
Homework n.6

The squared energy and momentum of a particle are independently measured:

E2 = 1010 ± 17  eV2

P2 = 1064 ± 25  eV2

Put an upper limit on the squared mass 
m2 = E2 - P2 

of the particle using:
- The classical frequentist approach
- The unified approach (Feldman Cousins) with the mean of the Gaussian 

constrained to be non-negative
(see Feldman and Cousins Phys.Rev.D 57 3873 (1998) ) 

- The Bayesian approach (briefly comment the choice of the prior)





Flip-flop problem: the frequentist unified approach 
(Feldman and Cousins PRD 57 3873 (1998) ) 

TABLE X. Our confidence intervals for the mean m of a Gaussian, constrained to be non-negative, as a function of the measured mean
x0 , for commonly used confidence levels. Italicized intervals correspond to cases where the goodness-of-fit probability ~Sec. IV C! is less
than 1%. All numbers are in units of s.

x0 68.27% C.L. 90% C.L. 95% C.L. 99% C.L. x0 68.27% C.L. 90% C.L. 95% C.L. 99% C.L.

23.0 0.00, 0.04 0.00, 0.26 0.00, 0.42 0.00, 0.80
22.9 0.00, 0.04 0.00, 0.27 0.00, 0.44 0.00, 0.82
22.8 0.00, 0.04 0.00, 0.28 0.00, 0.45 0.00, 0.84
22.7 0.00, 0.04 0.00, 0.29 0.00, 0.47 0.00, 0.87
22.6 0.00, 0.05 0.00, 0.30 0.00, 0.48 0.00, 0.89
22.5 0.00, 0.05 0.00, 0.32 0.00, 0.50 0.00, 0.92
22.4 0.00, 0.05 0.00, 0.33 0.00, 0.52 0.00, 0.95
22.3 0.00, 0.05 0.00, 0.34 0.00, 0.54 0.00, 0.99
22.2 0.00, 0.06 0.00, 0.36 0.00, 0.56 0.00, 1.02
22.1 0.00, 0.06 0.00, 0.38 0.00, 0.59 0.00, 1.06
22.0 0.00, 0.07 0.00, 0.40 0.00, 0.62 0.00, 1.10
21.9 0.00, 0.08 0.00, 0.43 0.00, 0.65 0.00, 1.14
21.8 0.00, 0.09 0.00, 0.45 0.00, 0.68 0.00, 1.19
21.7 0.00, 0.10 0.00, 0.48 0.00, 0.72 0.00, 1.24
21.6 0.00, 0.11 0.00, 0.52 0.00, 0.76 0.00, 1.29
21.5 0.00, 0.13 0.00, 0.56 0.00, 0.81 0.00, 1.35
21.4 0.00, 0.15 0.00, 0.60 0.00, 0.86 0.00, 1.41
21.3 0.00, 0.17 0.00, 0.64 0.00, 0.91 0.00, 1.47
21.2 0.00, 0.20 0.00, 0.70 0.00, 0.97 0.00, 1.54
21.1 0.00, 0.23 0.00, 0.75 0.00, 1.04 0.00, 1.61
21.0 0.00, 0.27 0.00, 0.81 0.00, 1.10 0.00, 1.68
20.9 0.00, 0.32 0.00, 0.88 0.00, 1.17 0.00, 1.76
20.8 0.00, 0.37 0.00, 0.95 0.00, 1.25 0.00, 1.84
20.7 0.00, 0.43 0.00, 1.02 0.00, 1.33 0.00, 1.93
20.6 0.00, 0.49 0.00, 1.10 0.00, 1.41 0.00, 2.01
20.5 0.00, 0.56 0.00, 1.18 0.00, 1.49 0.00, 2.10
20.4 0.00, 0.64 0.00, 1.27 0.00, 1.58 0.00, 2.19
20.3 0.00, 0.72 0.00, 1.36 0.00, 1.67 0.00, 2.28
20.2 0.00, 0.81 0.00, 1.45 0.00, 1.77 0.00, 2.38
20.1 0.00, 0.90 0.00, 1.55 0.00, 1.86 0.00, 2.48
0.0 0.00, 1.00 0.00, 1.64 0.00, 1.96 0.00, 2.58

