 3.1. A questo punto, dato il risultato x0 dell1espe-

rimento, traccio una retta verticale per x0 che intercetta le due curve in due punti. Le ordinate di 

tali punti costituiscono gli estremi µ1 e µ2 dell1intervallo cercato (Fig. 3.1 di sinistra). 

La costruzione grafica permette di apprezzare il significato dell1intervallo. I suoi 

due estremi sono rispettivamente quei valori di µ, µ1 e µ2, tali che, se il valor vero fos-

se pari a µ1, la probabilità di misurare un valore più piccolo di x0 sarebbe pari a (1 k
 α) / 2, se invece fosse µ2, la probabilità di misurare un valore più grande di x0 sarebbe 

pure di (1 k α) / 2. 

Che l1intervallo trovato abbia copertura α lo si vede osservando che, detto µ* il valore at-

teso della popolazione del misurando, per qualsiasi valore di x ed in particolare per x0 vale la: 
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P(x1(µ*) < x0 < x2 (µ* )) = α  (3.11) 
 

Dunque, se ripeto N volte l1esperimento e ogni volta determino il mio intervallo con la co-
struzione di Neyman, tutte e sole le volte in cui x0 si trova tra x1(µ*) e x2(µ*) (i valori 
x0(inf) e x0(sup) della Fig. 3.1 di destra) io sto GcoprendoH µ*. Questo accade in una frazio-
ne α dei casi. Viceversa, le volte in cui x0 si trova al di fuori dell1intervallo compreso tra 
x0(inf) e x0(sup), io non sto GcoprendoH µ* e questo accade in una frazione 1 k α dei casi. 
La copertura è dunque α come previsto. 

Nel caso semplice ma molto comune in cui la f(x/µ) sia una distribuzione normale, la 
cintura di confidenza si riduce allo spazio tra due rette parallele come illustrato in Fig. 3.2. 
Nel caso in cui α = 68.3% gli estremi µ1 e µ2 saranno semplicemente x0

 ± σ come riportato 
nelle considerazioni all1inizio del paragrafo (equazione (3.4)). 

 

 
 

Figura 3.2. Costruzione grafica di Neyman per il caso gaussiano con α = 68.3% 

3.1.3. L<inferenza bayesiana 

Un secondo approccio al problema dell1inferenza è dato dal metodo dell<inferenza baye-
siana al quale accenniamo ora brevemente. L1aspetto concettualmente importante di questo 
metodo è dato dal fatto che il valor vero µ viene qui considerato, a differenza dell1approc-
cio frequentista, a tutti gli effetti una variabile casuale. Il problema dell1inferenza è dunque 
quello di determinare al meglio la funzione di distribuzione di tale variabile casuale. 

Mettendo da parte anche in questo caso gli eventuali effetti sistematici, ed utilizzando le 
definizioni date in (3.1.1), possiamo chiamare f(µ/xm) la funzione di distribuzione di µ dato xm, 

Neyman’s construction

µ1(x0)

µ2(x0)

x1(µ)

x2(µ)

x0 

µ*

x1(µ*) x2(µ*)x0 

By construction the probability to measure  x0’<x0 if the true value µ=µ1(x0) is (1-b)/2
x0’>x0 if the true value µ=µ2(x0) is (1-b)/2

b

b



The determined C.I. is  [µ2(x0) , µ1(x0) ].
Check the correct coverage: suppose µ* is the true value. I repeat N times the measurement and 
determine each time the C.I. By construction in a fraction b of the cases x0 is within x1(µ*)
and x2(µ*) and the corresponding C.I. provides coverage of µ*. 

In 1-b cases x0 lies outside the interval [x1(µ*), x2(µ*)] and the corresponding C.I. does not cover µ*. 
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Figura 3.2. Costruzione grafica di Neyman per il caso gaussiano con α = 68.3% 
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By construction the probability to measure  x0’<x0 if the true value µ=µ1(x0) is (1-b)/2
x0’>x0 if the true value µ=µ2(x0) is (1-b)/2

b

b



The determined C.I. is  [µ2(x0) , µ1(x0) ].
Check the correct coverage: suppose µ* is the true value. I repeat N times the measurement and 
determine each time the C.I. By construction in a fraction b of the cases x0 is within x1(µ*)
and x2(µ*) and the corresponding C.I. provides coverage of µ*. 

In 1-b cases x0 lies outside the interval [x1(µ*), x2(µ*)] and the corresponding C.I. does not cover µ*. 
5/24/20Methods in Experimental Particle Physics24

IN
TERNO 5

Capitolo 3. Introduzione all<inferenza 145 

 
 

Figura 3.1. Illustrazione della costruzione grafica di Neyman. L:area tratteggiata rappresenta la 
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È istruttivo utilizzare la cosiddetta costruzione grafica di Neyman per comprendere al me-

glio il significato della copertura frequentista. Ci riferiamo ai grafici illustrati in Fig. 3.1 

relativi ad una densità di probabilità qualsiasi, nei quali la variabile x è in ascissa ed il valo-

re atteso del misurando µ è in ordinata. Stabilita la modalità di costruzione dell1intervallo 

di confidenza, la conoscenza della densità di probabilità f(x/µ) consente di individuare, per 

ogni valore di µ, i due estremi dell1intervallo in x. Si tratta infatti dei valori x1 e x2 entrambi 

funzione di µ, per i quali: 
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I luoghi geometrici rispettivamente degli estremi inferiori e degli estremi superiori di tali inter-

valli costituiscono due curve nel piano x k µ che delimitano una zona detta cintura di confiden-
za. Si tratta dell1area tratteggiata di Fig. 3.1. A questo punto, dato il risultato x0 dell1espe-

rimento, traccio una retta verticale per x0 che intercetta le due curve in due punti. Le ordinate di 

tali punti costituiscono gli estremi µ1 e µ2 dell1intervallo cercato (Fig. 3.1 di sinistra). 

La costruzione grafica permette di apprezzare il significato dell1intervallo. I suoi 

due estremi sono rispettivamente quei valori di µ, µ1 e µ2, tali che, se il valor vero fos-

se pari a µ1, la probabilità di misurare un valore più piccolo di x0 sarebbe pari a (1 k
 α) / 2, se invece fosse µ2, la probabilità di misurare un valore più grande di x0 sarebbe 

pure di (1 k α) / 2. 

Che l1intervallo trovato abbia copertura α lo si vede osservando che, detto µ* il valore at-

teso della popolazione del misurando, per qualsiasi valore di x ed in particolare per x0 vale la: 
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Nel caso semplice ma molto comune in cui la f(x/µ) sia una distribuzione normale, la 
cintura di confidenza si riduce allo spazio tra due rette parallele come illustrato in Fig. 3.2. 
Nel caso in cui α = 68.3% gli estremi µ1 e µ2 saranno semplicemente x0

 ± σ come riportato 
nelle considerazioni all1inizio del paragrafo (equazione (3.4)). 

 

 
 

Figura 3.2. Costruzione grafica di Neyman per il caso gaussiano con α = 68.3% 
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Un secondo approccio al problema dell1inferenza è dato dal metodo dell<inferenza baye-
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quello di determinare al meglio la funzione di distribuzione di tale variabile casuale. 

Mettendo da parte anche in questo caso gli eventuali effetti sistematici, ed utilizzando le 
definizioni date in (3.1.1), possiamo chiamare f(µ/xm) la funzione di distribuzione di µ dato xm, 
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By construction the probability to measure  x0’<x0 if the true value µ=µ1(x0) is (1-b)/2
x0’>x0 if the true value µ=µ2(x0) is (1-b)/2

b
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Figura 3.1. Illustrazione della costruzione grafica di Neyman. L:area tratteggiata rappresenta la 
cintura di confidenza derivante dalla densità di probabilità di x per un dato livello di confidenza α. 
Nel grafico di destra, dato il valore sperimentale x0, viene illustrata la costruzione dell:intervallo 
frequentista per µ. Nel grafico di sinistra di mostra il concetto di copertura: in una frazione α degli 
esperimenti ottengo un valore compreso tra x0(inf) e x0(sup) 

È istruttivo utilizzare la cosiddetta costruzione grafica di Neyman per comprendere al me-

glio il significato della copertura frequentista. Ci riferiamo ai grafici illustrati in Fig. 3.1 

relativi ad una densità di probabilità qualsiasi, nei quali la variabile x è in ascissa ed il valo-

re atteso del misurando µ è in ordinata. Stabilita la modalità di costruzione dell1intervallo 

di confidenza, la conoscenza della densità di probabilità f(x/µ) consente di individuare, per 

ogni valore di µ, i due estremi dell1intervallo in x. Si tratta infatti dei valori x1 e x2 entrambi 

funzione di µ, per i quali: 
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I luoghi geometrici rispettivamente degli estremi inferiori e degli estremi superiori di tali inter-

valli costituiscono due curve nel piano x k µ che delimitano una zona detta cintura di confiden-
za. Si tratta dell1area tratteggiata di Fig. 3.1. A questo punto, dato il risultato x0 dell1espe-

rimento, traccio una retta verticale per x0 che intercetta le due curve in due punti. Le ordinate di 

tali punti costituiscono gli estremi µ1 e µ2 dell1intervallo cercato (Fig. 3.1 di sinistra). 

La costruzione grafica permette di apprezzare il significato dell1intervallo. I suoi 

due estremi sono rispettivamente quei valori di µ, µ1 e µ2, tali che, se il valor vero fos-

se pari a µ1, la probabilità di misurare un valore più piccolo di x0 sarebbe pari a (1 k
 α) / 2, se invece fosse µ2, la probabilità di misurare un valore più grande di x0 sarebbe 

pure di (1 k α) / 2. 

Che l1intervallo trovato abbia copertura α lo si vede osservando che, detto µ* il valore at-

teso della popolazione del misurando, per qualsiasi valore di x ed in particolare per x0 vale la: 

Neyman’s construction

µ1(x0)

µ2(x0)

x1(µ)

x2(µ)

x0 

µ*

x1(µ*) x2(µ*)
x0 

The determined C.I. is  [µ2(x0) , µ1(x0) ].
Check the correct coverage: suppose µ* is the true value. I repeat N times the measurement and 
determine each time the C.I. By construction in a fraction b of the cases x0 is within x1(µ*)
and x2(µ*) and the corresponding C.I. provides coverage of µ*. 

In 1-b cases x0 lies outside the interval [x1(µ*), x2(µ*)] and the corresponding C.I. does not cover µ*. 
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P(x1(µ*) < x0 < x2 (µ* )) = α  (3.11) 
 

Dunque, se ripeto N volte l1esperimento e ogni volta determino il mio intervallo con la co-
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Nel caso semplice ma molto comune in cui la f(x/µ) sia una distribuzione normale, la 
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Figura 3.2. Costruzione grafica di Neyman per il caso gaussiano con α = 68.3% 
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b
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Figure 18. 90% limit sup (A in the figure) vs. b (B in the figure) for
di↵erent values of n0. These are the upper limits resulting from a bayesian
treatment with uniform prior. (taken from O.Helene, Nucl.Instr. and
Meth. 212 (1983) 319)

The transition between an upper limit statement and a central interval statement de-
pends on the problem we are considering and is arbitrary (see below).

7.3. Frequentist limits. We go back here to the Neyman construction presented in
sect. 5.6. Another way to consider the meaning of eq.144 is the following. The two
extremes ✓1(x0) and ✓2(x0) of a central interval have the following properties: if ✓true =
✓1(x0) the probability of obtaining a value of x larger than x0 is (1��)/2; if ✓true = ✓2(x0)
the probability of obtaining a value of x smaller than x0 is also (1� �)/2.

Now let’s consider the Neyman construction for the case of an upper limit and apply
the same considerations given here. We call s the parameter (namely the amount of sig-
nal) and n0 the result of the measurement (a counting experiment). The construction is
shown in fig.19. The belt is limited on one side only, and for any result of a measurement
n0 we identify sup in such a way that if strue = sup, the probability to get a counting
smaller than n0 is 1 � �

31. By considering the Poisson statistics without background
(b=0) we get:

(198)
n0X

n=0

e
�sups

n
up

n!
= 1� �

31Since we are dealing with upper limits we have to omit here the 1/2, see for instance eqs.141 even
if these equations refer to the bayesian case.
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Figure 19. Neyman construction for the case of an upper limit. In
this case a segment between n1(✓) and 1 is drawn for each value of the
parameter ✓. The segments define the confidence region. Once a value
of n, n0 is obtained, the upper limit sup is found. (For simplicity the
discrete variable n is considered as a real number here).

If n0 = 0 we have

e
�sup = 1� �(199)

sup = ln
1

1� �
(200)

from which we get the same numbers for sup obtained in the bayesian case.
If b is not equal to 0 but is known, eq.198 becomes:

(201)
n0X

n=0

e
�(sup+b)(sup + b)n

n!
= 1� �

and from this equation upper limits can be evaluated for the di↵erent situations.
It has been pointed out that the use of eq.201 gives rise to some problems. In particular

negative values of sup can be obtained using directly the formula32. This doesn’t happen
in the bayesian context where the condition s > 0 is put directly by using the proper
prior.

Another general problem a↵ecting both bayesian and frequentist approach is the so
called flip-flop problem. When n0 is larger than b, at a given point the experimentalist

32A rate is a positive-definite quantity. However, if a rate is 0 or very small with respect to the
experimental sensitivity, the probability that n0 is larger than b is exactly equal to the probability that
n0 is lower than b. This implies that a negative rate naturally comes out from an experimental analysis
based on a di↵erence between two counts. The acceptance of such results is a sort of ”philosophical”
question and is controversial. In the following another example of negative result for a positive-definite
quantity is presented.
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Figure 19. Neyman construction for the case of an upper limit. In
this case a segment between n1(✓) and 1 is drawn for each value of the
parameter ✓. The segments define the confidence region. Once a value
of n, n0 is obtained, the upper limit sup is found. (For simplicity the
discrete variable n is considered as a real number here).

If n0 = 0 we have

e
�sup = 1� �(199)

sup = ln
1

1� �
(200)

from which we get the same numbers for sup obtained in the bayesian case.
If b is not equal to 0 but is known, eq.198 becomes:

(201)
n0X

n=0

e
�(sup+b)(sup + b)n

n!
= 1� �

and from this equation upper limits can be evaluated for the di↵erent situations.
It has been pointed out that the use of eq.201 gives rise to some problems. In particular

negative values of sup can be obtained using directly the formula32. This doesn’t happen
in the bayesian context where the condition s > 0 is put directly by using the proper
prior.

Another general problem a↵ecting both bayesian and frequentist approach is the so
called flip-flop problem. When n0 is larger than b, at a given point the experimentalist

32A rate is a positive-definite quantity. However, if a rate is 0 or very small with respect to the
experimental sensitivity, the probability that n0 is larger than b is exactly equal to the probability that
n0 is lower than b. This implies that a negative rate naturally comes out from an experimental analysis
based on a di↵erence between two counts. The acceptance of such results is a sort of ”philosophical”
question and is controversial. In the following another example of negative result for a positive-definite
quantity is presented.

By construction the probability to measure  n0’<n0 if the true value s=sup(n0) is (1-b) (only one limit)
or the probability to measure n0’> n0 if the true value s=sup(n0) is b
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Figure 19. Neyman construction for the case of an upper limit. In
this case a segment between n1(✓) and 1 is drawn for each value of the
parameter ✓. The segments define the confidence region. Once a value
of n, n0 is obtained, the upper limit sup is found. (For simplicity the
discrete variable n is considered as a real number here).

If n0 = 0 we have

e
�sup = 1� �(199)

sup = ln
1

1� �
(200)

from which we get the same numbers for sup obtained in the bayesian case.
If b is not equal to 0 but is known, eq.198 becomes:
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and from this equation upper limits can be evaluated for the di↵erent situations.
It has been pointed out that the use of eq.201 gives rise to some problems. In particular

negative values of sup can be obtained using directly the formula32. This doesn’t happen
in the bayesian context where the condition s > 0 is put directly by using the proper
prior.

