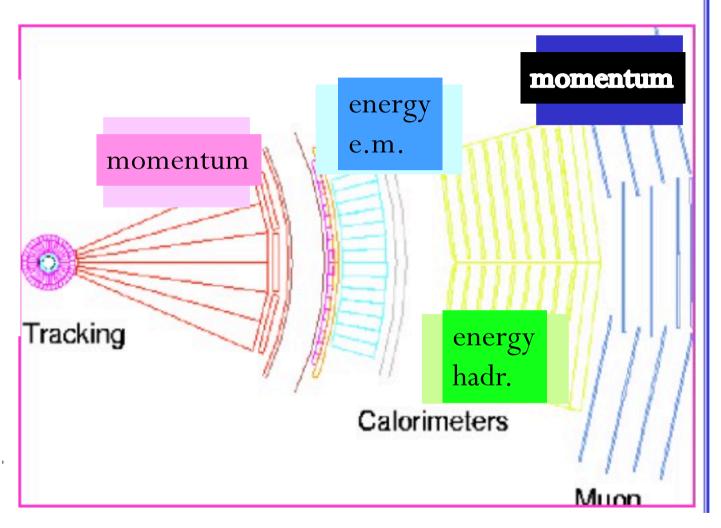
Designing an experiment

Introduction

$p_c E_{em} E_h p_{\mu}$

- e±: yes yes no no
- γ : no yes no no
- π^{\pm} : yes mip yes no
- n : no mip yes no
- μ±: yes mip mip yes
- v : no no no no
- v from apparent unbalance in the event (hermeticity)



particle measurement : spectrometers

The Lorentz force bends a charged particle in a magnetic field ⇒ the particle momentum is computed from the measurement of a trajectory €. Simple case:

- track $\perp \overrightarrow{B}$ (or ℓ = projected trajectory);
- \vec{B} = constant;
- $\ell \ll R$ (i.e. α small, $s \ll R$, arc \approx chord);
- then (p in GeV, B in T, & R s in m):

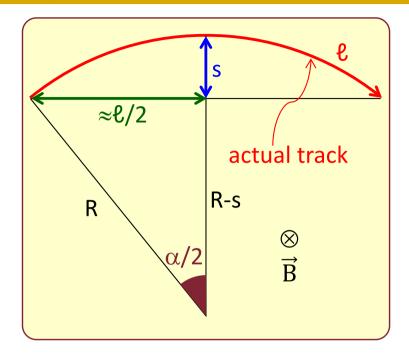
$$R^2 = (R - s)^2 + \ell^2 / 4 \rightarrow (R, \ell \gg s)$$

$$0 = 2 - 2Rs + \ell^2 / 4 \rightarrow$$

$$s = \frac{\ell^2}{RR} \simeq \frac{R\alpha^2}{R}$$
;

$$p = 0.3BR = 0.3B \frac{\ell^2}{8s}$$
;

$$\frac{\Delta p}{p} = \left| \frac{\partial p}{\partial s} \right| \frac{\Delta s}{p} = \frac{p}{s} \frac{\Delta s}{p} = \frac{\Delta s}{s} = \left(\frac{8\Delta s}{0.3B\ell^2} \right) p.$$



- e.g. B = 1 T, ℓ = 1.7 m, Δs = 200 $\mu m \rightarrow \Delta p/p = 1.6 \times 10^{-3} p (GeV);$
- in general, from N points at equal distance along ℓ, each with error ε:

$$\frac{\Delta p}{p} \simeq \frac{\epsilon p}{0.3B\ell^2} \sqrt{\frac{720}{N+4}}$$

(Gluckstern formula [PDG]).

Momentum measurement

Momentum measurement

Assume a uniform magnetic field \boldsymbol{B} in a region of dimension \boldsymbol{L} and a particle of trasverse momentum $\boldsymbol{p_T}$ entering the region

$$p_T(GeV) = 0.3\rho(m)B(T)$$

We define the "sagitta" s and suppose to measure it through 3 points x_1 , x_2 and x_3 : $s = x_2 - (x_1 + x_3)/2$

$$s = \frac{0.3BL^2}{8p_T}$$

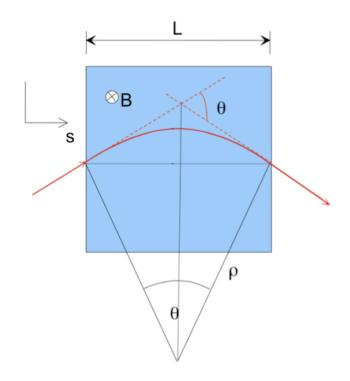
From **s** we get the transverse momentum, given the field **B** and the distance **L** between detectors 1 and 3