0.1 0.00, 1.10 0.00, 1.74 0.00, 2.06 0.00, 2.68
0.2 0.00, 1.20 0.00, 1.84 0.00, 2.16 0.00, 2.78
0.3 0.00, 1.30 0.00, 1.94 0.00, 2.26 0.00, 2.88
0.4 0.00, 1.40 0.00, 2.04 0.00, 2.36 0.00, 2.98
0.5 0.02, 1.50 0.00, 2.14 0.00, 2.46 0.00, 3.08
0.6 0.07, 1.60 0.00, 2.24 0.00, 2.56 0.00, 3.18
0.7 0.11, 1.70 0.00, 2.34 0.00, 2.66 0.00, 3.28
0.8 0.15, 1.80 0.00, 2.44 0.00, 2.76 0.00, 3.38
0.9 0.19, 1.90 0.00, 2.54 0.00, 2.86 0.00, 3.48
1.0 0.24, 2.00 0.00, 2.64 0.00, 2.96 0.00, 3.58
1.1 0.30, 2.10 0.00, 2.74 0.00, 3.06 0.00, 3.68
1.2 0.35, 2.20 0.00, 2.84 0.00, 3.16 0.00, 3.78
1.3 0.42, 2.30 0.02, 2.94 0.00, 3.26 0.00, 3.88
1.4 0.49, 2.40 0.12, 3.04 0.00, 3.36 0.00, 3.98
1.5 0.56, 2.50 0.22, 3.14 0.00, 3.46 0.00, 4.08
1.6 0.64, 2.60 0.31, 3.24 0.00, 3.56 0.00, 4.18
1.7 0.72, 2.70 0.38, 3.34 0.06, 3.66 0.00, 4.28
1.8 0.81, 2.80 0.45, 3.44 0.16, 3.76 0.00, 4.38
1.9 0.90, 2.90 0.51, 3.54 0.26, 3.86 0.00, 4.48
2.0 1.00, 3.00 0.58, 3.64 0.35, 3.96 0.00, 4.58
2.1 1.10, 3.10 0.65, 3.74 0.45, 4.06 0.00, 4.68
2.2 1.20, 3.20 0.72, 3.84 0.53, 4.16 0.00, 4.78
2.3 1.30, 3.30 0.79, 3.94 0.61, 4.26 0.00, 4.88
2.4 1.40, 3.40 0.87, 4.04 0.69, 4.36 0.07, 4.98
2.5 1.50, 3.50 0.95, 4.14 0.76, 4.46 0.17, 5.08
2.6 1.60, 3.60 1.02, 4.24 0.84, 4.56 0.27, 5.18
2.7 1.70, 3.70 1.11, 4.34 0.91, 4.66 0.37, 5.28
2.8 1.80, 3.80 1.19, 4.44 0.99, 4.76 0.47, 5.38
2.9 1.90, 3.90 1.28, 4.54 1.06, 4.86 0.57, 5.48
3.0 2.00, 4.00 1.37, 4.64 1.14, 4.96 0.67, 5.58
3.1 2.10, 4.10 1.46, 4.74 1.22, 5.06 0.77, 5.68

In contrast, our construction always provides a confidence
interval at the desired confidence level ~with of course some
conservatism for the discrete problems!. Independently, one
can calculate the analogue of the goodness-of-fit, and decide
whether or not to consider the data or model ~including mean
expected background! to be invalid. This issue arises in the
case when an upper limit is quoted; i.e., the confidence in-
terval is @0,m2# .
In the constrained Gaussian case, one might have data

x0522.0 and hence a 90% C.L. confidence interval @0, 0.4#
from Table X. The natural analogue for the goodness-of-fit is
the probability to obtain x<x0 under the best-fit assumption
of m50.
In the Poisson-with-background case, one might have data

n051 for b53 and hence a 90% C.L. confidence interval @0,
1.88# from Table IV. The natural analogue for the goodness-
of-fit is the probability to obtain n<n0 under the best-fit
assumption of m50.

As noted above, in Fig. 8 we follow the practice of the
PDG @2# by indicating with dashed lines those regions where
the goodness-of-fit criterion is less than 1%. In Tables II–X,
the corresponding intervals are italicized.
In summary, because our intervals decouple the confi-

dence level used for a goodness-of-fit test from the confi-
dence level used for confidence interval construction, one is
free to choose them independently, at whatever level desired.