Another general problem a↵ecting both bayesian and frequentist approach is the so
called flip-flop problem. When n0 is larger than b, at a given point the experimentalist

32A rate is a positive-definite quantity. However, if a rate is 0 or very small with respect to the
experimental sensitivity, the probability that n0 is larger than b is exactly equal to the probability that
n0 is lower than b. This implies that a negative rate naturally comes out from an experimental analysis
based on a di↵erence between two counts. The acceptance of such results is a sort of ”philosophical”
question and is controversial. In the following another example of negative result for a positive-definite
quantity is presented.
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Figure 19. Neyman construction for the case of an upper limit. In
this case a segment between n1(✓) and 1 is drawn for each value of the
parameter ✓. The segments define the confidence region. Once a value
of n, n0 is obtained, the upper limit sup is found. (For simplicity the
discrete variable n is considered as a real number here).
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and from this equation upper limits can be evaluated for the di↵erent situations.
It has been pointed out that the use of eq.201 gives rise to some problems. In particular

negative values of sup can be obtained using directly the formula32. This doesn’t happen
in the bayesian context where the condition s > 0 is put directly by using the proper
prior.

Another general problem a↵ecting both bayesian and frequentist approach is the so
called flip-flop problem. When n0 is larger than b, at a given point the experimentalist

32A rate is a positive-definite quantity. However, if a rate is 0 or very small with respect to the
experimental sensitivity, the probability that n0 is larger than b is exactly equal to the probability that
n0 is lower than b. This implies that a negative rate naturally comes out from an experimental analysis
based on a di↵erence between two counts. The acceptance of such results is a sort of ”philosophical”
question and is controversial. In the following another example of negative result for a positive-definite
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Figure 19. Neyman construction for the case of an upper limit. In
this case a segment between n1(✓) and 1 is drawn for each value of the
parameter ✓. The segments define the confidence region. Once a value
of n, n0 is obtained, the upper limit sup is found. (For simplicity the
discrete variable n is considered as a real number here).

If n0 = 0 we have

e
�sup = 1� �(199)

sup = ln
1
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(200)

from which we get the same numbers for sup obtained in the bayesian case.
If b is not equal to 0 but is known, eq.198 becomes:
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and from this equation upper limits can be evaluated for the di↵erent situations.
It has been pointed out that the use of eq.201 gives rise to some problems. In particular

negative values of sup can be obtained using directly the formula32. This doesn’t happen
in the bayesian context where the condition s > 0 is put directly by using the proper
prior.

Another general problem a↵ecting both bayesian and frequentist approach is the so
called flip-flop problem. When n0 is larger than b, at a given point the experimentalist

32A rate is a positive-definite quantity. However, if a rate is 0 or very small with respect to the
experimental sensitivity, the probability that n0 is larger than b is exactly equal to the probability that
n0 is lower than b. This implies that a negative rate naturally comes out from an experimental analysis
based on a di↵erence between two counts. The acceptance of such results is a sort of ”philosophical”
question and is controversial. In the following another example of negative result for a positive-definite
quantity is presented.
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Fig. 9.9 Upper limits at a confidence level of 1 - f3 = 0.95 for different numbers of events 
observed nabs and as a function of the expected number of background events Vb. (a) The 
classical limit. (b) The Bayesian limit based on a uniform prior density for Vs' 

Taking rr(vs ) to be constant for Vs 2:: 0 and zero for Vs < 0, the upper limit 
at a confidence level of 1 - j3 is given by 

1- j3 = 

= 

f;:P L( nobs Ivs ) dvs 

fooo 
L(nobslvs)dvs 

(9.53) 

The integrals can be related to incomplete gamma functions (see e.g. [Arf95]), 
or since nobs is a positive integer, they can be solved by making the substitution 
x = Vs + Vb and integrating by parts nobs times. Equation (9.53) then becomes 

(9.54) 

This can be solved numerically for the upper limit The upper limit as a 
function of Vb is shown in Fig. 9.9(b) for various values of nobs. For the case 
without background, setting Vb = 0 gives 

nob. ( Up)n 
j3 _vup L Vs -e' ---- n! ' 

n=O 
(9.55) 

which is identical to the equation for the classical upper limit (9.16). This can 
be seen by comparing Figs 9.9(a) and (b). The Bayesian limit is always greater 
than or equal to the corresponding classical one, with the two agreeing only for 
Vb = O. 

Poisson
frequentist Bayes
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Taking rr(vs ) to be constant for Vs 2:: 0 and zero for Vs < 0, the upper limit 
at a confidence level of 1 - j3 is given by 

1- j3 = 
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(9.53) 

The integrals can be related to incomplete gamma functions (see e.g. [Arf95]), 
or since nobs is a positive integer, they can be solved by making the substitution 
x = Vs + Vb and integrating by parts nobs times. Equation (9.53) then becomes 

(9.54) 

This can be solved numerically for the upper limit The upper limit as a 
function of Vb is shown in Fig. 9.9(b) for various values of nobs. For the case 
without background, setting Vb = 0 gives 

nob. ( Up)n 
j3 _vup L Vs -e' ---- n! ' 

n=O 
(9.55) 

which is identical to the equation for the classical upper limit (9.16). This can 
be seen by comparing Figs 9.9(a) and (b). The Bayesian limit is always greater 
than or equal to the corresponding classical one, with the two agreeing only for 
Vb = O. 

Poisson
frequentist Bayes

What if nb=4 and 0 events observed?
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Figure 19. Neyman construction for the case of an upper limit. In
this case a segment between n1(✓) and 1 is drawn for each value of the
parameter ✓. The segments define the confidence region. Once a value
of n, n0 is obtained, the upper limit sup is found. (For simplicity the
discrete variable n is considered as a real number here).

If n0 = 0 we have

e
�sup = 1� �(199)

sup = ln
1

1� �
(200)

from which we get the same numbers for sup obtained in the bayesian case.
If b is not equal to 0 but is known, eq.198 becomes:

(201)
n0X

n=0

e
�(sup+b)(sup + b)n

n!
= 1� �

and from this equation upper limits can be evaluated for the di↵erent situations.
It has been pointed out that the use of eq.201 gives rise to some problems. In particular

negative values of sup can be obtained using directly the formula32. This doesn’t happen
in the bayesian context where the condition s > 0 is put directly by using the proper
prior.

Another general problem a↵ecting both bayesian and frequentist approach is the so
called flip-flop problem. When n0 is larger than b, at a given point the experimentalist

32A rate is a positive-definite quantity. However, if a rate is 0 or very small with respect to the
experimental sensitivity, the probability that n0 is larger than b is exactly equal to the probability that
n0 is lower than b. This implies that a negative rate naturally comes out from an experimental analysis
based on a di↵erence between two counts. The acceptance of such results is a sort of ”philosophical”
question and is controversial. In the following another example of negative result for a positive-definite
quantity is presented.
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decides to present the result as a number ± an uncertainty rather than an upper limit.
Such a decision is somehow arbitrary. A method to avoid this problem is the so called
unified approach due to Feldman and Cousins, developed in the frequentist context.

Fig.20 shows the frequentist upper limits obtained as a function of b using the unified
approach that can be directly compared with the bayesian limits shown in Figs.18.

Figure 20. 90% limit sup (Upper end of confidence interval for µ in the
figure) vs. b for di↵erent values of n0. These are the upper limits resulting
from a frequentist treatment in the framework of the so called ”Unified
approach”. The dotted portions of the lines correspond to configuration
where central intervals rather than upper limits should be given. The
dashed portions of the lines correspond to very unlikely configuration
(very small n0 when b is quite large, so that p(n0) is below 1%). (taken
from G.Feldmann, R.Cousins, Phys.Rev.D57 (1998) 3873)

A well known example of a di↵erent result from a bayesian and a frequentist approach
to the same problem is provided by the limit on the electron neutrino mass, based on
the data available in the nineties. In the electron neutrino mass analysis the square mass
m

2 is obtained by a fit. In the 1994 edition of PDG a weighted average m
2 = �54± 30

eV2 was reported33, the full 1� interval (68%) being in the negative ”unphysical” region.
Is this result ”wrong” ? No, because we know that if the true mass value m

2
t is equal

to 0, 16% of the experiments will find a 1� interval entirely in the unphysical region.

33In the last PDG edition the current number is m2 = �0.6± 1.9 eV2.

(see next)
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(very small n0 when b is quite large, so that p(n0) is below 1%). (taken
from G.Feldmann, R.Cousins, Phys.Rev.D57 (1998) 3873)
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2 is obtained by a fit. In the 1994 edition of PDG a weighted average m
2 = �54± 30

eV2 was reported33, the full 1� interval (68%) being in the negative ”unphysical” region.
Is this result ”wrong” ? No, because we know that if the true mass value m

2
t is equal

to 0, 16% of the experiments will find a 1� interval entirely in the unphysical region.
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The question is how to translate this result in an upper limit. Let’s consider the two
approaches, in both cases the likelihood function is a gaussian with � = 30 eV2.

In the frequentist approach, the 95% CL upper limit is the value ofm2, let’s call itm2
up

such that if m2
t = m

2
up, the probability to get a value lower than the one experimentally

found of -54 eV2, is 5%. We obtain m
2
< 4.6 eV2. The same argument for a 90% CL

gives the quite ”disturbing” result m2
< �16 eV2.

In the bayesian approach it is possible to constraint m2
t to be positive by using a prior

⇡(m2
t )constant for m

2
t > 0 and 0 for m2

t < 0. From the Bayes theorem the resulting pdf
of m2

t is:

(202) p(m2
t /m

2) =
L(m2

/m
2
t )⇡(m

2
t )R

dm
2
t
L(m2

/m
2
t
)

The 95% CL upper limit is m2
t < 34 eV2 (m2

t < 27 eV2 at 90% CL).
The construction of the upper limit is shown in fig.21 for both approaches.
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Figure 21. Example of the square neutrino mass. Construction of the
upper limit in the frequentist approach (left plot) and in the bayesian
approach (right plot). (left) The red gaussian is the experimental like-
lihood, the blue gaussian corresponds to the 95% CL upper limit that
leaves 5% of possible the experiment outcomes below the present experi-
mental average. (right) The blue curve is the result of the Bayes theorem
when a prior forcing to positive values is applied (eq.202).

7.4. A modified frequentist approach: the CLs method. Now we consider a
method, developed in the last years and applied in many analyses especially from LHC
experiments, including the search for the Higgs boson. It is the modified frequentist
approach to the problem of setting upper/lower limits in search experiments.

In the frequentist approach, Neyman’s construction

At 97.5% CL  => 
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experiments, including the search for the Higgs boson. It is the modified frequentist
approach to the problem of setting upper/lower limits in search experiments.
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decides to present the result as a number ± an uncertainty rather than an upper limit.
Such a decision is somehow arbitrary. A method to avoid this problem is the so called
unified approach due to Feldman and Cousins, developed in the frequentist context.

Fig.20 shows the frequentist upper limits obtained as a function of b using the unified
approach that can be directly compared with the bayesian limits shown in Figs.18.

Figure 20. 90% limit sup (Upper end of confidence interval for µ in the
figure) vs. b for di↵erent values of n0. These are the upper limits resulting
from a frequentist treatment in the framework of the so called ”Unified
approach”. The dotted portions of the lines correspond to configuration
where central intervals rather than upper limits should be given. The
dashed portions of the lines correspond to very unlikely configuration
(very small n0 when b is quite large, so that p(n0) is below 1%). (taken
from G.Feldmann, R.Cousins, Phys.Rev.D57 (1998) 3873)

A well known example of a di↵erent result from a bayesian and a frequentist approach
to the same problem is provided by the limit on the electron neutrino mass, based on
the data available in the nineties. In the electron neutrino mass analysis the square mass
m

2 is obtained by a fit. In the 1994 edition of PDG a weighted average m
2 = �54± 30

eV2 was reported33, the full 1� interval (68%) being in the negative ”unphysical” region.
Is this result ”wrong” ? No, because we know that if the true mass value m

2
t is equal

to 0, 16% of the experiments will find a 1� interval entirely in the unphysical region.

33In the last PDG edition the current number is m2 = �0.6± 1.9 eV2.
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The question is how to translate this result in an upper limit. Let’s consider the two
approaches, in both cases the likelihood function is a gaussian with � = 30 eV2.

In the frequentist approach, the 95% CL upper limit is the value ofm2, let’s call itm2
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such that if m2
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up, the probability to get a value lower than the one experimentally

found of -54 eV2, is 5%. We obtain m
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< 4.6 eV2. The same argument for a 90% CL

gives the quite ”disturbing” result m2
< �16 eV2.

In the bayesian approach it is possible to constraint m2
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The 95% CL upper limit is m2
t < 34 eV2 (m2

t < 27 eV2 at 90% CL).
The construction of the upper limit is shown in fig.21 for both approaches.
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Figure 21. Example of the square neutrino mass. Construction of the
upper limit in the frequentist approach (left plot) and in the bayesian
approach (right plot). (left) The red gaussian is the experimental like-
lihood, the blue gaussian corresponds to the 95% CL upper limit that
leaves 5% of possible the experiment outcomes below the present experi-
mental average. (right) The blue curve is the result of the Bayes theorem
when a prior forcing to positive values is applied (eq.202).
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approach (right plot). (left) The red gaussian is the experimental like-
lihood, the blue gaussian corresponds to the 95% CL upper limit that
leaves 5% of possible the experiment outcomes below the present experi-
mental average. (right) The blue curve is the result of the Bayes theorem
when a prior forcing to positive values is applied (eq.202).

7.4. A modified frequentist approach: the CLs method. Now we consider a
method, developed in the last years and applied in many analyses especially from LHC
experiments, including the search for the Higgs boson. It is the modified frequentist
approach to the problem of setting upper/lower limits in search experiments.
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decides to present the result as a number ± an uncertainty rather than an upper limit.
Such a decision is somehow arbitrary. A method to avoid this problem is the so called
unified approach due to Feldman and Cousins, developed in the frequentist context.

Fig.20 shows the frequentist upper limits obtained as a function of b using the unified
approach that can be directly compared with the bayesian limits shown in Figs.18.

Figure 20. 90% limit sup (Upper end of confidence interval for µ in the
figure) vs. b for di↵erent values of n0. These are the upper limits resulting
from a frequentist treatment in the framework of the so called ”Unified
approach”. The dotted portions of the lines correspond to configuration
where central intervals rather than upper limits should be given. The
dashed portions of the lines correspond to very unlikely configuration
(very small n0 when b is quite large, so that p(n0) is below 1%). (taken
from G.Feldmann, R.Cousins, Phys.Rev.D57 (1998) 3873)

A well known example of a di↵erent result from a bayesian and a frequentist approach
to the same problem is provided by the limit on the electron neutrino mass, based on
the data available in the nineties. In the electron neutrino mass analysis the square mass
m

2 is obtained by a fit. In the 1994 edition of PDG a weighted average m
2 = �54± 30

eV2 was reported33, the full 1� interval (68%) being in the negative ”unphysical” region.
Is this result ”wrong” ? No, because we know that if the true mass value m

2
t is equal

to 0, 16% of the experiments will find a 1� interval entirely in the unphysical region.

33In the last PDG edition the current number is m2 = �0.6± 1.9 eV2.
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Example of discrepancy between frequentist and Bayesian approaches.  (data available in ‘90s)

Results from fits; 
PDG weighted average:

How can this result be converted into an upper limit for the neutrino mass?

