Event selection - Kinematic fit

1) Determine or improve knowledge of kinematic quantities
2) Define a test statistics to select the event

Impose kinematical constraints on measured variables



Example: Decay of Neutral Pion into Two Photons

0 — vy

both photons detected

assume photon directions are known precisely

energies have relative uncertainty og/E = 5%/VE

for simplicity: look at 500 MeV/c ¥ moving in z-direction

but, will not assume 500 MeV /c nor z-direction for pion
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two-photon Invariant mass
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relative error on single photon energy

(measured E - true E)/true E

EvsTrue
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two-photon measured momentum

measured momentum

p
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Mean 500
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What is the problem?

@ want to improve resolution

0, SO mass is known

@ assume that photons came from =
@ can we use this information?

o could adjust one photon (why just one?)
o could scale them both (high energy ~: better E measurement)

@ could minimize

X2 _ (El,ﬁt — El,meas)2 + (E2,ﬁt — E2,meas>2

01 g2

@ but minimum is clear: Egi = Ejneas (Something is missing!)

@ must introduce constraint: (k; + k»)? = m? gives

2E1E»(1 — cos ) = m?

s

@ Problem: minimize y? while simultaneously satisfying constraint



Minimization Strategy

@ multi-variable minimization with constraints: Lagrange multipliers

@ instead of minimizing over two variables, minimize over three Eq g,
EQ,ﬁt, and A\

X2 _ (El,ﬁt — El,meas)2 4 <E2,ﬁt — E2,meas>2

01 0?2

+2) [2Ey ¢ B2 (1 — cos 0) — m |

Comments:
1d.o.f.
X? evaluated for each single event



fit relative error on single photon energy
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fit two-photon measured momentum

fit momentum

pfit
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fit two-photon invariant mass
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v? Distribution

chi-squared distribution

chisq
1800L— Entries 10000
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Variable Definitions |

@ measured variables

N number of measured variables (input)
y vector of measurements, N-dimensional (input)
/' covariance matrix, N x N (input)

n vector of fit values of measured variables, N-dimensional
(output)

X =-n"V*iy-n)

@ unmeasured variables

J number of unmeasured variables (input)
& vector of unmeasured variable values, J-dimensional (input)



Variable Definitions Il

@ constraints

K number of constraints (input)
f vector of constraint functions, K dimensional (input)

Each constraint a function of measured and unmeasured variables. When
constraint is satisfied

fk(nl,...,n/\/,fl,...,fj):O for k:].,...,K

@ Lagrange multipliers
A vector of mulipliers, K-dimensional

Extended Y2 to be minimized:

Xm,6N) =y —n)" V7 y—n)+2XTf(n,¢)



Minimization Condition

Set all partial derivatives to zero:

aX2 ~1 T
= [—2\/ (v — 1) + 2F, )\L:O, n=1,....N
aX2 { T
9X_ _ |2F A]:O, —1,....J
dE; Y /
8)(2
—— =[2f], =0, k=1,....K
3)\/( [ ]k ) y Y
where Y oy
(Fo)kn = — and  (Fg)ij = =
Tn fj

In general, a system of non-linear equations, N 4+ J 4+ K equations with
N + J + K unknowns.



Stretch Functions or “Pulls”

How to tell if the thing is working?

@ look at use these N quantities:

Yn — 1n

- \/02(Yn) - 02(%)

@ Gaussian with mean at 0, o of 1

Zn

@ If not there are problems:

e offset mean: measurements biased
e wrong width: errors not correct
e tails: non-Gaussian tails in measurements, background in sample



stretch function

stretch function, photon 1

stretch1
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Unmeasured Variables, Number of Constraints

go back to 7¥ decay

could have introduced unmeasured variables: pr x, pr.y, Pr.z
but then would have to apply 3-momentum conservation
now have 4 constraints with 3 unmeasured variables

used to have 1 constraint with 0 unmeasured variables

same problem recast: 1-C fit

C = K — J, the number of degrees of freedom



Check y?

y? should have a standard probablility density distribution:

Convenient to check 2 probability:

POB) = [, FOC)dN
X5
P runs from 0 to 1
for nominal y? distribution P will be uniform

non-uniformity: problem with errors, check the pulls

often see peaks near 0: bad Y2, background in sample



v? Distribution

chi-squared distribution

chisq
1800L— Entries 10000
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v? Probability Distribution

chi-squared probability

prob
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Summary

@ measured variables, with or without statistical correlation, may have
physical relationships

@ kinematic fit varies values of measured quantities to satisfy

relationships

minimize y? with constraints

improved measurements

diagnostics about bias and errors in measurements are generated

goodness of fit a handle on correctness of physical relationships

assumed



¢—ny with n—yy

Event selection of 3 photons final state - Kinematic fit

Impose kinematical constraints on measured variables

Loy 4 By + By = Vs
3 photons

Py, + Dy, + Dy = 0 in the final state:
7 constraints
Ti-Ri/c=0



¢—my with n—yy

E1<E2<E3
Kinfit y* < 35

Cuts to select eta and pion peaks
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¢—my with n—yy

n0 peak

My32 <0.65 GeV2—m4,2

n peak

My32 <0.73 GeV2—m4,2
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p0 608 + 20.1
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p3 4.738 +0.282
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Event selection - Kinematic fit

1) Determine or improve knowledge of kinematic quantities
2) Define a test statistics to select the event

Impose kinematical constraints on variables

E,+E,+E, = s 3 photons
. . . in the final state:
Py =+ Prys + Prs = 0
1+3+3=7 constraints
Ti-Ri/c=0

Imposing the constraint:
2
B, E,, (1 —cosAa;j) = M,

would limit the study of the background or other similar contributions (e.g. t®—yy)



8.2. Typical constraints. A list of the most common constraints used in kinematic
fits is given here. In the following with N, we indicate the number of constraints.

e Quadri-momentum conservation (N. = 4). To apply this constraint the initial
state has to be known. In eTe™ collisions the initial state is known (apart from
initial state radiation effects) while in pp collisions the initial state can be to a
good approximation known only in the transverse plane. In fact the interaction
takes place between 2 partons, so that the longitudinal momentum of the initial
state is not defined at all.

e Mass constraint (N, = 1). When several combinations are possible, the con-
straint allows to determine the ”good” combination.

o Vertex constraint (N. = 2N, — 3 N, is the number of particles). Two or more
particles are constrained to converge in the same point, the vertex. Several
methods have been developed to apply the vertex constraint.

o Velocity constraint (N. = Np). If the particle time of flight is measured, and the
B of the particle is independently measured (or the particle is a photon so that
B = 1), the constraint T'— L/(cf) can be applied to each particle.



Method of the Lagrange multipliers

8.3. The method of the Lagrange Multipliers: an example. The most widely
used implementation of the kinematic fit is based on the Lagrange Multipliers.

We consider here a purely "mathematical” example to illustrate the main features of
the method. Suppose that two variables, a and b are measured, the values a¢ £+ o, and
bg £+ o are obtained. We assume for simplicity that the a and b are not correlated and
that the two uncertainties are equal, o, = o3, = 0.



Method of the Lagrange multipliers

On the other hand we know that the sum of the two variable should satisfy the relation:
(233) a+b=s

with s a known fixed number. We apply the Lagrange Multiplier method to this very
elementary example.
The following x? variable is introduced:

(a — a0)2 i (b — b())2

(234) X? = 5 5 +2A(a+b—s)

o o

where to the usual y? an additional term has been added multiplied by a new parameter
A. The meaning of such an additional term is clear: it imposes directly the constraint
233. The x? variable is now minimized with respect to the three parameters: a, b and
A. From the system we get:

. s ag— by
2 - Z
(235) a 5 5
~ S aog — bo
236 b = ——
(236) 5 5
. 1
(237) A= ——— (8 — apg — b())



Method of the Lagrange multipliers

a and b are the best estimates of a and b taking into account the constraint. It is useful
to rewrite the solutions for a and b in the following form:

—ap—b
(238) a=ag+ - ag 0

) —ap—b
(239) b=by+ - a; 0

as the sum of the measured quantities ag and by and a term that vanishes if the constraint
is satisfied by the measurements. In other words we see that the kinematic fit pulls a
and b away from the measured values by a quantity depending on the constraint.