The resolution on p_T is:

$$\frac{\sigma(p_T)}{p_T} = \sqrt{\frac{3}{2}}\sigma_X \frac{8p_T}{0.3BL^2}$$

In case of N points rather than 3, the resolution is:

$$\frac{\sigma(p_T)}{p_T} = \sqrt{\frac{720}{N+4}} \sigma_X \frac{p_T}{0.3BL^2}$$



Resolution of energy measurements through e.m. calorimetry

- In general the energy resolution of an e.m. calorimeter is given in terms of $\sigma(E)/E$.
- Main contributions:
 - a/\sqrt{E} due to statistics: sampling fluctuations and/or number of photoelectrons fluctuations;
 - $b/E \rightarrow$ tipically due to the fluctuations of a constant contribution to the energy (e.g. pedestal, electronic noise,...)
 - $c \rightarrow$ constant term: due to systematics, calibration, containment.
- All three terms contribute. Normally *c* dominates at high energies, and *a* at low/intermediate energies. *b* is present only in specific cases.

Electromagnetic calorimetry

Table 31.8: Resolution of typical electromagnetic calorimeters. E is in GeV.

Technology (Experiment)	Depth	Energy resolution	Date
NaI(Tl) (Crystal Ball)	$20X_{0}$	$2.7\%/E^{1/4}$	1983
$Bi_4Ge_3O_{12}$ (BGO) (L3)	$22X_0$	$2\%/\sqrt{E} \oplus 0.7\%$	1993
CsI (KTeV)	$27X_0$	$2\%/\sqrt{E} \oplus 0.45\%$	1996
CsI(Tl) (BaBar)	$16-18X_0$	$2.3\%/E^{1/4} \oplus 1.4\%$	1999
CsI(Tl) (BELLE)	$16X_{0}$	1.7% for $E_{\gamma} > 3.5~{\rm GeV}$	1998
PbWO ₄ (PWO) (CMS)	$25X_0$	$3\%/\sqrt{E} \oplus 0.5\% \oplus 0.2/E$	1997
Lead glass (OPAL)	$20.5X_0$	$5\%/\sqrt{E}$	1990
Liquid Kr (NA48)	$27X_{0}$	$3.2\%/\sqrt{E} \oplus 0.42\% \oplus 0.09/E$	1998
Scintillator/depleted U (ZEUS)	$20-30X_0$	$18\%/\sqrt{E}$	1988
Scintillator/Pb (CDF)	$18X_{0}$	$13.5\%/\sqrt{E}$	1988
Scintillator fiber/Pb spaghetti (KLOE)	$15X_0$	$5.7\%/\sqrt{E} \oplus 0.6\%$	1995
Liquid Ar/Pb (NA31)	$27X_{0}$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (H1)	$20 – 30X_0$	$12\%/\sqrt{E}\oplus 1\%$	1998
Liquid Ar/depl. U (DØ)	$20.5X_{0}$	$16\%/\sqrt{E} \oplus 0.3\% \oplus 0.3/E$	1993
Liquid Ar/Pb accordion (ATLAS)	$25X_0$	$10\%/\sqrt{E} \oplus 0.4\% \oplus 0.3/E$	1996

Designing an experiment

examples

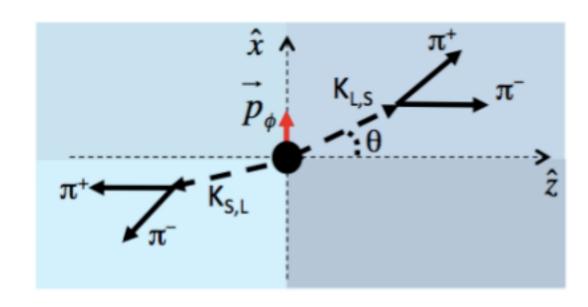
KLOE - I

- e^+e^- collisions at $\sqrt{s} = 1.02 \text{ GeV} = M_{\phi}$
- Low multiplicity events well suited for "exclusive" analyses.
- Particles to detect (momentum range 50 | 500 MeV):
 - Pions
 - Photons
 - Electrons
 - Muons
 - Charged kaons from $\phi \rightarrow K^+K^-$ (momentum = 130 MeV)
 - Neutral Kaons (see later)
- At these low momenta, there are not "hadronic showers", a pion is similar to a muon. On the other hand, electrons and photons are "e.m. showers".
- Strategy:
 - A tracking chamber in magnetic field to measure charged particles momenta (with some charged kaon discrimination through dE/dx measurement);
 - A calorimeter on its back to measure photons, and to help in the discrimination between pions, muons and electrons through time-of-flight;

