

AI AND MACHINE LEARNING A QUICK INTRODUCTION ...

Methods in experimental particle physics Roma 29.5.2020 S. Giagu

REFERENCES AND FURTHER READING ...

Machine Learning and Deep Learning:

- Stat. Pattern Recognition: A. Webb, (3rd ed.), J.Wiley&Sons
- C.M. Bishop: Pattern Recognition and Machine Learning, Springer
- Decision Forests for Computer Visions and Medical Image Analysis: A.Criminisi, J.Shotton, Springer
- Deep Learning: I.Goodfellow, Y.Bengio, A.Courville, The MIT Press

• Artificial Intelligence (introductive):

- Artificial Intelligence: A Modern Approach: P.Norvig. (free on web)
- Life 3.0 Being Human in the Age of Artificial Intelligence: M. Tegmark
- Fundamental Algorithms: 1 (Artificial Intelligence for Humans): J. Heaton (more advanced)

Tools/frameworks:

- Scikit-learn: https://scikit-learn.org/stable/
- Keras & TensorFlow: https://www.tensorflow.org
- PyTorch: https://pytorch.org

INTRODUCTION

What Machine Learning means?

 ML is part of a larger research filed called Artificial Intelligence (AI) focused in the attempt to automatize intellectual tasks that are generally performed by humans

AI

- the AI concept and the study and development of ML algorithms used in AI systems started in the early 50', but it is only in the last ~10 years that AI applications are spreading exponentially in the society outside the basic and accademico research field
- This acceleration motivated by three parallel developments:
 - better algorithms (Machine & Deep Learning)
 - higher computing power (GPUs/TPUs/HPCs)
 - ability of the technological and industrial sectors to record and make accessible huge amounts of data/information (grid, clouds)

MACHINE LEARNING

• Original definition (Arthur Samuel, 1959):

Computational methods (algorithms) able to emulate the typical human, or animal, behaviour of learning based on the experience (i.e. learning from examples), w/o being explicitly programmed

ML algorithms are meant to solve that class of problems (like image or language recognition) that cannot be simply described with a set of formal mathematical rules (equations) and so too complex to be resolved by a traditional computational algorithm

MACHINE LEARNING VS TRADITIONAL COMPUTATION

• <u>Traditional computation</u> (symbolic AI): the programmer (human) design and load a set of rules (program) in the processor together a set of data that are analysed accordingly the set of rules to output an answer to the problem we want to solve

MACHINE LEARNING VS TRADITIONAL COMPUTATION

• <u>ML</u>: the programmer present to the processor both the data set and the set of answers expected for that data set. The algorithm output a set of rules that can then applied to indipendenti datasets to get the original answers

- is feed with a set of relevant examples gli vengono presentati un certo numero di esempi significativi
- try to find statistical structures in these examples (we assume these structures exist), that eventually will allow the algorithm to learn the rules needed to learn to perform a certain task

A MODERN DEFINITION (MITCHELL, 1998)

- an algorithm is said to learn from experience (E) with respect to some class of tasks (T) and a performance measure (P), if its performance at tasks in T, as measured by P, improves with experience E
- Task T: are described in terms of how the ML algorithm should process the example E
 - typical ML tasks:
 - classification (f: $R^n \rightarrow \{1,...,k\}$), regression (f: $R^n \rightarrow R^m$), images segmentation, transcription (ex. OCR), conversion of sequences of symbols (automatic translation), anomaly detection, synthesis/sampling (es. generators), de-noising, ...

- Example/Experience E:
 - represent the set of empirical information from which the algorithm learn
 - training set (i.e. the data)
 - prior knowledge: invariants, correlations, ...
- Performance measure P: to evaluate the abilities of a machine learning algorithm, we must design a quantitative measure of its performance. Usually this performance measure P is specific to the task T being carried out by the system
 - accuracy (fraction fo examples for which the algorithm produce the correct output), error rate, statistical costs, ROC, AUC, ...
 - must be always evaluated in a statistically independent data set (test sample)

AI/ML TASK EXAMPLES

Face/Object Detection:

- static: ex. facebook photos
- real time: cameras, autonomous driving systems
- experience: portion of images
- task: face or not-face

Medical Image Detection e Segmentation:

- experience: images (list of pixels)
- task: identify different biological tissues, disomogeneities ...

Voice recognition:

- experience: acoustical signals
- task: identify phonemes

ma-chin-le-ar-nin-g

AI/ML TASK EXAMPLES

Autonomous drive

Autonomous Drones

Manage

EXAMPLE OF A TASK IN HEP: CONVNET TO CLASSIFY HADRONIC JETS

CONVNET ON FPGA T IDENTIFY TAU DECAYS IN FUTURE GENERATION CALORIMETERS

RNN CNN

111x111x10 input

CNN+RNN

ADVERSARIAL CNN FO RTHE IDENTIFICATION OF PHASE TRANSITIONS IN CONDENSED MATTER ...