Since the two estimates a and b are functions of the measured ag and by, in order to

evaluate the covariance matrix of a and B, the formula for the uncertainty propagation
is used*®. We get:

(240) O — %
(241) o = %

~ 0‘2
(242) cov {d b} = —5

4511 case of M functions yi depending on N variables z; we have

Jy; O
cov [Yi, yj] Z Dy 8—%cov [, xh]



Method of the Lagrange multipliers

or, expressing it as a covariance matrix:

o2 _ o2
2

_d? 0_22
2 D)

The results are very interesting and illustrate the main features of the kinematic fit.
As already said, the constraint pulls the estimates of a and b from the measured
values ag and by to other values depending on the constraint. The uncertainties on the
parameters decrease with respect to the measurement uncertainties and the estimates
have a correlation even if the original measurements are not correlated.
By substituting the values of a and b in eq.234 with a and b given in eqs.241 and 242,
the following 2 is obtained:

2 S a0—|—b0
24 2~ (22

Since the uncertainty on (ag + bg)/2 is 0/v/2, it is a x? with one degree of freedom, as
expected since we have posed a single constraint.

If an additional variable ¢ not measured (a sort of "neutrino”) is introduced, it can
be verified that with a single constraint only a trivial solution is obtained :

(244) i = ao
(245) b = by
(246) c = S—ao—bo

with y? identically equal to 0. No fit is obtained clearly, the number of unknowns being
equal to the number of constraints. Additional constraints are needed in this case.



Method of the Lagrange multipliers

8.4. The method of the Lagrange Multipliers: general formulation. Let’s as-
sume that the final state we are analyzing depends on N variables a;*. All these
variables have been measured and the values a;p have been obtained, with V;; being
the experimental covariance matrix of the measurements. Then we suppose to have R
constraints, each of the form Hy (&) = 047, with the Hs being general functions. The x?
function including the Lagrange multipliers is:

(247) X =) (i — i)V — ajo) +2 ) AeHi(@)
ij k
The constraints can be expanded around a certain N-dimensional point a4
- . OHjy,
(248) Hiy(@) = Hy(da) + ) _ (0 — aja)

in such a way that eq.247 becomes:

(249) x* =D (i — i)V (a5 —ajo) +2) M | Hi(d@a) + D @(%‘ — oj4)
k

— — Oou;
ij j J

461f the final state consists of K particles, in the most general case N = 7K since each particle have
to be described in the most complete form by 7 variables: 3 coordinates of a point, three components of
a vector and a mass.

47In this section we use the vecto symbol @ to identify vectors and the notation V to identify matrices.



Method of the Lagrange multipliers

The linearization of the constraints allows to have an analytically solvable system. The
details of the derivation of the solution are not given here, the final results are shown.
Using a matrix formalism the following vectors and matrices are defined:

(250) AG = d-—a}
(251) d = H(ah)
(252) Dy = 2

805.7 Aj=0jA
where the first is a vector of dimension N, the second of dimension R, the third is a
R x N matrix. The x? can be written as

(253) X* = (@ —do)"VH(a — do) + 2XT (DAG + d)
The minimization gives the following solution for the variables a:
(254) & = dy — VDT (DVDT) " (DAG, + d)
and the covariance matrix of the estimates is

(255) V' =v -vD"(DVD") DV
Finally the x? can be expressed as the sum of R terms:

(256) X* = X (DAd, + d)

one per constraint.

Eq.254 shows that the best estimate of the kinematic variables of the event are equal
to the measured values minus terms that depend on the constraints. The variables are
"pulled” from the measured values. The covariance matrix of the estimated variables is
also pulled (see eq.255) from the measurement covariance matrix. It can be demonstrated
that the diagonal terms of V' are always smaller than the corresponding diagonal terms
of V, so that the outcome of the kinematic fit is an improved kinematic reconstruction
of the event.



Method of the Lagrange multipliers

Finally the so called pulls are defined as measures of how each single variable is pulled
away from the measured values:

Q — QG0

2 _ 52
\/Uaio O

the denominator is the uncertainty on the difference between the two variables. If the
kinematic fit is working correctly, the distribution of the pulls should have a standardized

gaussian shape.

(257) pull; =