KLOE - II

Specific KLOE case determines the detector overall dimensions:

$$\phi \to K_0 \overline{K}_0 \to K_S K_L$$



$$p(K_0) = 110.6 \text{ MeV/c}$$

$$\tau(K_S) = 0.8954 \times 10^{-10} \,\mathrm{s}$$

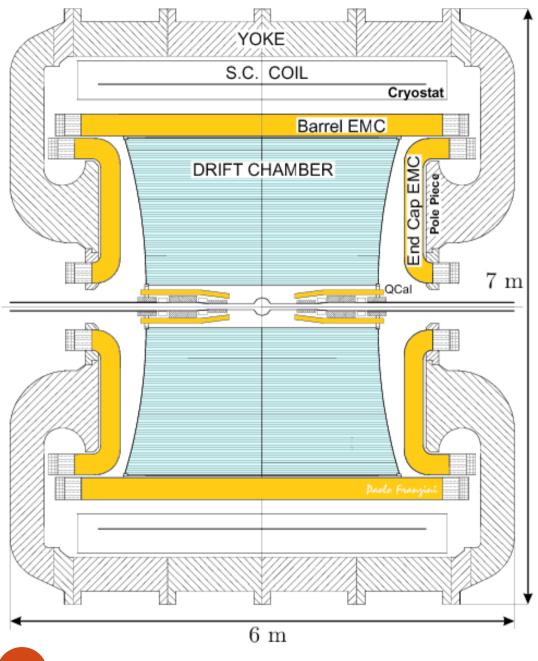
$$\tau(K_{\rm I}) = 5.116 \times 10^{-8} \,\mathrm{s}$$

$$\tau(K_S) = 0.8954 \times 10^{-10} \,\mathrm{s}$$
 $\rightarrow l(K_S) = \tau(K_S) \,\beta\gamma \,c = 6 \,\mathrm{mm}$

$$\tau(K_L) = 5.116 \times 10^{-8} \text{ s}$$
 $\rightarrow l(K_L) = \tau(K_L) \beta \gamma c = 3.4 \text{ m}$

A>50% (acceptance on
$$K_L$$
) if R>2.3 m

A>50% (acceptance on K_L) if
$$A = \int_{0}^{R} f(r)dr = \frac{1}{l(K_L)} \int_{0}^{R} e^{-r/(lK_L)} dr = 1 - e^{-R/(lK_L)}$$



SuperConducting Coil + Return Yoke

 $B \approx 0.5 T$

typical curvature radii

$$R = p_T/0.3B = 33 \div 330 \text{ cm}$$

Drift chamber

 $\approx 10^4$ wires in stereo configuration momentum measurement down to 50 MeV

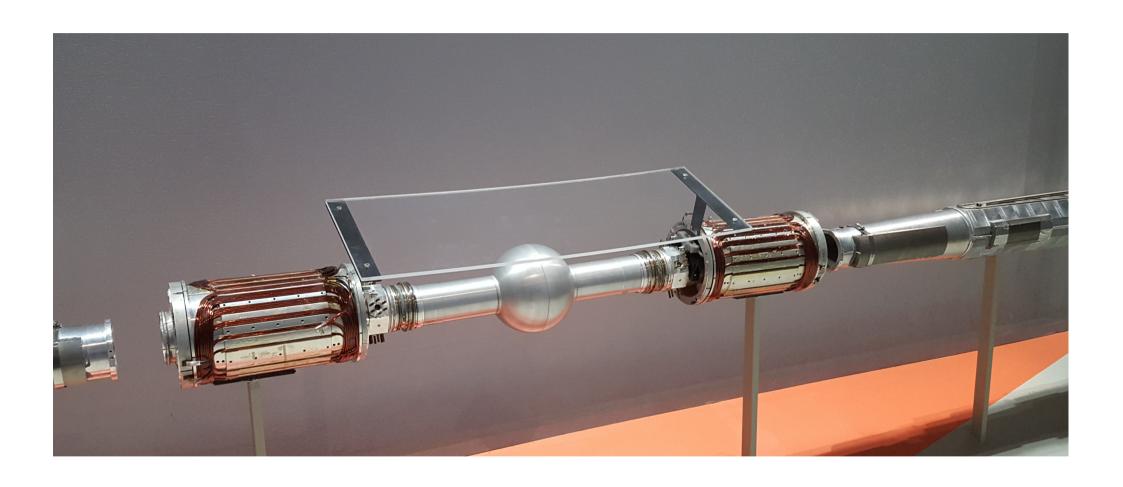
typical track: \approx 30 hits with 200 μ m space resolution each.