In the Bayesian approach, using a prior forcing mt
2 to be positive

(p=cost for mt
2>0 and p=0 for mt

2<0)

At 95% CL  => 

At 90% CL =>
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mental average. (right) The blue curve is the result of the Bayes theorem
when a prior forcing to positive values is applied (eq.202).
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Figure 21. Example of the square neutrino mass. Construction of the
upper limit in the frequentist approach (left plot) and in the bayesian
approach (right plot). (left) The red gaussian is the experimental like-
lihood, the blue gaussian corresponds to the 95% CL upper limit that
leaves 5% of possible the experiment outcomes below the present experi-
mental average. (right) The blue curve is the result of the Bayes theorem
when a prior forcing to positive values is applied (eq.202).
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Example of discrepancy between frequentist and Bayesian approaches.  (data available in ‘90s)



Jerzy Neyman’s confidence intervals 
•  Scan an unknown 

parameter θ over its range 
•  Given θ, compute the 

interval [x1, x2] that contain x 
with a probability CL = 1−α 

•  Ordering rule is needed! 
–  Central interval? Asymmetric? 

Other? 
•  Invert the confidence belt, 

and find the interval [θ1, θ2] 
for a given experimental 
outcome of x 

•  A fraction 1−α of the 
experiments will produce x 
such that the corresponding 
interval  
[θ1, θ2] contains the true 
value of µ (coverage 
probability) 

•  Note that the random 
variables are [θ1, θ2], not θ  

From PDG statistics review 
RooStats::NeymanConstruction 
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The frequentist unified approach 
(Feldman and Cousins PRD 57 3873 (1998) ) 

generally considered to be as serious a flaw as undercover-
age, comes with a price: loss of power in rejecting false
hypotheses.
Our confidence intervals require the full power of Ney-

man’s construction, which for one measured quantity and
one unknown parameter is called the method of ‘‘confidence
belts’’ @10,12#. Figure 1 illustrates such a construction on a
graph of the parameter m vs the measured quantity x . For
each value of m, one examines P(xum) along the horizontal
line through m. One selects an interval @x1 ,x2# which is a
subset of this line such that

P~xP@x1 ,x2#um!5a . ~2.4!

Such intervals are drawn as horizontal line segments in Fig.
1, at representative values of m. We refer to the interval
@x1 ,x2# as the ‘‘acceptance region’’ or the ‘‘acceptance in-
terval’’ for that m. In order to specify uniquely the accep-
tance region, one must choose auxiliary criteria. One has
total freedom to make this choice, if the choice is not influ-
enced by the data x0 . The most common choices are

P~x,x1um!512a , ~2.5!

which leads to ‘‘upper confidence limits’’ ~which satisfy
P(m.m2)512a!, and

P~x,x1um!5P~x.x2um!5~12a!/2, ~2.6!

which leads to ‘‘central confidence intervals’’ @which satisfy
P(m,m1)5P(m.m2)5(12a)/2#. For these choices, the
full confidence belt construction is rarely mentioned, since a
simpler explanation suffices when one specifies P(x,x1um)
and P(x.x2um) separately. For more complicated choices
which still satisfy the more general specification of Eq. ~2.4!,
an ordering principle is needed to specify which x’s to in-
clude in the acceptance region. We give our ordering prin-
ciple in Sec. IV.

The construction is complete when horizontal acceptance
intervals are drawn for each value of m. Upon performing an
experiment to measure x and obtaining the value x0 , one
draws a vertical line ~shown as a dashed line in Fig. 1!
through x0 on the horizontal axis. The confidence interval is
the union of all values of m for which the corresponding
horizontal interval is intercepted by the vertical line; typi-
cally this is a simply connected interval @m1 ,m2# . When
displayed in texts, typically only the end points of the inter-
vals are drawn, which collectively form the ‘‘confidence
belt.’’
By construction, Eq. ~2.3! is satisfied for all m; hence it is

satisfied for m t , whose value is fixed but unknown.

III. EXAMPLES OF CLASSICAL INTERVALS

A. Gaussian with a boundary at the origin

Figures 2 and 3 show standard confidence belts ~for upper
limits and central intervals, respectively! when the observ-

FIG. 1. A generic confidence belt construction and its use. For
each value of m, one draws a horizontal acceptance interval @x1 ,x2#
such that P(xP@x1 ,x2#um)5a . Upon performing an experiment to
measure x and obtaining the value x0 , one draws the dashed verti-
cal line through x0 . The confidence interval @m1 ,m2# is the union
of all values of m for which the corresponding acceptance interval is
intercepted by the vertical line.

FIG. 2. Standard confidence belt for 90% C.L. upper limits for
the mean of a Gaussian, in units of the rms deviation. The second
line in the belt is at x51` .

FIG. 3. Standard confidence belt for 90% C.L. central confi-
dence intervals for the mean of a Gaussian, in units of the rms
deviation.
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The frequentist unified approach 
(Feldman and Cousins PRD 57 3873 (1998) ) 

Ordering rule 

•  For a fixed θ = θ0 we can have different 
possible choices of intervals giving the same 
probability 1−α are possible 

x 

f(x|θ0) 

1−α 
x 

f(x|θ0) 

1−α 
α/2 

α/2 

Upper limit choice Central interval 

α 
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cally this is a simply connected interval @m1 ,m2# . When
displayed in texts, typically only the end points of the inter-
vals are drawn, which collectively form the ‘‘confidence
belt.’’
By construction, Eq. ~2.3! is satisfied for all m; hence it is

satisfied for m t , whose value is fixed but unknown.

III. EXAMPLES OF CLASSICAL INTERVALS

A. Gaussian with a boundary at the origin

Figures 2 and 3 show standard confidence belts ~for upper
limits and central intervals, respectively! when the observ-

FIG. 1. A generic confidence belt construction and its use. For
each value of m, one draws a horizontal acceptance interval @x1 ,x2#
such that P(xP@x1 ,x2#um)5a . Upon performing an experiment to
measure x and obtaining the value x0 , one draws the dashed verti-
cal line through x0 . The confidence interval @m1 ,m2# is the union
of all values of m for which the corresponding acceptance interval is
intercepted by the vertical line.

FIG. 2. Standard confidence belt for 90% C.L. upper limits for
the mean of a Gaussian, in units of the rms deviation. The second
line in the belt is at x51` .

FIG. 3. Standard confidence belt for 90% C.L. central confi-
dence intervals for the mean of a Gaussian, in units of the rms
deviation.
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generally considered to be as serious a flaw as undercover-
age, comes with a price: loss of power in rejecting false
hypotheses.
Our confidence intervals require the full power of Ney-

man’s construction, which for one measured quantity and
one unknown parameter is called the method of ‘‘confidence
belts’’ @10,12#. Figure 1 illustrates such a construction on a
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line through m. One selects an interval @x1 ,x2# which is a
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and P(x.x2um) separately. For more complicated choices
which still satisfy the more general specification of Eq. ~2.4!,
an ordering principle is needed to specify which x’s to in-
clude in the acceptance region. We give our ordering prin-
ciple in Sec. IV.

The construction is complete when horizontal acceptance
intervals are drawn for each value of m. Upon performing an
experiment to measure x and obtaining the value x0 , one
draws a vertical line ~shown as a dashed line in Fig. 1!
through x0 on the horizontal axis. The confidence interval is
the union of all values of m for which the corresponding
horizontal interval is intercepted by the vertical line; typi-
cally this is a simply connected interval @m1 ,m2# . When
displayed in texts, typically only the end points of the inter-
vals are drawn, which collectively form the ‘‘confidence
belt.’’
By construction, Eq. ~2.3! is satisfied for all m; hence it is

satisfied for m t , whose value is fixed but unknown.

III. EXAMPLES OF CLASSICAL INTERVALS

A. Gaussian with a boundary at the origin

Figures 2 and 3 show standard confidence belts ~for upper
limits and central intervals, respectively! when the observ-

FIG. 1. A generic confidence belt construction and its use. For
each value of m, one draws a horizontal acceptance interval @x1 ,x2#
such that P(xP@x1 ,x2#um)5a . Upon performing an experiment to
measure x and obtaining the value x0 , one draws the dashed verti-
cal line through x0 . The confidence interval @m1 ,m2# is the union
of all values of m for which the corresponding acceptance interval is
intercepted by the vertical line.

FIG. 2. Standard confidence belt for 90% C.L. upper limits for
the mean of a Gaussian, in units of the rms deviation. The second
line in the belt is at x51` .

FIG. 3. Standard confidence belt for 90% C.L. central confi-
dence intervals for the mean of a Gaussian, in units of the rms
deviation.
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µ < x + 1.282
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Fig. 7.6 Illustration of the flip-flopping problem. The plot shows the quoted central value of ! as
a function of the measured x (dashed line), and the 90% confidence interval corresponding to the
choice of quoting a central interval for x= " ! 3 and an upper limit for x= " < 3. The coverage
decreases from 90 to 85% for a value of ! corresponding to the horizontal lines with arrows

If x= " ! 3, the quoted confidence interval, given the measurement x, has a central
value with a symmetric error equal to ˙ " at the 68.27% confidence level (CL), or
˙ 1:645" at 90% CL. Instead, if x= " < 3, the confidence interval is Œ0; !up# with
an upper limit !up D x C 1:282 at 90% CL, given the corresponding area under a
Gaussian PDF.

In summary, the quoted confidence interval at 90% CL is:

Œ!lo; !up# D
(
Œx " 1:645; xC 1:645# if x= " ! 3

Œ0; xC 1:282# if x= " < 3
: (7.10)

The situation is shown in Fig. 7.6.
The choice to switch from a central interval to a fully asymmetric interval, which

gives an upper limit, based on the observation of x, produces an incorrect coverage.
Looking at Fig. 7.6, depending on the value of !, the coverage can be determined
as the probability corresponding to the interval Œxlo; xup# obtained by crossing the
confidence belt with a horizontal line. One may have cases where the coverage
decreases from 90% to 85%, which is lower than the desired confidence level,
indicated by the lines with arrows in Fig. 7.6.

Next Sect. 7.5 presents the method due to Feldman and Cousins to consistently
preserve the coverage for this example without incurring the flip-flopping problem.

s=1
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7.5 The Unified Feldman–Cousins Approach

In order to avoid the flip-flopping problem and to ensure the correct coverage, the
ordering rule proposed by Feldman and Cousins [3] provides a Neyman confidence
belt, following the procedure described in Sect. 7.2, that smoothly changes from a
central or quasi-central interval to an upper limit, in the case of low observed signal
yield.

The proposed ordering rule is based on a likelihood ratio whose properties will
be further discussed in Sect. 9.5. Given a value !0 of the unknown parameter ! , the
chosen interval of the variable x used for the Neyman belt construction is defined
by the ratio of two PDFs of x, one under the hypothesis that ! is equal to the
considered fixed value !0 , the other under the hypothesis that ! is equal to the
maximum likelihood estimate value O!.x/, corresponding to the given measurement
x. The likelihood ratio must be greater than a constant k˛ whose value depends on
the chosen confidence level 1 ! ˛. In a formula:

".x j !0 / D
f .x j !0 /
f .x j O!.x//

> k˛ : (7.11)

The constant k˛ should be taken such that the integral of the PDF in the confidence
interval R˛ is equal to 1 ! ˛:

Z

R˛
f .x j !0 / dx D 1 ! ˛ : (7.12)

The confidence interval R˛ for a given value ! D !0 is defined by Eq. (7.11):

R˛.!0 / D fx W ".x j !0 / > k˛g : (7.13)

The case is illustrated in Fig. 7.7.
Feldman and Cousins computed the confidence interval for the simple Gaussian

case discussed in Sect. 7.4. The value # D O#.x/ that maximizes the likelihood

Fig. 7.7 Ordering rule in the
Feldman–Cousins approach,
based on the likelihood ratio
".x j !0 /D f .x j !0 /= f .x j O!.x//

x

f (x|θ )

1−α

f (x|θ )0 0

f (x|θ(x))

kα

^
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Two examples
1) Gaussian errors with a bounded physical region
2) Poisson processes with background 

In contrast with the usual classical construction for upper limits,
the unified construction “naturally” avoids the flip-flop problem 
and unphysical confidence intervals 
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function, given x, under the constraint ! ! 0, is:

O!.x/ D max.x; 0/ : (7.14)

The PDF for x, using the maximum likelihood estimate for !, becomes:

f .x j O!.x// D

8
ˆ̂<

ˆ̂:

1p
2"

if x ! 0

1p
2"

e!x2=2 if x < 0
: (7.15)

The likelihood ratio in Eq. (7.11) can be written in this case as:

#.x j!/ D f .x j!/
f .x j O!.x// D

(
exp.".x " !/2=2/ if x ! 0

exp.x! " !2=2/ if x < 0
: (7.16)

The interval Œxlo.!0/; xup.!0/$, for a given ! D !0, can be found numerically
using the equation #.x j!/ > k˛ and imposing the desired confidence level 1 " ˛,
according to Eq. (7.12).

The result is shown in Fig. 7.8, and can be compared with Fig. 7.6. Using the
Feldman–Cousins approach, for large values of x, the usual symmetric confidence
interval is obtained. As x moves towards lower values, the interval becomes more
and more asymmetry, and at some point it becomes fully asymmetric .i:e: W
Œ0; !up$/, determining an upper limit !up. For negative values of x, the result is
always an upper limit, avoiding unphysical cases corresponding to negative values
of !. Negative values of ! would not be excluded using a Neyman belt construction

x

µ
symmetric errors

asymmetric errors

upper limit

Fig. 7.8 Neyman confidence belt constructed using the Feldman–Cousins ordering

to a horizontal line segment in Fig. 1! is the interval
n5@0,6# . Because of the discreteness of n , the acceptance
region contains a summed probability greater than 90%; this
is unavoidable no matter what the ordering principle, and
leads to confidence intervals which are conservative.
For comparison, in the column of Table I labeled ‘‘U.L.,’’

we place check marks at the values of n which are in the
acceptance region of standard 90% C.L. upper limits for this
example, and in the column labeled ‘‘central,’’ we place
check marks at the values of n which are in the acceptance
region of standard 90% C.L central confidence intervals.
The construction proceeds by finding the acceptance re-

gion for all values of m, for the given value of b . With a
computer, we perform the construction on a grid of discrete
values of m, in the interval @0, 50# in steps of 0.005. This
suffices for the precision desired ~0.01! in the end points of
confidence intervals. We find that a mild pathology arises as
a result of the fact that the observable n is discrete. When the
vertical dashed line is drawn at some n0 ~in analogy with in
Fig. 1!, it can happen that the set of intersected horizontal
line segments is not simply connected. When this occurs we
naturally take the confidence interval to have m1 correspond-
ing to the bottommost segment intersected, and to have m2
corresponding to the topmost segment intersected.
We then repeat the construction for a selection of fixed

values of b . We find an additional mild pathology, again
caused by the discreteness in n: when we compare the results
for different values of b for fixed n0 , the upper end point m2
is not always a decreasing function of b , as would be ex-
pected. When this happens, we force the function to be non-
increasing, by lengthening selected confidence intervals as
necessary. We have investigated this behavior, and compen-
sated for it, over a fine grid of b in the range @0, 25# in
increments of 0.001 ~with some additional searching to even
finer precision!.
Our compensation for the two pathologies mentioned in

the previous paragraphs adds slightly to our intervals’ con-
servatism, which however remains dominated by the un-
avoidable effects due to the discreteness in n .
The confidence belts resulting from our construction are

shown in Fig. 7, which may be compared with Figs. 5 and 6.
At large n , Fig. 7 is similar to Fig. 6; the background is
effectively subtracted without constraint, and our ordering
principle produces two-sided intervals which are approxi-
mately central intervals. At small n , the confidence intervals
from Fig. 7 automatically become upper limits on m; i.e., the
lower end point m1 is 0 for n<4 in this case. Thus, flip-
flopping between Figs. 5 and 6 is replaced by one coherent
set of confidence intervals ~and no interval is the empty set!.
Tables II–IX give our confidence intervals @m1 ,m2# for

the signal mean m for the most commonly used confidence
levels, namely 68.27% ~sometimes called 1s intervals by
analogy with Gaussian intervals!, 90%, 95%, and 99%. Val-
ues in italics indicate results which must be taken with par-
ticular caution, since the probability of obtaining the number
of events observed or fewer is less than 1%, even if m50.
~See Sec. IV C below.!
Figure 8 shows, for n50–10, the value of m2 as a func-

tion of b , for 90% C.L. The small horizontal sections in the
curves are the result of the mild pathology mentioned above,
in which the original curves make a small dip, which we

have eliminated. Dashed portions in the lower right indicate
results which must be taken with particular caution, corre-
sponding to the italicized values in the tables. Dotted por-
tions on the upper left indicate regions where m1 is non-zero.
These corresponding values of m1 are shown in Fig. 9.
Figure 8 can be compared with the Bayesian calculation

in Fig. 28.8 of Ref. @2# which uses a uniform prior for m t . A
noticeable difference is that our curve for n50 decreases as
a function of b , while the result of the Bayesian calculation
stays constant ~at 2.3!. The decreasing limit in our case re-
flects the fact that P(n0um) decreases as b increases. We find
that objections to this behavior are typically based on a mis-
placed Bayesian interpretation of classical intervals, namely
the attempt to interpret them as statements about P(m tun0).