V. APPLICATION TO NEUTRINO OSCILLATION
SEARCHES

A. Experimental problem

Experimental searches for neutrino oscillations provide an
example of the application of this technique to a multidimen-
sional problem. Indeed it is just this problem that originally
focused our attention on this investigation.
Experiments of this type search for a transformation of

one species of neutrino into another. To be concrete, we
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assume that the experiment is to search for transformations
between muon type neutrinos, nm , and electron type neutri-
nos, ne , and that the influence of other types of neutrinos can
be ignored. We hypothesize that the weak eigenstates unm&
and une& are linear superpositions of two mass eigenstates
un1& and un2& ,

une&5un1&cos u1un2&sin u ~5.1!

and

unm&5un2&cos u2un1&sin u , ~5.2!

and that the mass eigenvalues for un1& and un2& are m1 and
m2 , respectively. Quantum mechanics dictates that the prob-
ability of such a transformation is given by the formula
@2,16#

P~nm!ne!5sin2~2u!sin2S
1.27Dm2L

E D , ~5.3!

where P is the probability for a nm to transform into a ne , L
is the distance in km between the creation of the neutrino
from meson decay and its interaction in the detector, E is the
neutrino energy in GeV, and Dm25um1

22m2
2
u in (eV/c2)2.

The result of such an experiment is typically represented
as a two-dimensional confidence region in the plane of the
two unknown physical parameters, u, the rotation angle be-
tween the weak and mass eigenstates, and Dm2, the ~posi-
tive! difference between the squares of the neutrino masses.
Traditionally, sin2(2u) is plotted along the horizontal axis
and Dm2 is plotted along the vertical axis. An example of
such a plot is shown in Fig. 11, based on a toy model that we
develop below. In this example, no evidence for oscillations
is seen and the confidence region is set as the area to the left
of the curve in this figure.

B. Proposed technique for determining confidence regions

The problem of setting the confidence region for a neu-
trino oscillation search experiment often shares all of the
difficulties discussed in the previous sections. The variable

sin2(2u) is clearly bounded by zero and one. Values outside
this region can have no possible interpretation within the
theoretical framework that defines the unknown physical pa-
rameters. Yet consider an experiment searching in a region
of Dm2 in which oscillations either do not exist or are well
below the sensitivity of the experiment. Such an experiment
is typically searching for a small signal of excess ne interac-
tions in a potentially large background of ne interactions
from conventional sources and misidentified nm interactions.
Thus, it is equally likely to have a best fit to a negative value
of sin2(2u) as to a positive one, provided that the fit to Eq.
~5.3! is unconstrained.
Typically, the experimental measurement consists of

counting the number of events in an arbitrary number of bins
@17# in the observed energy of the neutrino and possibly
other measured variables, such as the location of the interac-
tion in the detector. Thus, the measured data consist of a set
N[$ni%, together with an assumed known mean expected
background B[$bi% and a calculated expected oscillation
contribution T[$m iusin2(2u),Dm2%.
To construct the confidence region, the experimenter must

choose an ordering principle to decide which of the large
number of possible N sets should be included in the accep-
tance region for each point on the sin2(2u)-Dm2 plane. We
suggest an ordering principle identical to the one suggested
in Sec. IV, namely the ratio of the probabilities,

R5
P~NuT !

P~NuTbest!
, ~5.4!

where Tbest„sin2(2u)best ,Dmbest
2 … gives the highest probability

for P(NuT) for the physically allowed values of sin2(2u) and
Dm2.
In the Gaussian regime, x2522 ln(P), and so this ap-

proach is equivalent to using the difference in x2 between T
and Tbest , i.e.,

R8[Dx25(
i

F ~ni2bi2m i!
2

s i
2 2

~ni2bi2mbesti!
2

s i
2 G ,

~5.5!

FIG. 10. Plot of our 90% confidence intervals for the mean of a
Gaussian, constrained to be non-negative, described in the text.

FIG. 11. Calculation of the confidence region for an example of
the toy model in which sin2(2u)50. The 90% confidence region is
the area to the left of the curve.
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