DEEP LEARNING FOR THE MODELLING DI COMPLEX TRANSFER FUNCTIONS

tomotherapy delivered dose as a function of the treatment plan

SINOGRAM

LEARNING PARADIGMS

• Learning algorithms can be divided in different categories that defines which kind of experience is permitted during the training process

- supervised learning (i.e. there is a teacher):
 - -for each example of the training set is provided the true answer (for example the corresponding class) called label
 - Typical target of the training process: to minimise the classification error or the accuracy
- unsupervised (or better: auto-supervised) learning:
 - -no explicit information on the true answer for the training set examples is given
 - -typical target of the training process: create groups / clusters of the input objects, generally on the base of similarity criteria

UNSUPERVISED LEARNING ALGORITHM EXAMPLE: GOOGLE NEWS

• Reinforcement learning:

inspired by behavioral psychology: is not used a fixed set of examples/experiences, but the algorithms adapts to teh ambient with which interacts via a continuous feedback between system and examples and through the distribution of a sort of reward (reinforce) that acts on the performance measure P

Solve the complex problem of relating instantaneous actions with the effect that they may produce at a later time

example: to maximise the score in a game that develop over multiple moves

ML: LEARNIGN PARADIGMS AND TASKS

CONCEPTUAL SCHEME OF THE SIMPLEST CLASSIFICATION SYSTEM

• Given the description of an object that can belong to N possible classes, task for the system is to assign the object to one of the classes (o to assign a probability to each class) by using the knowledge base build during the training phase

the features are used as input to a recognition algorithm that on the base of such features classifies the object

The feature estractor present to the recongition system a rapresentation, i.e. a set of measures (features) that characterise the object to be recognised and facilitate the task

LERN THE DATA REPRESENTATION

in first generation (classic ML): the feature set were build and chosen by the operator on the base of prior knowledge of the problem itself

• human: identify best features

• algorirthm: identify the best mapping between features and output

second generation ML: Representation Learning

• the algorithm scope is expanded by performing also the task to find in an automatic way a better representation of the data with respect to the one available with the input features

DEEP LEARNING (DL)

- the traditional ML algorithms were not very "creative" in finding better representations
- basically they just searched the best possible transformation in a predefined set of operations called "hypothesis space" of the algorithm. Search guided by the training examples
- The Deep Learning evolution solve this limitation by organising ideas and concepts in a hierarchical way and building new complex representations based on simpler ones
 - example: a person face can be presente by combining simpler features: eyes, mouth, hears ..., that can be represented in trun by combining basic features: edges, contours, lines, ...
- DL == HIERARCHICAL REPRESENTATION LEARNING

Extremely powerful, but requires huge training sets and a lot of computing power ...

AUTOENCODER: A BASIC EXAMPLE OF REPRESENTATION LEARNING

- non-supervised algorithm that try to identify common and fondamentali characteristic in the input data
- combines and encoder that converts input data in a different representation, with a decoder that converts the new representation back to the original input
- trained to output something as close as possible to the input (learn the identity function)

- "trivial" unless to constrain the network to have the hidden representation with a smallare dimension of the input/output
- in such case the network build (learn) "compressed" representations of the input features: $x \in \mathbb{R}^5 \to z \in \mathbb{R}^3 \to \cdots$

output = input

DECISION BOUNDARIES

• let's assume that we have found that the two best features for our classification task are: length e lightness

• which one we should use for the classification? Which threshold?

to decide this we make use of the traing set examples

Classification rule: if $x > x^*$: object \in class A else: object \in class B

the threshold x* is chosen in order to optimize an appropriate performance measure

example: accuracy, probability of misclassification, statistical risk ...

DECISION BOUNDARIES

- to improve P a better strategy woudl be to use more than one feature at the same time
- The classification problem becomes the problem to find the best partition of the feature space, so that the classification error is the smallest one

decision boundary

• Simplest choice: linear boundary (linear classifier)

Decision rule:

if $w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 > 0$: object \in class A else: object \in class B

COMPLEX DECISION BOUNDARIES ...

• question: it is possible to get rid of all errors with a complex decision boundary?

example: this boundary correctly classifies all the events of the trining set

PROBLEM: this way we are NOT guarantee a good performance of the algorithm when applied to events from independent samples wrt the training set (overfitting)

the decision boundary is sensitive to the statistical fluctuation in the training set

- it is always preferable to accept a certain margin of error on the trining set if this allows to a better generalisation of the algorithm
- STATION WAS A STATION OF THE STATION

• this aspect is called generalisation problem, and one of the crucial aspect in the design and training of any ML algorithm

ARTIFICIAL NEURAL NETWORKS

- the most popular approach to machine and deep learning to date
- an ANN is a mathematical model able to approximate with high precision any functional form
 - based on an interconnected group of identical computational units (neurons)
 - process input information according to a connectionist approach: → collective actions performed in parallel by simple processing units
 - behave as an adaptive system: structure dynamically modified during the learning phase based on a set of examples that flow through the network during the training step

- onon linear response obtained by non linear activation functions used as output of each neuron
- hierarchic representation learning obtained by implementing complex architectures with multiple layers of connected neurons (deep-NN)