B. Gaussian with a boundary at the origin

It is straightforward to apply our ordering principle to the
other troublesome example of Sec. III, the case of a Gaussian
resolution function @Eq. ~3.1!# for m, when m is physically
bounded to non-negative values. In analogy with the Poisson
case, for a particular x , we let mbest be the physically allowed
value of m for which P(xum) is maximum. Then
mbest5max(0,x), and

P~xumbest!5H
1/A2p , x>0,

exp~2x2/2!/A2p , x,0.
~4.2!

We then compute R in analogy to Eq. ~4.1!, using Eqs. ~3.1!
and ~4.2!:

R~x !5
P~xum!

P~xumbest!
5H

exp~2~x2m!2/2!, x>0
exp~xm2m2/2!, x,0 .

~4.3!

During our Neyman construction of confidence intervals, R
determines the order in which values of x are added to the
acceptance region at a particular value of m. In practice, this
means that for a given value of m, one finds the interval
@x1 ,x2# such that R(x1)5R(x2) and

FIG. 7. Confidence belt based on our ordering principle, for
90% C.L. confidence intervals for unknown Poisson signal mean m
in the presence of a Poisson background with known mean b53.0.
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Rank x in the acceptance interval [x1,x2]  by the ratio

generally considered to be as serious a flaw as undercover-
age, comes with a price: loss of power in rejecting false
hypotheses.
Our confidence intervals require the full power of Ney-

man’s construction, which for one measured quantity and
one unknown parameter is called the method of ‘‘confidence
belts’’ @10,12#. Figure 1 illustrates such a construction on a
graph of the parameter m vs the measured quantity x . For
each value of m, one examines P(xum) along the horizontal
line through m. One selects an interval @x1 ,x2# which is a
subset of this line such that

P~xP@x1 ,x2#um!5a . ~2.4!

Such intervals are drawn as horizontal line segments in Fig.
1, at representative values of m. We refer to the interval
@x1 ,x2# as the ‘‘acceptance region’’ or the ‘‘acceptance in-
terval’’ for that m. In order to specify uniquely the accep-
tance region, one must choose auxiliary criteria. One has
total freedom to make this choice, if the choice is not influ-
enced by the data x0 . The most common choices are

P~x,x1um!512a , ~2.5!

which leads to ‘‘upper confidence limits’’ ~which satisfy
P(m.m2)512a!, and

P~x,x1um!5P~x.x2um!5~12a!/2, ~2.6!

which leads to ‘‘central confidence intervals’’ @which satisfy
P(m,m1)5P(m.m2)5(12a)/2#. For these choices, the
full confidence belt construction is rarely mentioned, since a
simpler explanation suffices when one specifies P(x,x1um)
and P(x.x2um) separately. For more complicated choices
which still satisfy the more general specification of Eq. ~2.4!,
an ordering principle is needed to specify which x’s to in-
clude in the acceptance region. We give our ordering prin-
ciple in Sec. IV.

The construction is complete when horizontal acceptance
intervals are drawn for each value of m. Upon performing an
experiment to measure x and obtaining the value x0 , one
draws a vertical line ~shown as a dashed line in Fig. 1!
through x0 on the horizontal axis. The confidence interval is
the union of all values of m for which the corresponding
horizontal interval is intercepted by the vertical line; typi-
cally this is a simply connected interval @m1 ,m2# . When
displayed in texts, typically only the end points of the inter-
vals are drawn, which collectively form the ‘‘confidence
belt.’’
By construction, Eq. ~2.3! is satisfied for all m; hence it is

satisfied for m t , whose value is fixed but unknown.

III. EXAMPLES OF CLASSICAL INTERVALS

A. Gaussian with a boundary at the origin

Figures 2 and 3 show standard confidence belts ~for upper
limits and central intervals, respectively! when the observ-

FIG. 1. A generic confidence belt construction and its use. For
each value of m, one draws a horizontal acceptance interval @x1 ,x2#
such that P(xP@x1 ,x2#um)5a . Upon performing an experiment to
measure x and obtaining the value x0 , one draws the dashed verti-
cal line through x0 . The confidence interval @m1 ,m2# is the union
of all values of m for which the corresponding acceptance interval is
intercepted by the vertical line.

FIG. 2. Standard confidence belt for 90% C.L. upper limits for
the mean of a Gaussian, in units of the rms deviation. The second
line in the belt is at x51` .

FIG. 3. Standard confidence belt for 90% C.L. central confi-
dence intervals for the mean of a Gaussian, in units of the rms
deviation.
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where µbest is the physically allowed
value of µ for which P(x|µ) is maximum.  
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TABLE X. Our confidence intervals for the mean m of a Gaussian, constrained to be non-negative, as a function of the measured mean
x0 , for commonly used confidence levels. Italicized intervals correspond to cases where the goodness-of-fit probability ~Sec. IV C! is less
than 1%. All numbers are in units of s.

x0 68.27% C.L. 90% C.L. 95% C.L. 99% C.L. x0 68.27% C.L. 90% C.L. 95% C.L. 99% C.L.

23.0 0.00, 0.04 0.00, 0.26 0.00, 0.42 0.00, 0.80
22.9 0.00, 0.04 0.00, 0.27 0.00, 0.44 0.00, 0.82
22.8 0.00, 0.04 0.00, 0.28 0.00, 0.45 0.00, 0.84
22.7 0.00, 0.04 0.00, 0.29 0.00, 0.47 0.00, 0.87
22.6 0.00, 0.05 0.00, 0.30 0.00, 0.48 0.00, 0.89
22.5 0.00, 0.05 0.00, 0.32 0.00, 0.50 0.00, 0.92
22.4 0.00, 0.05 0.00, 0.33 0.00, 0.52 0.00, 0.95
22.3 0.00, 0.05 0.00, 0.34 0.00, 0.54 0.00, 0.99
22.2 0.00, 0.06 0.00, 0.36 0.00, 0.56 0.00, 1.02
22.1 0.00, 0.06 0.00, 0.38 0.00, 0.59 0.00, 1.06
22.0 0.00, 0.07 0.00, 0.40 0.00, 0.62 0.00, 1.10
21.9 0.00, 0.08 0.00, 0.43 0.00, 0.65 0.00, 1.14
21.8 0.00, 0.09 0.00, 0.45 0.00, 0.68 0.00, 1.19
21.7 0.00, 0.10 0.00, 0.48 0.00, 0.72 0.00, 1.24
21.6 0.00, 0.11 0.00, 0.52 0.00, 0.76 0.00, 1.29
21.5 0.00, 0.13 0.00, 0.56 0.00, 0.81 0.00, 1.35
21.4 0.00, 0.15 0.00, 0.60 0.00, 0.86 0.00, 1.41
21.3 0.00, 0.17 0.00, 0.64 0.00, 0.91 0.00, 1.47
21.2 0.00, 0.20 0.00, 0.70 0.00, 0.97 0.00, 1.54
21.1 0.00, 0.23 0.00, 0.75 0.00, 1.04 0.00, 1.61
21.0 0.00, 0.27 0.00, 0.81 0.00, 1.10 0.00, 1.68
20.9 0.00, 0.32 0.00, 0.88 0.00, 1.17 0.00, 1.76
20.8 0.00, 0.37 0.00, 0.95 0.00, 1.25 0.00, 1.84
20.7 0.00, 0.43 0.00, 1.02 0.00, 1.33 0.00, 1.93
20.6 0.00, 0.49 0.00, 1.10 0.00, 1.41 0.00, 2.01
20.5 0.00, 0.56 0.00, 1.18 0.00, 1.49 0.00, 2.10
20.4 0.00, 0.64 0.00, 1.27 0.00, 1.58 0.00, 2.19
20.3 0.00, 0.72 0.00, 1.36 0.00, 1.67 0.00, 2.28
20.2 0.00, 0.81 0.00, 1.45 0.00, 1.77 0.00, 2.38
20.1 0.00, 0.90 0.00, 1.55 0.00, 1.86 0.00, 2.48
0.0 0.00, 1.00 0.00, 1.64 0.00, 1.96 0.00, 2.58

0.1 0.00, 1.10 0.00, 1.74 0.00, 2.06 0.00, 2.68
0.2 0.00, 1.20 0.00, 1.84 0.00, 2.16 0.00, 2.78
0.3 0.00, 1.30 0.00, 1.94 0.00, 2.26 0.00, 2.88
0.4 0.00, 1.40 0.00, 2.04 0.00, 2.36 0.00, 2.98
0.5 0.02, 1.50 0.00, 2.14 0.00, 2.46 0.00, 3.08
0.6 0.07, 1.60 0.00, 2.24 0.00, 2.56 0.00, 3.18
0.7 0.11, 1.70 0.00, 2.34 0.00, 2.66 0.00, 3.28
0.8 0.15, 1.80 0.00, 2.44 0.00, 2.76 0.00, 3.38
0.9 0.19, 1.90 0.00, 2.54 0.00, 2.86 0.00, 3.48
1.0 0.24, 2.00 0.00, 2.64 0.00, 2.96 0.00, 3.58
1.1 0.30, 2.10 0.00, 2.74 0.00, 3.06 0.00, 3.68
1.2 0.35, 2.20 0.00, 2.84 0.00, 3.16 0.00, 3.78
1.3 0.42, 2.30 0.02, 2.94 0.00, 3.26 0.00, 3.88
1.4 0.49, 2.40 0.12, 3.04 0.00, 3.36 0.00, 3.98
1.5 0.56, 2.50 0.22, 3.14 0.00, 3.46 0.00, 4.08
1.6 0.64, 2.60 0.31, 3.24 0.00, 3.56 0.00, 4.18
1.7 0.72, 2.70 0.38, 3.34 0.06, 3.66 0.00, 4.28
1.8 0.81, 2.80 0.45, 3.44 0.16, 3.76 0.00, 4.38
1.9 0.90, 2.90 0.51, 3.54 0.26, 3.86 0.00, 4.48
2.0 1.00, 3.00 0.58, 3.64 0.35, 3.96 0.00, 4.58
2.1 1.10, 3.10 0.65, 3.74 0.45, 4.06 0.00, 4.68
2.2 1.20, 3.20 0.72, 3.84 0.53, 4.16 0.00, 4.78
2.3 1.30, 3.30 0.79, 3.94 0.61, 4.26 0.00, 4.88
2.4 1.40, 3.40 0.87, 4.04 0.69, 4.36 0.07, 4.98
2.5 1.50, 3.50 0.95, 4.14 0.76, 4.46 0.17, 5.08
2.6 1.60, 3.60 1.02, 4.24 0.84, 4.56 0.27, 5.18
2.7 1.70, 3.70 1.11, 4.34 0.91, 4.66 0.37, 5.28
2.8 1.80, 3.80 1.19, 4.44 0.99, 4.76 0.47, 5.38
2.9 1.90, 3.90 1.28, 4.54 1.06, 4.86 0.57, 5.48
3.0 2.00, 4.00 1.37, 4.64 1.14, 4.96 0.67, 5.58
3.1 2.10, 4.10 1.46, 4.74 1.22, 5.06 0.77, 5.68

In contrast, our construction always provides a confidence
interval at the desired confidence level ~with of course some
conservatism for the discrete problems!. Independently, one
can calculate the analogue of the goodness-of-fit, and decide
whether or not to consider the data or model ~including mean
expected background! to be invalid. This issue arises in the
case when an upper limit is quoted; i.e., the confidence in-
terval is @0,m2# .
In the constrained Gaussian case, one might have data

x0522.0 and hence a 90% C.L. confidence interval @0, 0.4#
from Table X. The natural analogue for the goodness-of-fit is
the probability to obtain x<x0 under the best-fit assumption
of m50.
In the Poisson-with-background case, one might have data

n051 for b53 and hence a 90% C.L. confidence interval @0,
1.88# from Table IV. The natural analogue for the goodness-
of-fit is the probability to obtain n<n0 under the best-fit
assumption of m50.

As noted above, in Fig. 8 we follow the practice of the
PDG @2# by indicating with dashed lines those regions where
the goodness-of-fit criterion is less than 1%. In Tables II–X,
the corresponding intervals are italicized.
In summary, because our intervals decouple the confi-

dence level used for a goodness-of-fit test from the confi-
dence level used for confidence interval construction, one is
free to choose them independently, at whatever level desired.

V. APPLICATION TO NEUTRINO OSCILLATION
SEARCHES

A. Experimental problem

Experimental searches for neutrino oscillations provide an
example of the application of this technique to a multidimen-
sional problem. Indeed it is just this problem that originally
focused our attention on this investigation.
Experiments of this type search for a transformation of

one species of neutrino into another. To be concrete, we

3884 57GARY J. FELDMAN AND ROBERT D. COUSINS

assume that the experiment is to search for transformations
between muon type neutrinos, nm , and electron type neutri-
nos, ne , and that the influence of other types of neutrinos can
be ignored. We hypothesize that the weak eigenstates unm&
and une& are linear superpositions of two mass eigenstates
un1& and un2& ,

une&5un1&cos u1un2&sin u ~5.1!

and

unm&5un2&cos u2un1&sin u , ~5.2!

and that the mass eigenvalues for un1& and un2& are m1 and
m2 , respectively. Quantum mechanics dictates that the prob-
ability of such a transformation is given by the formula
@2,16#

P~nm!ne!5sin2~2u!sin2S
1.27Dm2L

E D , ~5.3!

where P is the probability for a nm to transform into a ne , L
is the distance in km between the creation of the neutrino
from meson decay and its interaction in the detector, E is the
neutrino energy in GeV, and Dm25um1

22m2
2
u in (eV/c2)2.

The result of such an experiment is typically represented
as a two-dimensional confidence region in the plane of the
two unknown physical parameters, u, the rotation angle be-
tween the weak and mass eigenstates, and Dm2, the ~posi-
tive! difference between the squares of the neutrino masses.
Traditionally, sin2(2u) is plotted along the horizontal axis
and Dm2 is plotted along the vertical axis. An example of
such a plot is shown in Fig. 11, based on a toy model that we
develop below. In this example, no evidence for oscillations
is seen and the confidence region is set as the area to the left
of the curve in this figure.