Calorimeter

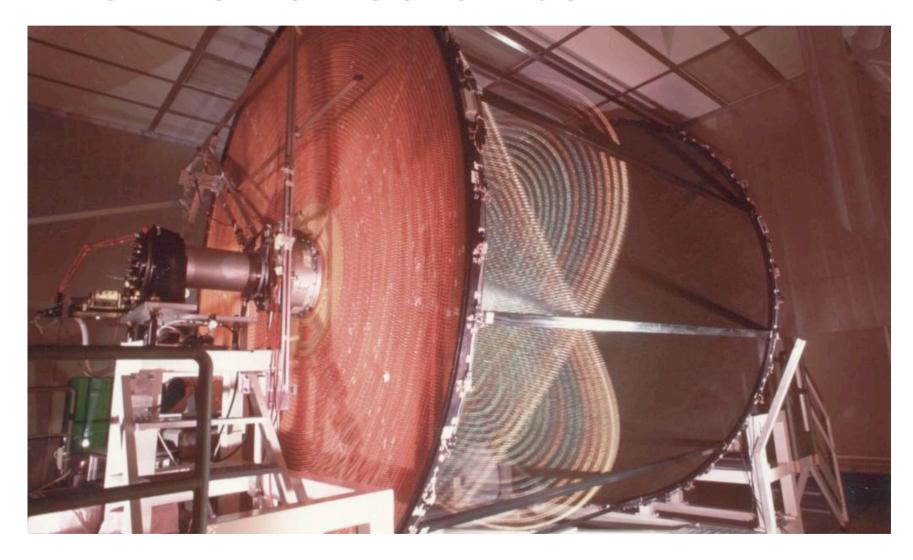
Lead-Scintillating fibers calorimeter Read-out through 4880 PMTs Energy resolution (record for a sampling calorimeter)

$$\frac{\sigma(p_T)}{p_T} \approx 0.4\%$$

$$\frac{\sigma(E)}{E} \approx \frac{5.7\%}{\sqrt{E(GeV)}}$$



The KLOE drift chamber



Stereo wires

Measurement of two coordinates in the two views:

$$Y=Y_0$$

$$\eta = \eta_0$$

Each measurements is a line in the X-Y plane:

$$Y=Y_0$$

$$Y = \eta_0 / \cos\theta + tg\theta X$$

solve the equations and get $(\sin\theta \approx \theta, \cos\theta \approx 1)$

$$X = (Y_0 \cos\theta - \eta_0) / \sin\theta \approx (Y_0 - \eta_0) / \theta$$

NB: given
$$\sigma(Y_0) \sim \sigma(\eta_0)$$

 $\rightarrow \sigma(X) = \sigma(Y_0) \sqrt{2/\theta}$

The KLOE calorimeter

The KLOE calorimeter

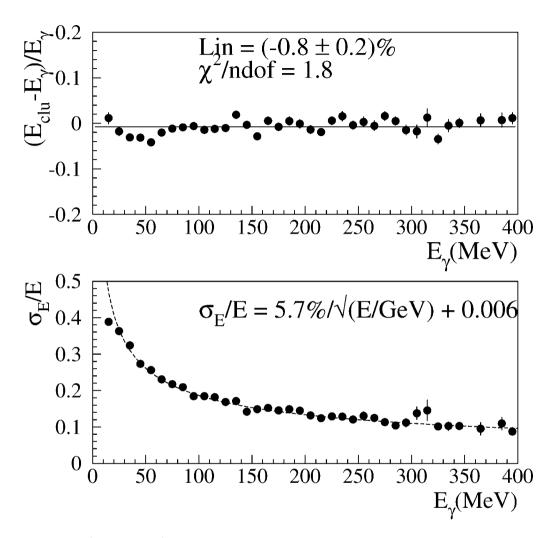


Fig. 1. $e^+e^- \rightarrow e^+e^-\gamma$: (a) Differential linearity vs. E_{γ} , (b) Energy resolution vs. E_{γ} .