ARTIFICIAL NEURON MODEL

with a TLU it is possible to solve problems with linearly separable classes:

Characteristics:

 receives in input n signals x_i and produce an output y given by the composition of a synaptic function:

$$a = \sum_{i=1}^{n} w_i x_i = \mathbf{w}^t \mathbf{x}$$

• and an activation function (Heaviside):

$$y = \varphi(a) = H(a - w_0) = \begin{cases} 1 \text{ if } a \ge w_0 \\ 0 \text{ if } a < w_0 \end{cases}$$

COMPLEX SEPARATION REGIONS

Struttura	Regioni di decisione	Forma generale
	Semispazi delimitati da iperpiani	
	Regioni convesse	
	Regioni di forma arbitraria	

Universal Approximation Theorem

a feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of Rn, under mild assumptions on the activation function

$$F(x) = \sum_{i=1}^N v_i arphi \left(w_i^T x + b_i
ight)$$

NOTE: the theorem does not say anything on the effective possibility to learn in an easy way the parameters of the network!

FEED-FORWARD ANN

- the most used ANN have a Feed-Forward multilayer structure:
- neurons organised in layers: input, hidden-1, ..., hidden-K, output
- only connections from a given layer to the next following one are allowed

RESPONSE FUNCTION

- behaviour of the NN determined by:
 - topological structure of the neurons (architecture)
 - Weights associated to each connection
 - response function of each neutron to the input data
- Response function ρ:
 - maps the input of the neuro $n: x^{(k-1)}_1, \dots, x^{(k-1)}_n$ to the output $x^{(k)}_i$
 - normally divided in two parts: synaptic function k: $R^n \rightarrow R$ and the neural activation function A: $R \rightarrow R$: $\rho = k \bullet A$

TRAINING

- The training of the NN consists in adjusting the weights (and the other hyperparameters) according to a given loss function in order to optimise the performance of the algorithm wrt a specific task
- most used technique: Back-propagation

Output for an ANN with:

- a single hidden layer with A: tanh
- an output layer with A: linear

nh: number of hidden layer neurons

weight associated to the link between j-th neuron of the hidden layer and the output neutron weight associated to the link between the i-th neuron of the input layer and the j-th neuron of the hidden layer

TRAINING

- during the training N examples are presented to the NN: x_a (a=1,...,N)
- for each event the output y_{ANN}(a) is computed and compared with the expected target Y_a∈{0,1} (0 class 2, 1 class 1 as example for a 2-class classification algorithm)
- A loss function is defined in order to measure the distance between y_{ANN}(a) e Y_a:

$$\Delta(x_1, ..., x_N | \mathbf{w}) = \sum_{\mathbf{a}=1}^{\mathbf{N}} \Delta_{\mathbf{a}}(\mathbf{x_a} | \mathbf{w}) = \sum_{\mathbf{a}=1}^{\mathbf{N}} \frac{1}{2} (\mathbf{y_{ANN}}(\mathbf{a}) - \mathbf{Y_a})^2 \qquad \text{MSE}$$

- ullet and the weight vector is chosen as the one that minimise the error Δ
 - Minimisation obtained with the GD/SGD ...

$$\mathbf{w}^{(\rho+1)} = \mathbf{w}^{(\rho)} - \eta \nabla_{\mathbf{w}} \Delta$$

LEARNING CURVES

- at the start of the training phase the error on the training set is typically large
- with the iterations (epochs) the error tend to decrease until it reach a plateau value that depends on:
 - training set size
 - number of weights of the NN
 - initial value of the weights
- training progress is visualized with the learnign curve (error vs epochs)
- as usual multiple datasets (or cross validation) are needed to train the NN, decide the architecture, decide the stop criterion, and evaluate the final performances ... etc..

ANN: INTERPRETATION AS NON LINEAR MAPPING

• A NN can be thought as an algorithm that learn two tasks at the same time:

THIS MODULE LEARN A (NON LINEAR) MAPPING OF THE INPUT

THIS MODULE LEARN A CLASSIFIER (LINEAR IN CASE OF A PERCEPTRON)

NN: finds the non linear mapping $y=\Phi(x)$ in 3-dimensional space (three hidden nodes) in which the patterns are linearly separable

original space: non linearly separable patterns x:

DEEP LEARNING AND ANN

- the different transformation/representation layers have a natural and intuitive implementation in multilayer neural-networks:
- each layer implements a transformation of the input coming from the preceding layer
- by using a sufficiently large number of hidden layers it is possible to learn extremely complex representations and to eliminate from the process irrilevante variations
- example: image → array of raw pixels
- first layer: find presence/absence of strong tonal Variations in specific points of the image (edges)
- second layer: combines edges to find patterns like corners, contours
- third layer: combines the previous patterns in complex objects (like faces, heads, ...) that can be used to classify the content of the image ...

DEEP ARCHITECTURE OF THE BRAIN

- we organise ideas and concept in hierarchical way
- first we learn simple concepts, then we compose them to represent more abstract concepts
- the DL try to emulate this behaviour ...