B. Proposed technique for determining confidence regions

The problem of setting the confidence region for a neu-
trino oscillation search experiment often shares all of the
difficulties discussed in the previous sections. The variable

sin2(2u) is clearly bounded by zero and one. Values outside
this region can have no possible interpretation within the
theoretical framework that defines the unknown physical pa-
rameters. Yet consider an experiment searching in a region
of Dm2 in which oscillations either do not exist or are well
below the sensitivity of the experiment. Such an experiment
is typically searching for a small signal of excess ne interac-
tions in a potentially large background of ne interactions
from conventional sources and misidentified nm interactions.
Thus, it is equally likely to have a best fit to a negative value
of sin2(2u) as to a positive one, provided that the fit to Eq.
~5.3! is unconstrained.
Typically, the experimental measurement consists of

counting the number of events in an arbitrary number of bins
@17# in the observed energy of the neutrino and possibly
other measured variables, such as the location of the interac-
tion in the detector. Thus, the measured data consist of a set
N[$ni%, together with an assumed known mean expected
background B[$bi% and a calculated expected oscillation
contribution T[$m iusin2(2u),Dm2%.
To construct the confidence region, the experimenter must

choose an ordering principle to decide which of the large
number of possible N sets should be included in the accep-
tance region for each point on the sin2(2u)-Dm2 plane. We
suggest an ordering principle identical to the one suggested
in Sec. IV, namely the ratio of the probabilities,

R5
P~NuT !

P~NuTbest!
, ~5.4!

where Tbest„sin2(2u)best ,Dmbest
2 … gives the highest probability

for P(NuT) for the physically allowed values of sin2(2u) and
Dm2.
In the Gaussian regime, x2522 ln(P), and so this ap-

proach is equivalent to using the difference in x2 between T
and Tbest , i.e.,

R8[Dx25(
i

F ~ni2bi2m i!
2

s i
2 2

~ni2bi2mbesti!
2

s i
2 G ,

~5.5!

FIG. 10. Plot of our 90% confidence intervals for the mean of a
Gaussian, constrained to be non-negative, described in the text.

FIG. 11. Calculation of the confidence region for an example of
the toy model in which sin2(2u)50. The 90% confidence region is
the area to the left of the curve.
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able x is simply the measured value of m in an experiment
with a Gaussian resolution function with known fixed rms
deviation s, set here to unity. I.e.,

P~xum!5
1

A2p
exp@2~x2m!2/2# . ~3.1!

We consider the interesting case where only non-negative
values for m are physically allowed ~for example, if m is a
mass!. Thus, the graph does not exist for m,0.
Although these are standard graphs, we believe that com-

mon use of them is not entirely proper. Figure 2, constructed
using Eq. ~2.5!, is appropriate for experiments when it is
determined before performing the experiment that an upper
limit will be published. Figure 3, constructed using Eq. ~2.6!,
is appropriate for experiments when it is determined before
performing the experiment that a central confidence interval
will be published. However, it may be deemed more sensible
to decide, based on the results of the experiment, whether to
publish an upper limit or a central confidence interval.
Let us suppose, for example, that physicist X takes the

following attitude in an experiment designed to measure a
small quantity: ‘‘If the result x is less then 3s, I will state an
upper limit from the standard tables. If the result is greater
than 3s, I will state a central confidence interval from the
standard tables.’’ We call this policy ‘‘flip-flopping’’ based
on the data. Furthermore, physicist X may say, ‘‘If my mea-
sured value of a physically positive quantity is negative, I
will pretend that I measured zero when quoting a confidence
interval,’’ which introduces some conservatism.
We can examine the effect of such a flip-flopping policy

by displaying it in confidence-belt form as shown in Fig. 4.
For each value of measured x , we draw at that x the vertical
segment @m1 ,m2# that physicist X will quote as a confidence
interval. Then we can examine this collection of vertical con-
fidence intervals to see what horizontal acceptance intervals

it implies. For example, for m52.0, the acceptance interval
has x15221.28 and x25211.64. This interval only con-
tains 85% of the probability P(xum). Thus Eq. ~2.4! is not
satisfied. Physicists X’s intervals undercover for a significant
range of m: they are not confidence intervals or conservative
confidence intervals.
Both Figs. 2 and 3 are confidence intervals when used

appropriately, i.e., without flip-flopping. However, the result
is unsatisfying when one measures, for example, x521.8.
In that case, one draws the vertical line as directed and finds
that the confidence interval is the empty set. @An alternative
way of expressing this situation is to allow non-physical m’s
when constructing the confidence belt, and then to say that
the confidence interval is entirely in the non-physical region.
This requires knowing P(xum) for non-physical m, which
can raise conceptual difficulties.# When this situation arises,
one knows that one is in the ‘‘wrong’’ 10% of the ensemble
quoting 90% C.L. intervals. One can go ahead and quote the
wrong result, and the ensemble of intervals will have the
proper coverage. But this is not very comforting.
Both problems of the previous two paragraphs are solved

by the ordering principle which we give in Sec. IV.

B. Poisson process with background

Figures 5 and 6 show standard @13,14# confidence belts
for a Poisson process when the observable x is the total
number of observed events, n , consisting of signal events
with mean m and background events with known mean b .
I.e.,

P~num!5~m1b !nexp@2~m1b !#/n!. ~3.2!

In these figures, we use for illustration the case where
b53.0.
Since n is an integer, Eq. ~2.3! can only be approximately

satisfied. By convention dating to the 1930s, one strictly
avoids undercoverage and replaces the equality in Eq. ~2.3!
with ‘‘>.’’ Thus the intervals overcover, and are conserva-
tive.

FIG. 4. Plot of confidence belts implicitly used for 90% C.L.
confidence intervals ~vertical intervals between the belts! quoted by
flip-flopping physicist X, described in the text. They are not valid
confidence belts, since they can cover the true value at a frequency
less than the stated confidence level. For 1.36,m,4.28, the cov-
erage ~probability contained in the horizontal acceptance interval! is
85%.

FIG. 5. Standard confidence belt for 90% C.L. upper limits, for
unknown Poisson signal mean m in the presence of a Poisson back-
ground with known mean b53.0. The second line in the belt is at
n51` .
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Although the word ‘‘conservative’’ in this context may be
viewed by some as desirable, in fact it is an undesirable
property of a set of confidence intervals. Ideal intervals cover
the unknown true value at exactly the stated confidence: 90%
C.L. intervals should fail to contain the true value 10% of the
time. If one desires intervals which cover more than 90% of
the time, the solution is not to add conservatism to the inter-
vals, but rather to choose a higher confidence level. The dis-
creteness of n in the Poisson problem leads unavoidably to
some conservatism, but this is unfortunate, not a virtue.
The Poisson intervals in Figs. 5 and 6 suffer from the

same problems as the Gaussian intervals. First, if physicist X
uses the data to decide whether to use Fig. 5 or Fig. 6, then
the resulting hybrid set can undercover. Second, there is a
well-known problem if, for example, b53.0 and no events
are observed. In that case, the confidence interval is again the
empty set. These problems are solved by the ordering prin-
ciple given in Sec. IV.
For this Poisson case, there is an alternative set of inter-

vals, given by Crow and Gardner @15#, which is instructive
because it requires the full Neyman construction. In con-
structing these intervals, one minimizes the horizontal length
of the acceptance region @n1 ,n2# at each value of m. Since n
is a discrete variable, the concept of length in the horizontal
direction can be well defined as the number of discrete
points. Said another way, the points in the acceptance inter-
val at each m are chosen in order of decreasing P(num), until
the sum of P(num) meets or exceeds the desired C.L. ~There
are other technical details in the original paper.! The Crow-
Gardner intervals are instructive because neither Eq. ~2.5!
nor Eq. ~2.6! is satisfied, even as a conservative inequality.
~Recall that x is identified with n in this section.! For
a50.9, P(n,n1um) varies between 0.018 and 0.089, and
P(n.n2um) varies between 0.011 and 0.078, in a manner
dictated by the Neyman construction so that always
P(nP@n1 ,n2#um)>0.9. Like Crow and Gardner, we use
Neyman’s construction, but with a different ordering for
choosing the points in the acceptance interval.

IV. NEW INTERVALS FROM AN ORDERING PRINCIPLE
BASED ON LIKELIHOOD RATIOS

A. Poisson process with background

We begin with a numerical example which occurs in the
construction of confidence belts for a Poisson process with
background. The construction proceeds in the manner of Fig.
1, where the measurement x in Fig. 1 now corresponds to the
measured total number of events n .
Let the known mean background be b53.0, and consider

the construction of the horizontal acceptance interval at sig-
nal mean m50.5. Then P(num) is given by Eq. ~3.2!, and is
given in the second column of Table I.
Now consider, for example, n50. For the assumed b53.,

the probability of obtaining 0 events is 0.03 if m50.5, which
is quite low on an absolute scale. However, it is not so low
when compared to the probability ~0.05! of obtaining 0
events with b53.0 and m50.0, which is the alternate hy-
pothesis with the greatest likelihood. A ratio of likelihoods,
in this case 0.03/0.05, is what we use as our ordering prin-
ciple when selecting those values of n to place in the accep-
tance interval.
That is, for each n , we let mbest be that value of the mean

signal m which maximizes P(num); we require mbest to be
physically allowed, i.e., non-negative in this case. Then
mbest5max(0,n2b), and is given in the third column of
Table I. We then compute P(numbest), which is given in the
fourth column. The fifth column contains the ratio

R5P~num!/P~numbest!, ~4.1!

and is the quantity on which our ordering principle is based.
R is a ratio of two likelihoods: the likelihood of obtaining n
given the actual mean m, and the likelihood of obtaining n
given the best-fit physically allowed mean. Values of n are
added to the acceptance region for a given m in decreasing
order of R , until the sum of P(num) meets or exceeds the
desired C.L. This ordering, for values of n necessary to ob-
tain total probability of 90%, is shown in the column labeled
‘‘rank.’’ Thus, the acceptance region for m50.5 ~analogous

FIG. 6. Standard confidence belt for 90% C.L. central confi-
dence intervals, for unknown Poisson signal mean m in the presence
of a Poisson background with known mean b53.0.

TABLE I. Illustrative calculations in the confidence belt con-
struction for signal mean m in the presence of known mean back-
ground b53.0. Here we find the acceptance interval for m50.5.

n P(num) mbest P(numbest) R rank U.L. central

0 0.030 0.0 0.050 0.607 6
1 0.106 0.0 0.149 0.708 5 A A
2 0.185 0.0 0.224 0.826 3 A A
3 0.216 0.0 0.224 0.963 2 A A
4 0.189 1.0 0.195 0.966 1 A A
5 0.132 2.0 0.175 0.753 4 A A
6 0.077 3.0 0.161 0.480 7 A A
7 0.039 4.0 0.149 0.259 A A
8 0.017 5.0 0.140 0.121 A
9 0.007 6.0 0.132 0.050 A
10 0.002 7.0 0.125 0.018 A
11 0.001 8.0 0.119 0.006 A
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able x is simply the measured value of m in an experiment
with a Gaussian resolution function with known fixed rms
deviation s, set here to unity. I.e.,

P~xum!5
1

A2p
exp@2~x2m!2/2# . ~3.1!

We consider the interesting case where only non-negative
values for m are physically allowed ~for example, if m is a
mass!. Thus, the graph does not exist for m,0.
Although these are standard graphs, we believe that com-

mon use of them is not entirely proper. Figure 2, constructed
using Eq. ~2.5!, is appropriate for experiments when it is
determined before performing the experiment that an upper
limit will be published. Figure 3, constructed using Eq. ~2.6!,
is appropriate for experiments when it is determined before
performing the experiment that a central confidence interval
will be published. However, it may be deemed more sensible
to decide, based on the results of the experiment, whether to
publish an upper limit or a central confidence interval.
Let us suppose, for example, that physicist X takes the

following attitude in an experiment designed to measure a
small quantity: ‘‘If the result x is less then 3s, I will state an
upper limit from the standard tables. If the result is greater
than 3s, I will state a central confidence interval from the
standard tables.’’ We call this policy ‘‘flip-flopping’’ based
on the data. Furthermore, physicist X may say, ‘‘If my mea-
sured value of a physically positive quantity is negative, I
will pretend that I measured zero when quoting a confidence
interval,’’ which introduces some conservatism.
We can examine the effect of such a flip-flopping policy

by displaying it in confidence-belt form as shown in Fig. 4.
For each value of measured x , we draw at that x the vertical
segment @m1 ,m2# that physicist X will quote as a confidence
interval. Then we can examine this collection of vertical con-
fidence intervals to see what horizontal acceptance intervals

it implies. For example, for m52.0, the acceptance interval
has x15221.28 and x25211.64. This interval only con-
tains 85% of the probability P(xum). Thus Eq. ~2.4! is not
satisfied. Physicists X’s intervals undercover for a significant
range of m: they are not confidence intervals or conservative
confidence intervals.
Both Figs. 2 and 3 are confidence intervals when used

appropriately, i.e., without flip-flopping. However, the result
is unsatisfying when one measures, for example, x521.8.
In that case, one draws the vertical line as directed and finds
that the confidence interval is the empty set. @An alternative
way of expressing this situation is to allow non-physical m’s
when constructing the confidence belt, and then to say that
the confidence interval is entirely in the non-physical region.
This requires knowing P(xum) for non-physical m, which
can raise conceptual difficulties.# When this situation arises,
one knows that one is in the ‘‘wrong’’ 10% of the ensemble
quoting 90% C.L. intervals. One can go ahead and quote the
wrong result, and the ensemble of intervals will have the
proper coverage. But this is not very comforting.
Both problems of the previous two paragraphs are solved

by the ordering principle which we give in Sec. IV.

B. Poisson process with background

Figures 5 and 6 show standard @13,14# confidence belts
for a Poisson process when the observable x is the total
number of observed events, n , consisting of signal events
with mean m and background events with known mean b .
I.e.,

P~num!5~m1b !nexp@2~m1b !#/n!. ~3.2!

In these figures, we use for illustration the case where
b53.0.
Since n is an integer, Eq. ~2.3! can only be approximately

satisfied. By convention dating to the 1930s, one strictly
avoids undercoverage and replaces the equality in Eq. ~2.3!
with ‘‘>.’’ Thus the intervals overcover, and are conserva-
tive.

FIG. 4. Plot of confidence belts implicitly used for 90% C.L.
confidence intervals ~vertical intervals between the belts! quoted by
flip-flopping physicist X, described in the text. They are not valid
confidence belts, since they can cover the true value at a frequency
less than the stated confidence level. For 1.36,m,4.28, the cov-
erage ~probability contained in the horizontal acceptance interval! is
85%.

FIG. 5. Standard confidence belt for 90% C.L. upper limits, for
unknown Poisson signal mean m in the presence of a Poisson back-
ground with known mean b53.0. The second line in the belt is at
n51` .
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Although the word ‘‘conservative’’ in this context may be
viewed by some as desirable, in fact it is an undesirable
property of a set of confidence intervals. Ideal intervals cover
the unknown true value at exactly the stated confidence: 90%
C.L. intervals should fail to contain the true value 10% of the
time. If one desires intervals which cover more than 90% of
the time, the solution is not to add conservatism to the inter-
vals, but rather to choose a higher confidence level. The dis-
creteness of n in the Poisson problem leads unavoidably to
some conservatism, but this is unfortunate, not a virtue.
The Poisson intervals in Figs. 5 and 6 suffer from the

same problems as the Gaussian intervals. First, if physicist X
uses the data to decide whether to use Fig. 5 or Fig. 6, then
the resulting hybrid set can undercover. Second, there is a
well-known problem if, for example, b53.0 and no events
are observed. In that case, the confidence interval is again the
empty set. These problems are solved by the ordering prin-
ciple given in Sec. IV.
For this Poisson case, there is an alternative set of inter-

vals, given by Crow and Gardner @15#, which is instructive
because it requires the full Neyman construction. In con-
structing these intervals, one minimizes the horizontal length
of the acceptance region @n1 ,n2# at each value of m. Since n
is a discrete variable, the concept of length in the horizontal
direction can be well defined as the number of discrete
points. Said another way, the points in the acceptance inter-
val at each m are chosen in order of decreasing P(num), until
the sum of P(num) meets or exceeds the desired C.L. ~There
are other technical details in the original paper.! The Crow-
Gardner intervals are instructive because neither Eq. ~2.5!
nor Eq. ~2.6! is satisfied, even as a conservative inequality.
~Recall that x is identified with n in this section.! For
a50.9, P(n,n1um) varies between 0.018 and 0.089, and
P(n.n2um) varies between 0.011 and 0.078, in a manner
dictated by the Neyman construction so that always
P(nP@n1 ,n2#um)>0.9. Like Crow and Gardner, we use
Neyman’s construction, but with a different ordering for
choosing the points in the acceptance interval.