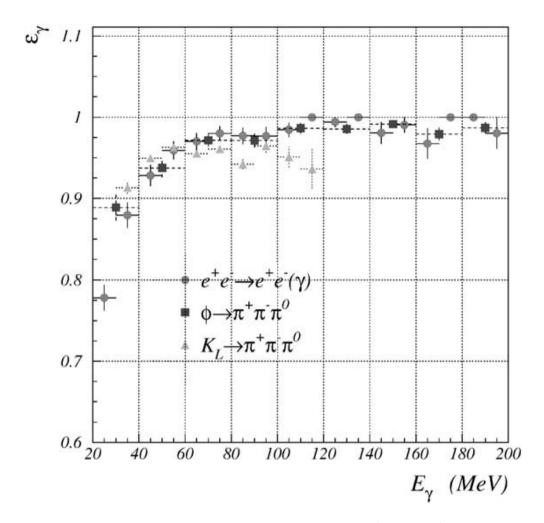


Fig. 38. Photons efficiency vs. energy for $e^+e^- \rightarrow e^+e^- \gamma$ events (circles), $\phi \rightarrow \pi^+\pi^-\pi^0$ (squares) and $K_L \rightarrow \pi^+\pi^-\pi^0$ (triangles).

KLOE calorimeter: Time-of-flight

Time resolution for scintillators:

 τ is the scintillator decay time;

 N_{pe} is the number of photoelectrons/MeV

N is the total number of photoelectrons

$$= N_{pe} \times E(MeV)$$

tts = Transite Time Spread (PMT, guides,..)

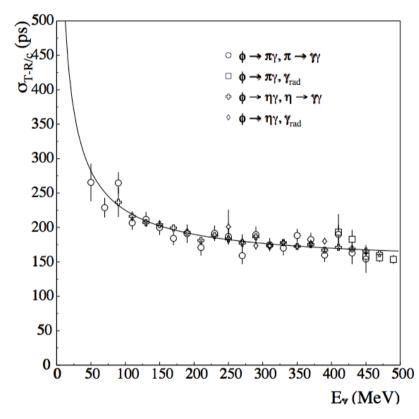
$$\sigma(t) = (\tau + tts) / \sqrt{N} \approx const / \sqrt{E}$$

In KLOE:

 $\tau \approx 2 \text{ ns}$

Npe $\approx 2/\text{MeV}$

tts $\approx 0.3 \text{ ns}$

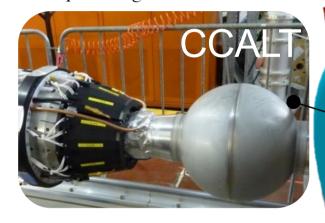


$$\sigma_t = 54 \text{ ps}/\sqrt{E \text{ (GeV)}} \oplus 140 \text{ ps}$$

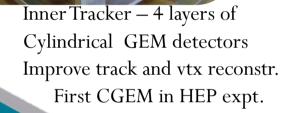
Spread in the "start" time

KLOE-2 at DAФNE

LYSO Crystal w SiPM Low polar angle

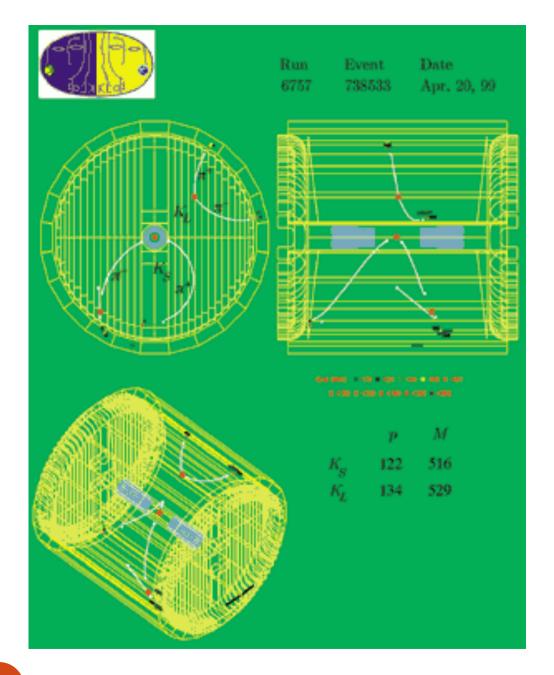


Tungsten / Scintillating Tiles w SiPM Quadrupole Instrumentation

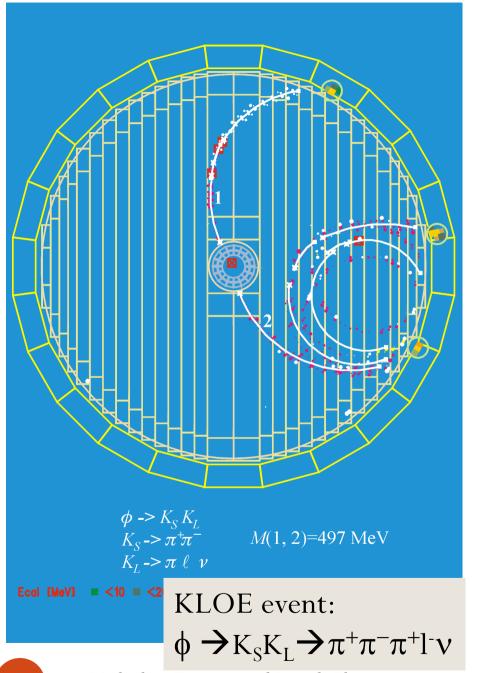


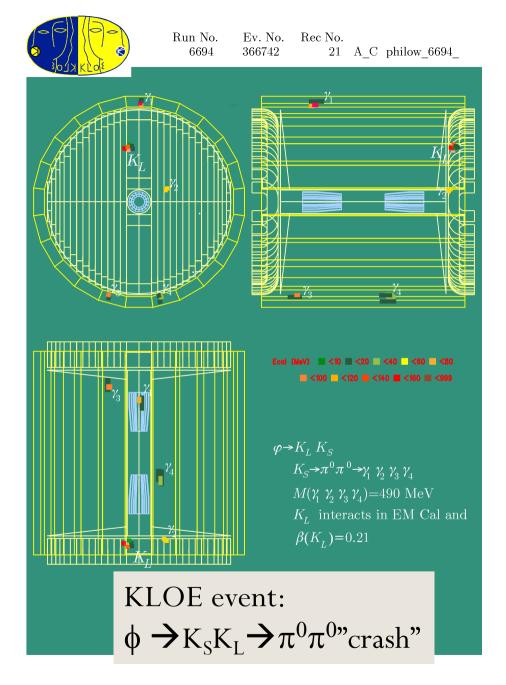
Scintillator hodoscope +PMTs

calorimeters LYSO+SiPMs at $\sim 1 \text{ m}$ from IP

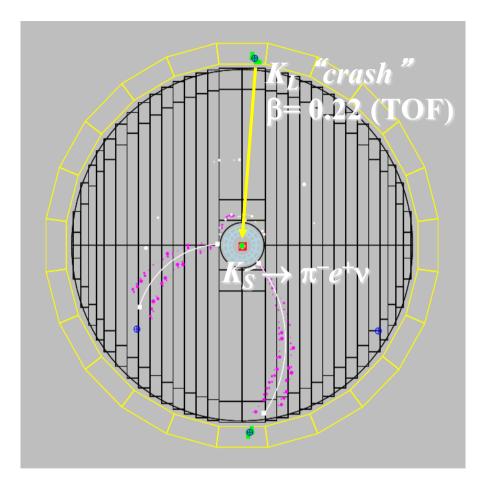


KLOE event: $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

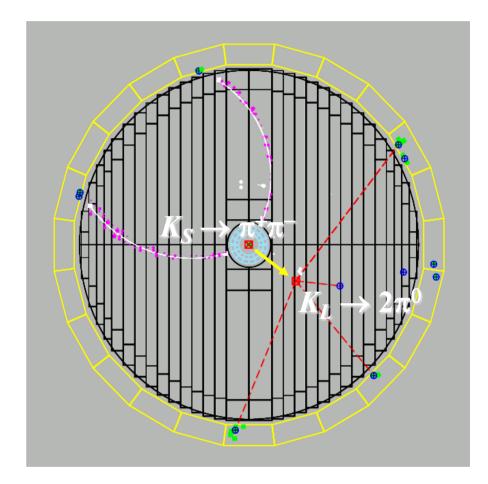




K_S and **K**_L Tagging at KLOE



 K_S tagged by K_L interaction in EmC Efficiency ~ 30% (largely geometrical) K_S angular resolution: ~ 1° (0.3° in ϕ) K_S momentum resolution: ~ 2 MeV



 K_L tagged by $K_S \rightarrow \pi^+\pi^-$ vertex at IP Efficiency ~ 70% (mainly geometrical) K_L angular resolution: ~ 1° K_L momentum resolution: ~ 2 MeV