IV. NEW INTERVALS FROM AN ORDERING PRINCIPLE
BASED ON LIKELIHOOD RATIOS

A. Poisson process with background

We begin with a numerical example which occurs in the
construction of confidence belts for a Poisson process with
background. The construction proceeds in the manner of Fig.
1, where the measurement x in Fig. 1 now corresponds to the
measured total number of events n .
Let the known mean background be b53.0, and consider

the construction of the horizontal acceptance interval at sig-
nal mean m50.5. Then P(num) is given by Eq. ~3.2!, and is
given in the second column of Table I.
Now consider, for example, n50. For the assumed b53.,

the probability of obtaining 0 events is 0.03 if m50.5, which
is quite low on an absolute scale. However, it is not so low
when compared to the probability ~0.05! of obtaining 0
events with b53.0 and m50.0, which is the alternate hy-
pothesis with the greatest likelihood. A ratio of likelihoods,
in this case 0.03/0.05, is what we use as our ordering prin-
ciple when selecting those values of n to place in the accep-
tance interval.
That is, for each n , we let mbest be that value of the mean

signal m which maximizes P(num); we require mbest to be
physically allowed, i.e., non-negative in this case. Then
mbest5max(0,n2b), and is given in the third column of
Table I. We then compute P(numbest), which is given in the
fourth column. The fifth column contains the ratio

R5P~num!/P~numbest!, ~4.1!

and is the quantity on which our ordering principle is based.
R is a ratio of two likelihoods: the likelihood of obtaining n
given the actual mean m, and the likelihood of obtaining n
given the best-fit physically allowed mean. Values of n are
added to the acceptance region for a given m in decreasing
order of R , until the sum of P(num) meets or exceeds the
desired C.L. This ordering, for values of n necessary to ob-
tain total probability of 90%, is shown in the column labeled
‘‘rank.’’ Thus, the acceptance region for m50.5 ~analogous

FIG. 6. Standard confidence belt for 90% C.L. central confi-
dence intervals, for unknown Poisson signal mean m in the presence
of a Poisson background with known mean b53.0.

TABLE I. Illustrative calculations in the confidence belt con-
struction for signal mean m in the presence of known mean back-
ground b53.0. Here we find the acceptance interval for m50.5.

n P(num) mbest P(numbest) R rank U.L. central

0 0.030 0.0 0.050 0.607 6
1 0.106 0.0 0.149 0.708 5 A A
2 0.185 0.0 0.224 0.826 3 A A
3 0.216 0.0 0.224 0.963 2 A A
4 0.189 1.0 0.195 0.966 1 A A
5 0.132 2.0 0.175 0.753 4 A A
6 0.077 3.0 0.161 0.480 7 A A
7 0.039 4.0 0.149 0.259 A A
8 0.017 5.0 0.140 0.121 A
9 0.007 6.0 0.132 0.050 A
10 0.002 7.0 0.125 0.018 A
11 0.001 8.0 0.119 0.006 A
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Feldman Cousins approach 
(ordering criteria) for confidence belt
b=3 case

Although the word ‘‘conservative’’ in this context may be
viewed by some as desirable, in fact it is an undesirable
property of a set of confidence intervals. Ideal intervals cover
the unknown true value at exactly the stated confidence: 90%
C.L. intervals should fail to contain the true value 10% of the
time. If one desires intervals which cover more than 90% of
the time, the solution is not to add conservatism to the inter-
vals, but rather to choose a higher confidence level. The dis-
creteness of n in the Poisson problem leads unavoidably to
some conservatism, but this is unfortunate, not a virtue.
The Poisson intervals in Figs. 5 and 6 suffer from the

same problems as the Gaussian intervals. First, if physicist X
uses the data to decide whether to use Fig. 5 or Fig. 6, then
the resulting hybrid set can undercover. Second, there is a
well-known problem if, for example, b53.0 and no events
are observed. In that case, the confidence interval is again the
empty set. These problems are solved by the ordering prin-
ciple given in Sec. IV.
For this Poisson case, there is an alternative set of inter-

vals, given by Crow and Gardner @15#, which is instructive
because it requires the full Neyman construction. In con-
structing these intervals, one minimizes the horizontal length
of the acceptance region @n1 ,n2# at each value of m. Since n
is a discrete variable, the concept of length in the horizontal
direction can be well defined as the number of discrete
points. Said another way, the points in the acceptance inter-
val at each m are chosen in order of decreasing P(num), until
the sum of P(num) meets or exceeds the desired C.L. ~There
are other technical details in the original paper.! The Crow-
Gardner intervals are instructive because neither Eq. ~2.5!
nor Eq. ~2.6! is satisfied, even as a conservative inequality.
~Recall that x is identified with n in this section.! For
a50.9, P(n,n1um) varies between 0.018 and 0.089, and
P(n.n2um) varies between 0.011 and 0.078, in a manner
dictated by the Neyman construction so that always
P(nP@n1 ,n2#um)>0.9. Like Crow and Gardner, we use
Neyman’s construction, but with a different ordering for
choosing the points in the acceptance interval.

IV. NEW INTERVALS FROM AN ORDERING PRINCIPLE
BASED ON LIKELIHOOD RATIOS

A. Poisson process with background

We begin with a numerical example which occurs in the
construction of confidence belts for a Poisson process with
background. The construction proceeds in the manner of Fig.
1, where the measurement x in Fig. 1 now corresponds to the
measured total number of events n .
Let the known mean background be b53.0, and consider

the construction of the horizontal acceptance interval at sig-
nal mean m50.5. Then P(num) is given by Eq. ~3.2!, and is
given in the second column of Table I.
Now consider, for example, n50. For the assumed b53.,

the probability of obtaining 0 events is 0.03 if m50.5, which
is quite low on an absolute scale. However, it is not so low
when compared to the probability ~0.05! of obtaining 0
events with b53.0 and m50.0, which is the alternate hy-
pothesis with the greatest likelihood. A ratio of likelihoods,
in this case 0.03/0.05, is what we use as our ordering prin-
ciple when selecting those values of n to place in the accep-
tance interval.
That is, for each n , we let mbest be that value of the mean

signal m which maximizes P(num); we require mbest to be
physically allowed, i.e., non-negative in this case. Then
mbest5max(0,n2b), and is given in the third column of
Table I. We then compute P(numbest), which is given in the
fourth column. The fifth column contains the ratio

R5P~num!/P~numbest!, ~4.1!

and is the quantity on which our ordering principle is based.
R is a ratio of two likelihoods: the likelihood of obtaining n
given the actual mean m, and the likelihood of obtaining n
given the best-fit physically allowed mean. Values of n are
added to the acceptance region for a given m in decreasing
order of R , until the sum of P(num) meets or exceeds the
desired C.L. This ordering, for values of n necessary to ob-
tain total probability of 90%, is shown in the column labeled
‘‘rank.’’ Thus, the acceptance region for m50.5 ~analogous

FIG. 6. Standard confidence belt for 90% C.L. central confi-
dence intervals, for unknown Poisson signal mean m in the presence
of a Poisson background with known mean b53.0.

TABLE I. Illustrative calculations in the confidence belt con-
struction for signal mean m in the presence of known mean back-
ground b53.0. Here we find the acceptance interval for m50.5.

n P(num) mbest P(numbest) R rank U.L. central

0 0.030 0.0 0.050 0.607 6
1 0.106 0.0 0.149 0.708 5 A A
2 0.185 0.0 0.224 0.826 3 A A
3 0.216 0.0 0.224 0.963 2 A A
4 0.189 1.0 0.195 0.966 1 A A
5 0.132 2.0 0.175 0.753 4 A A
6 0.077 3.0 0.161 0.480 7 A A
7 0.039 4.0 0.149 0.259 A A
8 0.017 5.0 0.140 0.121 A
9 0.007 6.0 0.132 0.050 A
10 0.002 7.0 0.125 0.018 A
11 0.001 8.0 0.119 0.006 A
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to a horizontal line segment in Fig. 1! is the interval
n5@0,6# . Because of the discreteness of n , the acceptance
region contains a summed probability greater than 90%; this
is unavoidable no matter what the ordering principle, and
leads to confidence intervals which are conservative.
For comparison, in the column of Table I labeled ‘‘U.L.,’’

we place check marks at the values of n which are in the
acceptance region of standard 90% C.L. upper limits for this
example, and in the column labeled ‘‘central,’’ we place
check marks at the values of n which are in the acceptance
region of standard 90% C.L central confidence intervals.
The construction proceeds by finding the acceptance re-

gion for all values of m, for the given value of b . With a
computer, we perform the construction on a grid of discrete
values of m, in the interval @0, 50# in steps of 0.005. This
suffices for the precision desired ~0.01! in the end points of
confidence intervals. We find that a mild pathology arises as
a result of the fact that the observable n is discrete. When the
vertical dashed line is drawn at some n0 ~in analogy with in
Fig. 1!, it can happen that the set of intersected horizontal
line segments is not simply connected. When this occurs we
naturally take the confidence interval to have m1 correspond-
ing to the bottommost segment intersected, and to have m2
corresponding to the topmost segment intersected.
We then repeat the construction for a selection of fixed

values of b . We find an additional mild pathology, again
caused by the discreteness in n: when we compare the results
for different values of b for fixed n0 , the upper end point m2
is not always a decreasing function of b , as would be ex-
pected. When this happens, we force the function to be non-
increasing, by lengthening selected confidence intervals as
necessary. We have investigated this behavior, and compen-
sated for it, over a fine grid of b in the range @0, 25# in
increments of 0.001 ~with some additional searching to even
finer precision!.
Our compensation for the two pathologies mentioned in

the previous paragraphs adds slightly to our intervals’ con-
servatism, which however remains dominated by the un-
avoidable effects due to the discreteness in n .
The confidence belts resulting from our construction are

shown in Fig. 7, which may be compared with Figs. 5 and 6.
At large n , Fig. 7 is similar to Fig. 6; the background is
effectively subtracted without constraint, and our ordering
principle produces two-sided intervals which are approxi-
mately central intervals. At small n , the confidence intervals
from Fig. 7 automatically become upper limits on m; i.e., the
lower end point m1 is 0 for n<4 in this case. Thus, flip-
flopping between Figs. 5 and 6 is replaced by one coherent
set of confidence intervals ~and no interval is the empty set!.
Tables II–IX give our confidence intervals @m1 ,m2# for

the signal mean m for the most commonly used confidence
levels, namely 68.27% ~sometimes called 1s intervals by
analogy with Gaussian intervals!, 90%, 95%, and 99%. Val-
ues in italics indicate results which must be taken with par-
ticular caution, since the probability of obtaining the number
of events observed or fewer is less than 1%, even if m50.
~See Sec. IV C below.!
Figure 8 shows, for n50–10, the value of m2 as a func-

tion of b , for 90% C.L. The small horizontal sections in the
curves are the result of the mild pathology mentioned above,
in which the original curves make a small dip, which we

have eliminated. Dashed portions in the lower right indicate
results which must be taken with particular caution, corre-
sponding to the italicized values in the tables. Dotted por-
tions on the upper left indicate regions where m1 is non-zero.
These corresponding values of m1 are shown in Fig. 9.
Figure 8 can be compared with the Bayesian calculation

in Fig. 28.8 of Ref. @2# which uses a uniform prior for m t . A
noticeable difference is that our curve for n50 decreases as
a function of b , while the result of the Bayesian calculation
stays constant ~at 2.3!. The decreasing limit in our case re-
flects the fact that P(n0um) decreases as b increases. We find
that objections to this behavior are typically based on a mis-
placed Bayesian interpretation of classical intervals, namely
the attempt to interpret them as statements about P(m tun0).

B. Gaussian with a boundary at the origin

It is straightforward to apply our ordering principle to the
other troublesome example of Sec. III, the case of a Gaussian
resolution function @Eq. ~3.1!# for m, when m is physically
bounded to non-negative values. In analogy with the Poisson
case, for a particular x , we let mbest be the physically allowed
value of m for which P(xum) is maximum. Then
mbest5max(0,x), and

P~xumbest!5H
1/A2p , x>0,

exp~2x2/2!/A2p , x,0.
~4.2!

We then compute R in analogy to Eq. ~4.1!, using Eqs. ~3.1!
and ~4.2!:

R~x !5
P~xum!

P~xumbest!
5H

exp~2~x2m!2/2!, x>0
exp~xm2m2/2!, x,0 .

~4.3!

During our Neyman construction of confidence intervals, R
determines the order in which values of x are added to the
acceptance region at a particular value of m. In practice, this
means that for a given value of m, one finds the interval
@x1 ,x2# such that R(x1)5R(x2) and

FIG. 7. Confidence belt based on our ordering principle, for
90% C.L. confidence intervals for unknown Poisson signal mean m
in the presence of a Poisson background with known mean b53.0.
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some conservatism, but this is unfortunate, not a virtue.
The Poisson intervals in Figs. 5 and 6 suffer from the
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uses the data to decide whether to use Fig. 5 or Fig. 6, then
the resulting hybrid set can undercover. Second, there is a
well-known problem if, for example, b53.0 and no events
are observed. In that case, the confidence interval is again the
empty set. These problems are solved by the ordering prin-
ciple given in Sec. IV.
For this Poisson case, there is an alternative set of inter-

vals, given by Crow and Gardner @15#, which is instructive
because it requires the full Neyman construction. In con-
structing these intervals, one minimizes the horizontal length
of the acceptance region @n1 ,n2# at each value of m. Since n
is a discrete variable, the concept of length in the horizontal
direction can be well defined as the number of discrete
points. Said another way, the points in the acceptance inter-
val at each m are chosen in order of decreasing P(num), until
the sum of P(num) meets or exceeds the desired C.L. ~There
are other technical details in the original paper.! The Crow-
Gardner intervals are instructive because neither Eq. ~2.5!
nor Eq. ~2.6! is satisfied, even as a conservative inequality.
~Recall that x is identified with n in this section.! For
a50.9, P(n,n1um) varies between 0.018 and 0.089, and
P(n.n2um) varies between 0.011 and 0.078, in a manner
dictated by the Neyman construction so that always
P(nP@n1 ,n2#um)>0.9. Like Crow and Gardner, we use
Neyman’s construction, but with a different ordering for
choosing the points in the acceptance interval.

IV. NEW INTERVALS FROM AN ORDERING PRINCIPLE
BASED ON LIKELIHOOD RATIOS

A. Poisson process with background

We begin with a numerical example which occurs in the
construction of confidence belts for a Poisson process with
background. The construction proceeds in the manner of Fig.
1, where the measurement x in Fig. 1 now corresponds to the
measured total number of events n .
Let the known mean background be b53.0, and consider

the construction of the horizontal acceptance interval at sig-
nal mean m50.5. Then P(num) is given by Eq. ~3.2!, and is
given in the second column of Table I.
Now consider, for example, n50. For the assumed b53.,

the probability of obtaining 0 events is 0.03 if m50.5, which
is quite low on an absolute scale. However, it is not so low
when compared to the probability ~0.05! of obtaining 0
events with b53.0 and m50.0, which is the alternate hy-
pothesis with the greatest likelihood. A ratio of likelihoods,
in this case 0.03/0.05, is what we use as our ordering prin-
ciple when selecting those values of n to place in the accep-
tance interval.
That is, for each n , we let mbest be that value of the mean

signal m which maximizes P(num); we require mbest to be
physically allowed, i.e., non-negative in this case. Then
mbest5max(0,n2b), and is given in the third column of
Table I. We then compute P(numbest), which is given in the
fourth column. The fifth column contains the ratio

R5P~num!/P~numbest!, ~4.1!

and is the quantity on which our ordering principle is based.
R is a ratio of two likelihoods: the likelihood of obtaining n
given the actual mean m, and the likelihood of obtaining n
given the best-fit physically allowed mean. Values of n are
added to the acceptance region for a given m in decreasing
order of R , until the sum of P(num) meets or exceeds the
desired C.L. This ordering, for values of n necessary to ob-
tain total probability of 90%, is shown in the column labeled
‘‘rank.’’ Thus, the acceptance region for m50.5 ~analogous

FIG. 6. Standard confidence belt for 90% C.L. central confi-
dence intervals, for unknown Poisson signal mean m in the presence
of a Poisson background with known mean b53.0.

TABLE I. Illustrative calculations in the confidence belt con-
struction for signal mean m in the presence of known mean back-
ground b53.0. Here we find the acceptance interval for m50.5.

n P(num) mbest P(numbest) R rank U.L. central

0 0.030 0.0 0.050 0.607 6
1 0.106 0.0 0.149 0.708 5 A A
2 0.185 0.0 0.224 0.826 3 A A
3 0.216 0.0 0.224 0.963 2 A A
4 0.189 1.0 0.195 0.966 1 A A
5 0.132 2.0 0.175 0.753 4 A A
6 0.077 3.0 0.161 0.480 7 A A
7 0.039 4.0 0.149 0.259 A A
8 0.017 5.0 0.140 0.121 A
9 0.007 6.0 0.132 0.050 A
10 0.002 7.0 0.125 0.018 A
11 0.001 8.0 0.119 0.006 A
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to a horizontal line segment in Fig. 1! is the interval
n5@0,6# . Because of the discreteness of n , the acceptance
region contains a summed probability greater than 90%; this
is unavoidable no matter what the ordering principle, and
leads to confidence intervals which are conservative.
For comparison, in the column of Table I labeled ‘‘U.L.,’’

we place check marks at the values of n which are in the
acceptance region of standard 90% C.L. upper limits for this
example, and in the column labeled ‘‘central,’’ we place
check marks at the values of n which are in the acceptance
region of standard 90% C.L central confidence intervals.
The construction proceeds by finding the acceptance re-

gion for all values of m, for the given value of b . With a
computer, we perform the construction on a grid of discrete
values of m, in the interval @0, 50# in steps of 0.005. This
suffices for the precision desired ~0.01! in the end points of
confidence intervals. We find that a mild pathology arises as
a result of the fact that the observable n is discrete. When the
vertical dashed line is drawn at some n0 ~in analogy with in
Fig. 1!, it can happen that the set of intersected horizontal
line segments is not simply connected. When this occurs we
naturally take the confidence interval to have m1 correspond-
ing to the bottommost segment intersected, and to have m2
corresponding to the topmost segment intersected.
We then repeat the construction for a selection of fixed

values of b . We find an additional mild pathology, again
caused by the discreteness in n: when we compare the results
for different values of b for fixed n0 , the upper end point m2
is not always a decreasing function of b , as would be ex-
pected. When this happens, we force the function to be non-
increasing, by lengthening selected confidence intervals as
necessary. We have investigated this behavior, and compen-
sated for it, over a fine grid of b in the range @0, 25# in
increments of 0.001 ~with some additional searching to even
finer precision!.
Our compensation for the two pathologies mentioned in

the previous paragraphs adds slightly to our intervals’ con-
servatism, which however remains dominated by the un-
avoidable effects due to the discreteness in n .
The confidence belts resulting from our construction are

shown in Fig. 7, which may be compared with Figs. 5 and 6.
At large n , Fig. 7 is similar to Fig. 6; the background is
effectively subtracted without constraint, and our ordering
principle produces two-sided intervals which are approxi-
mately central intervals. At small n , the confidence intervals
from Fig. 7 automatically become upper limits on m; i.e., the
lower end point m1 is 0 for n<4 in this case. Thus, flip-
flopping between Figs. 5 and 6 is replaced by one coherent
set of confidence intervals ~and no interval is the empty set!.
Tables II–IX give our confidence intervals @m1 ,m2# for

the signal mean m for the most commonly used confidence
levels, namely 68.27% ~sometimes called 1s intervals by
analogy with Gaussian intervals!, 90%, 95%, and 99%. Val-
ues in italics indicate results which must be taken with par-
ticular caution, since the probability of obtaining the number
of events observed or fewer is less than 1%, even if m50.
~See Sec. IV C below.!
Figure 8 shows, for n50–10, the value of m2 as a func-

tion of b , for 90% C.L. The small horizontal sections in the
curves are the result of the mild pathology mentioned above,
in which the original curves make a small dip, which we

have eliminated. Dashed portions in the lower right indicate
results which must be taken with particular caution, corre-
sponding to the italicized values in the tables. Dotted por-
tions on the upper left indicate regions where m1 is non-zero.
These corresponding values of m1 are shown in Fig. 9.
Figure 8 can be compared with the Bayesian calculation

in Fig. 28.8 of Ref. @2# which uses a uniform prior for m t . A
noticeable difference is that our curve for n50 decreases as
a function of b , while the result of the Bayesian calculation
stays constant ~at 2.3!. The decreasing limit in our case re-
flects the fact that P(n0um) decreases as b increases. We find
that objections to this behavior are typically based on a mis-
placed Bayesian interpretation of classical intervals, namely
the attempt to interpret them as statements about P(m tun0).

B. Gaussian with a boundary at the origin

It is straightforward to apply our ordering principle to the
other troublesome example of Sec. III, the case of a Gaussian
resolution function @Eq. ~3.1!# for m, when m is physically
bounded to non-negative values. In analogy with the Poisson
case, for a particular x , we let mbest be the physically allowed
value of m for which P(xum) is maximum. Then
mbest5max(0,x), and

P~xumbest!5H
1/A2p , x>0,

exp~2x2/2!/A2p , x,0.
~4.2!

We then compute R in analogy to Eq. ~4.1!, using Eqs. ~3.1!
and ~4.2!:

R~x !5
P~xum!

P~xumbest!
5H

exp~2~x2m!2/2!, x>0
exp~xm2m2/2!, x,0 .

~4.3!

During our Neyman construction of confidence intervals, R
determines the order in which values of x are added to the
acceptance region at a particular value of m. In practice, this
means that for a given value of m, one finds the interval
@x1 ,x2# such that R(x1)5R(x2) and

FIG. 7. Confidence belt based on our ordering principle, for
90% C.L. confidence intervals for unknown Poisson signal mean m
in the presence of a Poisson background with known mean b53.0.
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discovery just because the 90% C.L. confidence interval does
not contain zero. With a proper understanding of what con-
fidence intervals are ~Sec. II B!, one realizes that they do not
indicate the degree of belief.
Our 90% C.L. upper limit at x50 is m251.64, which,

interestingly, is the standard 95% C.L. upper limit, rather
than m251.28, which is the standard 90% C.L. upper limit.
The departure from the standard 90% C.L. upper limits re-
flects the fact, mentioned above, that they provide frequentist
coverage only when the decision to quote an upper limit is
not based on the data. Our method repairs the undercoverage
caused by flip-flopping ~Fig. 4!, with a necessary cost in
loosening the upper limits around x50.

As x decreases, the upper limits from our method de-
crease, asymptotically going as 1/uxu for large negative x . As
in the Poisson case, particular caution is necessary when in-
terpreting limits obtained from measured values of x which
are unlikely for all physical m.

C. Decoupling of goodness-of-fit C.L. from the confidence
interval C.L.

An advantage of our intervals compared to the standard
classical intervals is that ours effectively decouple the confi-
dence level used for a goodness-of-fit test from the confi-
dence level used for confidence interval construction.
To elaborate, let us first recall the procedure used in a

standard ‘‘easy’’ x2 fit ~free from constraints, background,
etc.!, for example the fit of a one-parameter curve to a set of
points with Gaussian error bars. One examines the x2 be-
tween the data and the fitted curve, as a function of the fit
parameter. The value of x2 at its minimum is used to deter-
mine the goodness-of-fit: using standard tables, one can con-
vert this value to a goodness-of-fit confidence level which
tells one the quality of the fit. A very poor fit means that the
information on the fitted parameter is suspect: the experi-
mental uncertainties may not be assessed properly, the func-
tional form of the parametrized curve may be wrong, or, in
the most general terms, the hypotheses being considered may
not be the relevant ones.
If the value of the minimum x2 is considered acceptable,

then one examines the shape of x2 ~as a function of the fit
parameter! near its minimum, in order to obtain an ~approxi-
mate! confidence interval for the fit parameter at any desired
confidence level. This procedure is powerful because it does
not permit random fluctuations that favor no particular pa-
rameter value to influence the confidence interval. The two
confidence levels invoked in this example are then indepen-
dent; for example, one may require that the goodness-of-fit
C.L. be in the top 99% in order to consider the fit to be
acceptable, while quoting a 68% C.L. confidence interval for
the fitted parameter.
The problems with the standard classical intervals in Sec.

III can be viewed from the point of view that they effectively
constrain the C.L. used for the goodness-of-fit to be related
to that used for the the confidence interval. In both the
Gaussian and the Poisson upper limit examples, consider, for
example, 90% as the C.L. for upper limits; the confidence
interval is the empty set ~or outside the physical region, some
prefer to say! some fraction of the time which is determined
by this choice of C.L. For example, if the true mean is zero
in the constrained Gaussian problem, then the empty set is
obtained 10% of the time from Fig. 2; if the true mean is
zero in the Poisson-with-background problem, the empty set
can be obtained up to 10% of the time from confidence belts
such as Fig. 5 ~depending on the mean background b and on
how discreteness affects the intervals for that b .! An empty-
set confidence interval has the same effect as failing a
goodness-of-fit test: no useful confidence interval is inferred.
With the standard confidence intervals, one is forced to use a
specific C.L. for this effective goodness-of-fit test, coupled to
the C.L. used for interval construction. We believe this to be
most undesirable and at the heart of the community’s dissat-
isfaction with the standard intervals.

FIG. 8. Upper end m2 of our 90% C.L. confidence intervals
@m1 ,m2# , for unknown Poisson signal mean m in the presence of an
expected Poisson background with known mean b . The curves for
the cases n0 from 0 through 10 are plotted. Dotted portions on the
upper left indicate regions where m1 is non-zero ~and shown in the
following figure!. Dashed portions in the lower right indicate re-
gions where the probability of obtaining the number of events ob-
served or fewer is less than 1%, even if m50.

FIG. 9. Lower end m1 of our 90% C.L. confidence intervals
@m1 ,m2# , for unknown Poisson signal mean m in the presence of an
expected Poisson background with known mean b . The curves cor-
respond to the dotted regions in the plots of m2 of the previous
figure, with again n0510 for the upper right curve, etc.
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Fig. 9.9 Upper limits at a confidence level of 1 - f3 = 0.95 for different numbers of events 
observed nabs and as a function of the expected number of background events Vb. (a) The 
classical limit. (b) The Bayesian limit based on a uniform prior density for Vs' 

Taking rr(vs ) to be constant for Vs 2:: 0 and zero for Vs < 0, the upper limit 
at a confidence level of 1 - j3 is given by 

1- j3 = 

= 

f;:P L( nobs Ivs ) dvs 

fooo 
L(nobslvs)dvs 

(9.53) 

The integrals can be related to incomplete gamma functions (see e.g. [Arf95]), 
or since nobs is a positive integer, they can be solved by making the substitution 
x = Vs + Vb and integrating by parts nobs times. Equation (9.53) then becomes 

(9.54) 

This can be solved numerically for the upper limit The upper limit as a 
function of Vb is shown in Fig. 9.9(b) for various values of nobs. For the case 
without background, setting Vb = 0 gives 

nob. ( Up)n 
j3 _vup L Vs -e' ---- n! ' 

n=O 
(9.55) 

which is identical to the equation for the classical upper limit (9.16). This can 
be seen by comparing Figs 9.9(a) and (b). The Bayesian limit is always greater 
than or equal to the corresponding classical one, with the two agreeing only for 
Vb = O. 
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discovery just because the 90% C.L. confidence interval does
not contain zero. With a proper understanding of what con-
fidence intervals are ~Sec. II B!, one realizes that they do not
indicate the degree of belief.
Our 90% C.L. upper limit at x50 is m251.64, which,

interestingly, is the standard 95% C.L. upper limit, rather
than m251.28, which is the standard 90% C.L. upper limit.
The departure from the standard 90% C.L. upper limits re-
flects the fact, mentioned above, that they provide frequentist
coverage only when the decision to quote an upper limit is
not based on the data. Our method repairs the undercoverage
caused by flip-flopping ~Fig. 4!, with a necessary cost in
loosening the upper limits around x50.

As x decreases, the upper limits from our method de-
crease, asymptotically going as 1/uxu for large negative x . As
in the Poisson case, particular caution is necessary when in-
terpreting limits obtained from measured values of x which
are unlikely for all physical m.

C. Decoupling of goodness-of-fit C.L. from the confidence
interval C.L.

An advantage of our intervals compared to the standard
classical intervals is that ours effectively decouple the confi-
dence level used for a goodness-of-fit test from the confi-
dence level used for confidence interval construction.
To elaborate, let us first recall the procedure used in a

standard ‘‘easy’’ x2 fit ~free from constraints, background,
etc.!, for example the fit of a one-parameter curve to a set of
points with Gaussian error bars. One examines the x2 be-
tween the data and the fitted curve, as a function of the fit
parameter. The value of x2 at its minimum is used to deter-
mine the goodness-of-fit: using standard tables, one can con-
vert this value to a goodness-of-fit confidence level which
tells one the quality of the fit. A very poor fit means that the
information on the fitted parameter is suspect: the experi-
mental uncertainties may not be assessed properly, the func-
tional form of the parametrized curve may be wrong, or, in
the most general terms, the hypotheses being considered may
not be the relevant ones.
If the value of the minimum x2 is considered acceptable,

then one examines the shape of x2 ~as a function of the fit
parameter! near its minimum, in order to obtain an ~approxi-
mate! confidence interval for the fit parameter at any desired
confidence level. This procedure is powerful because it does
not permit random fluctuations that favor no particular pa-
rameter value to influence the confidence interval. The two
confidence levels invoked in this example are then indepen-
dent; for example, one may require that the goodness-of-fit
C.L. be in the top 99% in order to consider the fit to be
acceptable, while quoting a 68% C.L. confidence interval for
the fitted parameter.
The problems with the standard classical intervals in Sec.

III can be viewed from the point of view that they effectively
constrain the C.L. used for the goodness-of-fit to be related
to that used for the the confidence interval. In both the
Gaussian and the Poisson upper limit examples, consider, for
example, 90% as the C.L. for upper limits; the confidence
interval is the empty set ~or outside the physical region, some
prefer to say! some fraction of the time which is determined
by this choice of C.L. For example, if the true mean is zero
in the constrained Gaussian problem, then the empty set is
obtained 10% of the time from Fig. 2; if the true mean is
zero in the Poisson-with-background problem, the empty set
can be obtained up to 10% of the time from confidence belts
such as Fig. 5 ~depending on the mean background b and on
how discreteness affects the intervals for that b .! An empty-
set confidence interval has the same effect as failing a
goodness-of-fit test: no useful confidence interval is inferred.
With the standard confidence intervals, one is forced to use a
specific C.L. for this effective goodness-of-fit test, coupled to
the C.L. used for interval construction. We believe this to be
most undesirable and at the heart of the community’s dissat-
isfaction with the standard intervals.

FIG. 8. Upper end m2 of our 90% C.L. confidence intervals
@m1 ,m2# , for unknown Poisson signal mean m in the presence of an
expected Poisson background with known mean b . The curves for
the cases n0 from 0 through 10 are plotted. Dotted portions on the
upper left indicate regions where m1 is non-zero ~and shown in the
following figure!. Dashed portions in the lower right indicate re-
gions where the probability of obtaining the number of events ob-
served or fewer is less than 1%, even if m50.

FIG. 9. Lower end m1 of our 90% C.L. confidence intervals
@m1 ,m2# , for unknown Poisson signal mean m in the presence of an
expected Poisson background with known mean b . The curves cor-
respond to the dotted regions in the plots of m2 of the previous
figure, with again n0510 for the upper right curve, etc.
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discovery just because the 90% C.L. confidence interval does
not contain zero. With a proper understanding of what con-
fidence intervals are ~Sec. II B!, one realizes that they do not
indicate the degree of belief.
Our 90% C.L. upper limit at x50 is m251.64, which,

interestingly, is the standard 95% C.L. upper limit, rather
than m251.28, which is the standard 90% C.L. upper limit.
The departure from the standard 90% C.L. upper limits re-
flects the fact, mentioned above, that they provide frequentist
coverage only when the decision to quote an upper limit is
not based on the data. Our method repairs the undercoverage
caused by flip-flopping ~Fig. 4!, with a necessary cost in
loosening the upper limits around x50.

As x decreases, the upper limits from our method de-
crease, asymptotically going as 1/uxu for large negative x . As
in the Poisson case, particular caution is necessary when in-
terpreting limits obtained from measured values of x which
are unlikely for all physical m.

C. Decoupling of goodness-of-fit C.L. from the confidence
interval C.L.

An advantage of our intervals compared to the standard
classical intervals is that ours effectively decouple the confi-
dence level used for a goodness-of-fit test from the confi-
dence level used for confidence interval construction.
To elaborate, let us first recall the procedure used in a

standard ‘‘easy’’ x2 fit ~free from constraints, background,
etc.!, for example the fit of a one-parameter curve to a set of
points with Gaussian error bars. One examines the x2 be-
tween the data and the fitted curve, as a function of the fit
parameter. The value of x2 at its minimum is used to deter-
mine the goodness-of-fit: using standard tables, one can con-
vert this value to a goodness-of-fit confidence level which
tells one the quality of the fit. A very poor fit means that the
information on the fitted parameter is suspect: the experi-
mental uncertainties may not be assessed properly, the func-
tional form of the parametrized curve may be wrong, or, in
the most general terms, the hypotheses being considered may
not be the relevant ones.
If the value of the minimum x2 is considered acceptable,

then one examines the shape of x2 ~as a function of the fit
parameter! near its minimum, in order to obtain an ~approxi-
mate! confidence interval for the fit parameter at any desired
confidence level. This procedure is powerful because it does
not permit random fluctuations that favor no particular pa-
rameter value to influence the confidence interval. The two
confidence levels invoked in this example are then indepen-
dent; for example, one may require that the goodness-of-fit
C.L. be in the top 99% in order to consider the fit to be
acceptable, while quoting a 68% C.L. confidence interval for
the fitted parameter.
The problems with the standard classical intervals in Sec.

III can be viewed from the point of view that they effectively
constrain the C.L. used for the goodness-of-fit to be related
to that used for the the confidence interval. In both the
Gaussian and the Poisson upper limit examples, consider, for
example, 90% as the C.L. for upper limits; the confidence
interval is the empty set ~or outside the physical region, some
prefer to say! some fraction of the time which is determined
by this choice of C.L. For example, if the true mean is zero
in the constrained Gaussian problem, then the empty set is
obtained 10% of the time from Fig. 2; if the true mean is
zero in the Poisson-with-background problem, the empty set
can be obtained up to 10% of the time from confidence belts
such as Fig. 5 ~depending on the mean background b and on
how discreteness affects the intervals for that b .! An empty-
set confidence interval has the same effect as failing a
goodness-of-fit test: no useful confidence interval is inferred.
With the standard confidence intervals, one is forced to use a
specific C.L. for this effective goodness-of-fit test, coupled to
the C.L. used for interval construction. We believe this to be
most undesirable and at the heart of the community’s dissat-
isfaction with the standard intervals.

FIG. 8. Upper end m2 of our 90% C.L. confidence intervals
@m1 ,m2# , for unknown Poisson signal mean m in the presence of an
expected Poisson background with known mean b . The curves for
the cases n0 from 0 through 10 are plotted. Dotted portions on the
upper left indicate regions where m1 is non-zero ~and shown in the
following figure!. Dashed portions in the lower right indicate re-
gions where the probability of obtaining the number of events ob-
served or fewer is less than 1%, even if m50.

FIG. 9. Lower end m1 of our 90% C.L. confidence intervals
@m1 ,m2# , for unknown Poisson signal mean m in the presence of an
expected Poisson background with known mean b . The curves cor-
respond to the dotted regions in the plots of m2 of the previous
figure, with again n0510 for the upper right curve, etc.
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In case of a Poisson variable n0
in presence of background
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TABLE IV. 90% C.L. intervals for the Poisson signal mean m, for total events observed n0 , for known mean background b ranging from
0 to 5.

n0\b 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0

0 0.00, 2.44 0.00, 1.94 0.00, 1.61 0.00, 1.33 0.00, 1.26 0.00, 1.18 0.00, 1.08 0.00, 1.06 0.00, 1.01 0.00, 0.98
1 0.11, 4.36 0.00, 3.86 0.00, 3.36 0.00, 2.91 0.00, 2.53 0.00, 2.19 0.00, 1.88 0.00, 1.59 0.00, 1.39 0.00, 1.22
2 0.53, 5.91 0.03, 5.41 0.00, 4.91 0.00, 4.41 0.00, 3.91 0.00, 3.45 0.00, 3.04 0.00, 2.67 0.00, 2.33 0.00, 1.73
3 1.10, 7.42 0.60, 6.92 0.10, 6.42 0.00, 5.92 0.00, 5.42 0.00, 4.92 0.00, 4.42 0.00, 3.95 0.00, 3.53 0.00, 2.78
4 1.47, 8.60 1.17, 8.10 0.74, 7.60 0.24, 7.10 0.00, 6.60 0.00, 6.10 0.00, 5.60 0.00, 5.10 0.00, 4.60 0.00, 3.60
5 1.84, 9.99 1.53, 9.49 1.25, 8.99 0.93, 8.49 0.43, 7.99 0.00, 7.49 0.00, 6.99 0.00, 6.49 0.00, 5.99 0.00, 4.99
6 2.21,11.47 1.90,10.97 1.61,10.47 1.33, 9.97 1.08, 9.47 0.65, 8.97 0.15, 8.47 0.00, 7.97 0.00, 7.47 0.00, 6.47
7 3.56,12.53 3.06,12.03 2.56,11.53 2.09,11.03 1.59,10.53 1.18,10.03 0.89, 9.53 0.39, 9.03 0.00, 8.53 0.00, 7.53
8 3.96,13.99 3.46,13.49 2.96,12.99 2.51,12.49 2.14,11.99 1.81,11.49 1.51,10.99 1.06,10.49 0.66, 9.99 0.00, 8.99
9 4.36,15.30 3.86,14.80 3.36,14.30 2.91,13.80 2.53,13.30 2.19,12.80 1.88,12.30 1.59,11.80 1.33,11.30 0.43,10.30
10 5.50,16.50 5.00,16.00 4.50,15.50 4.00,15.00 3.50,14.50 3.04,14.00 2.63,13.50 2.27,13.00 1.94,12.50 1.19,11.50
11 5.91,17.81 5.41,17.31 4.91,16.81 4.41,16.31 3.91,15.81 3.45,15.31 3.04,14.81 2.67,14.31 2.33,13.81 1.73,12.81
12 7.01,19.00 6.51,18.50 6.01,18.00 5.51,17.50 5.01,17.00 4.51,16.50 4.01,16.00 3.54,15.50 3.12,15.00 2.38,14.00
13 7.42,20.05 6.92,19.55 6.42,19.05 5.92,18.55 5.42,18.05 4.92,17.55 4.42,17.05 3.95,16.55 3.53,16.05 2.78,15.05
14 8.50,21.50 8.00,21.00 7.50,20.50 7.00,20.00 6.50,19.50 6.00,19.00 5.50,18.50 5.00,18.00 4.50,17.50 3.59,16.50
15 9.48,22.52 8.98,22.02 8.48,21.52 7.98,21.02 7.48,20.52 6.98,20.02 6.48,19.52 5.98,19.02 5.48,18.52 4.48,17.52
16 9.99,23.99 9.49,23.49 8.99,22.99 8.49,22.49 7.99,21.99 7.49,21.49 6.99,20.99 6.49,20.49 5.99,19.99 4.99,18.99
17 11.04,25.02 10.54,24.52 10.04,24.02 9.54,23.52 9.04,23.02 8.54,22.52 8.04,22.02 7.54,21.52 7.04,21.02 6.04,20.02
18 11.47,26.16 10.97,25.66 10.47,25.16 9.97,24.66 9.47,24.16 8.97,23.66 8.47,23.16 7.97,22.66 7.47,22.16 6.47,21.16
19 12.51,27.51 12.01,27.01 11.51,26.51 11.01,26.01 10.51,25.51 10.01,25.01 9.51,24.51 9.01,24.01 8.51,23.51 7.51,22.51
20 13.55,28.52 13.05,28.02 12.55,27.52 12.05,27.02 11.55,26.52 11.05,26.02 10.55,25.52 10.05,25.02 9.55,24.52 8.55,23.52

TABLE V. 90% C.L. intervals for the Poisson signal mean m, for total events observed n0 , for known mean background b ranging from
6 to 15.

n0\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

0 0.00, 0.97 0.00, 0.95 0.00, 0.94 0.00, 0.94 0.00, 0.93 0.00, 0.93 0.00, 0.92 0.00, 0.92 0.00, 0.92 0.00, 0.92
1 0.00, 1.14 0.00, 1.10 0.00, 1.07 0.00, 1.05 0.00, 1.03 0.00, 1.01 0.00, 1.00 0.00, 0.99 0.00, 0.99 0.00, 0.98
2 0.00, 1.57 0.00, 1.38 0.00, 1.27 0.00, 1.21 0.00, 1.15 0.00, 1.11 0.00, 1.09 0.00, 1.08 0.00, 1.06 0.00, 1.05
3 0.00, 2.14 0.00, 1.75 0.00, 1.49 0.00, 1.37 0.00, 1.29 0.00, 1.24 0.00, 1.21 0.00, 1.18 0.00, 1.15 0.00, 1.14
4 0.00, 2.83 0.00, 2.56 0.00, 1.98 0.00, 1.82 0.00, 1.57 0.00, 1.45 0.00, 1.37 0.00, 1.31 0.00, 1.27 0.00, 1.24
5 0.00, 4.07 0.00, 3.28 0.00, 2.60 0.00, 2.38 0.00, 1.85 0.00, 1.70 0.00, 1.58 0.00, 1.48 0.00, 1.39 0.00, 1.32
6 0.00, 5.47 0.00, 4.54 0.00, 3.73 0.00, 3.02 0.00, 2.40 0.00, 2.21 0.00, 1.86 0.00, 1.67 0.00, 1.55 0.00, 1.47
7 0.00, 6.53 0.00, 5.53 0.00, 4.58 0.00, 3.77 0.00, 3.26 0.00, 2.81 0.00, 2.23 0.00, 2.07 0.00, 1.86 0.00, 1.69
8 0.00, 7.99 0.00, 6.99 0.00, 5.99 0.00, 5.05 0.00, 4.22 0.00, 3.49 0.00, 2.83 0.00, 2.62 0.00, 2.11 0.00, 1.95
9 0.00, 9.30 0.00, 8.30 0.00, 7.30 0.00, 6.30 0.00, 5.30 0.00, 4.30 0.00, 3.93 0.00, 3.25 0.00, 2.64 0.00, 2.45
10 0.22,10.50 0.00, 9.50 0.00, 8.50 0.00, 7.50 0.00, 6.50 0.00, 5.56 0.00, 4.71 0.00, 3.95 0.00, 3.27 0.00, 3.00
11 1.01,11.81 0.02,10.81 0.00, 9.81 0.00, 8.81 0.00, 7.81 0.00, 6.81 0.00, 5.81 0.00, 4.81 0.00, 4.39 0.00, 3.69
12 1.57,13.00 0.83,12.00 0.00,11.00 0.00,10.00 0.00, 9.00 0.00, 8.00 0.00, 7.00 0.00, 6.05 0.00, 5.19 0.00, 4.42
13 2.14,14.05 1.50,13.05 0.65,12.05 0.00,11.05 0.00,10.05 0.00, 9.05 0.00, 8.05 0.00, 7.05 0.00, 6.08 0.00, 5.22
14 2.83,15.50 2.13,14.50 1.39,13.50 0.47,12.50 0.00,11.50 0.00,10.50 0.00, 9.50 0.00, 8.50 0.00, 7.50 0.00, 6.55
15 3.48,16.52 2.56,15.52 1.98,14.52 1.26,13.52 0.30,12.52 0.00,11.52 0.00,10.52 0.00, 9.52 0.00, 8.52 0.00, 7.52
16 4.07,17.99 3.28,16.99 2.60,15.99 1.82,14.99 1.13,13.99 0.14,12.99 0.00,11.99 0.00,10.99 0.00, 9.99 0.00, 8.99
17 5.04,19.02 4.11,18.02 3.32,17.02 2.38,16.02 1.81,15.02 0.98,14.02 0.00,13.02 0.00,12.02 0.00,11.02 0.00,10.02
18 5.47,20.16 4.54,19.16 3.73,18.16 3.02,17.16 2.40,16.16 1.70,15.16 0.82,14.16 0.00,13.16 0.00,12.16 0.00,11.16
19 6.51,21.51 5.51,20.51 4.58,19.51 3.77,18.51 3.05,17.51 2.21,16.51 1.58,15.51 0.67,14.51 0.00,13.51 0.00,12.51
20 7.55,22.52 6.55,21.52 5.55,20.52 4.55,19.52 3.55,18.52 2.81,17.52 2.23,16.52 1.48,15.52 0.53,14.52 0.00,13.52

3880 57GARY J. FELDMAN AND ROBERT D. COUSINS



In the classical case, the upper limit
on zero-counting without any
background is 2.3, with 90% C.L.

The dotted lines means
there is also a lower limit,
not only an upper one

The dashed portions indicate
regions where the probability of
obtaining the number of events
observed or fewer is less than 1%

Upper end-point not 
always decreasing in b. 
Imposed not to grow.

(very unlikely configuration,
small n0 with large b)

The frequentist unified approach 
(Feldman and Cousins PRD 57 3873 (1998) ) 

In case of a Poisson variable n0
in presence of background



Homework n.6

The squared energy and momentum of a particle are independently measured:

E2 = 1010 ± 17  eV2

P2 = 1064 ± 25  eV2

Put an upper limit on the squared mass 
m2 = E2 - P2 

of the particle using:
- The classical frequentist approach
- The unified approach (Feldman Cousins) with the mean of the Gaussian 

constrained to be non-negative
(see Feldman and Cousins Phys.Rev.D 57 3873 (1998) ) 

- The Bayesian approach (briefly comment the choice of the prior)


